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Chapter 2: Classical String Theory

1. I don’t know what this question asks exactly given that 2.1.16 is an infinitesimal diffeomorphism.

We are still allowed to assume WLOG that τ runs from 0 to 1. For ξ infinitesimal, we have δe “ ξ 9e` 9ξe “
Bτ pξeq. So for a general epτq define

τ2pτq “

şτ
0 dτ

1epτ 1q
ş1
0 dτ

1epτ 1q
(1)

Take L “
ş1
0 dτ

1epτ 1q. Then e2pτ2pτqq “
´

dτ2
dτ

¯´1
epτq “

´

epτq
L

¯´1
epτq “ L.

Note that we cannot get rid of this L, since it is invariant L “
ş1
0 dτepτq “

ş1
0 dτ2epτ2q

2. From analytic continuation, we have the functional equation for the Riemann zeta function:

ζpsq “ 2sπs´1 sinp
πs

2
qΓp1´ sqζp1´ sq (2)

It is worth knowing that near s “ 0 we have ζp1´ sq “ ´1
s ` γ and Γp1´ sq “ 1` γs. Expanding the right

hand side about s “ 0 gives

ζpεq “ ´
1

2
´

1

2

?
2πε (3)

This gives ζp0q “ ´1
2 and ζ 1p0q “ ´1

2

?
2π. Further, ζ 1psq “ ´

ř8
n“1

logn
ns .

So we get
ś8
n“1

1
L2 “ L´2

ř8
n“1 1 “ L´2ζp0q “ L and

ś8
n“1 n

2 “ exp
`

2
ř8
n“1 log n

˘

“ 2π.

3. For simplicity, we will work in the action with the einbein.

1

2

ż

dτepe´2Gµν 9xµ 9xν ´m2q

The Euler-Lagrange equations for xµ is:

d

dτ

B

Bxµ
pe´1Gαβ 9xα 9xβq ´

B

Bxµ

´

e´1Gαβ 9xα 9xβ
¯

“ 2e´1Gµν :xν ` 2e´1BγGµν 9xν 9xγ ´ 2
Gµν 9xν

e2
9e´ e´1BµGαβ 9xα 9xβ

Ñ Gµν :xν `
1

2
pBγGµν ` BνGµγ ´ BµGνγq 9xν 9xγ ´

1

2
Gµν 9xνBτ log e2

(4)
This last term looks particularly annoying, and is ignored by other authors. We have total freedom in
reparameterization of e, so we can WLOG set it equal to a (metric-dependent) constant by problem 1. Then
the term drops out and we get exactly the geodesic equations.

We could have done this explicitly as well:

d

dτ

Gµν 9xν
a

Gαβ 9xα 9xβ
´

B

Bxµ

b

Gαβ 9xα 9xβ “
Gµν :xν ` BλGµν 9xν 9xλ ´ 1

2BµGνλ 9xν 9xλ
a

´Gαβ 9xα 9xβ
`Gµν 9xν

d

dτ
p´Gαβ 9xα 9xβq´1{2

“ Gµνp:x
ν ` Γναβ 9xα 9xβq ´

1

2
Gµν 9xν

d

dτ
logp´Gαβ 9xα 9xβq

(5)

And fix the parameterization so that x2 “ const and the last term vanishes.

4. We get the same as before, but now cannot drop the last term. Now the dots represent time derivatives.

Gµνp:x
ν ` Γναβ 9xα 9xβq ´

1

2
Gµν 9xνBX0 logp´Gαβ 9xα 9xβq (6)
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5. We get:

´mc

ż

dτ
b

´pG00 9x0 9x0 ` 2G0i 9x0 9xi `Gij 9xi 9xjq (7)

Taking τ “ x0 “ ct gives us our result. Further, we write G00 “ ´1 ´ 2φ
c2

where φ is the gravitational
potential. To first order then we get:

´mc2

ż

dt
b

´pG00 ` 2c´1G0i 9xi ` c´2Gij 9xi 9xjq «

ż

dt
`

´mc2 ´mφ`mcG0iv
i `mGijv

ivj
˘

(8)

The last two terms in brackets are positive (kinetic) while the first two are negative (potential). This
explains why there is a - sign out front of the action.

6. The Lagrangian for a special relativistic particle in an electromagnetic field is ´mc2
a

1´ v2{c2´eφ`e~v ¨A.
This has the Lorentz invariant form: ´m

a

´Gµν 9xµ 9xν ` eAµ 9xµ. We get equations of motion as before: The
additional term gives the equations of motion:

e

m
p 9Aµ ´ BµAν 9xνq “

e

m
pBνAµ ´ BµAν 9qxν “

e

m
Fµν 9xν (9)

don’t confuse e with the einbein.

If one coordinate is cyclic (neither the metric nor the vector potential depend on it), the corresponding
momentum is

BL
B 9xµ

“ m
Gµν 9xν

a

´Gµν 9xµ 9xν
` eAµ (10)

7. Ignoring the cosmological constant term (which is not reparameterization invariant), we note that any term
that involves the metric Gµν will require at least 2 xµ variables for it to be contracted with. Also, repa-
rameterization invariance requires that under dτ Ñ f 1pτqdτ we get L Ñ L{λ. The simplest such term is
a

´Gµν 9xµ 9xν . Terms with more than 2 xµs will be suppressed by powers of 1{`2s. Similarly, terms with more
derivatives w.r.t. worldsheet coordinates will be less relevant in the IR.

8. Let’s set Gi0 “ 0 for simplicity. The Nambu-Goto action is:

´T

ż

dτdσ

b

p 9X ¨X 1q2 ´ p 9X2qpX 12q

Take τ “ ct, σ “ x and note T “ ρc2 with ρ the mass per unit length. Take X0 “ ct and ~u “ X 1i, ~v “ 9Xi.
Appreciate that v gives us how that point of the string is moving, while u gives the direction parallel to the
string at that point (scaled according to σ’s parameterization). Inside the radical:

pG00
9X0X 1

0
`Gij 9XiX 1

j
q2 ´ pG00

9X0 9X0 `Gij 9Xi 9XjqpG00X
10X 1

0
`GijX

1iX 1
j
q

“ c´2pGiju
ivjq2 ´ pG00 ` c

´2Gijv
ivjqpGiju

iujq

Take G00 “ ´1´ 2ϕ{c2. Then the radical becomes:

a

u2 ´ c´22φu2 ` c´2p~u ¨ ~vq2 ´ c´2v2u2 “ |u|

c

1´ c´2p2φ` v2 ´
p~u ¨ ~vq2

u2
q “ |u|

ˆ

1´ c´2

ˆ

´φ`
1

2
v2 ´

1

2

p~u ¨ ~vq2

u2

˙˙
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But note that v2 ´
p~u¨~vq2

u2 “ p~v ´ u¨v
u2 ~uq

2. This is exactly the part of v transverse to u (the string itself). So
we can write this as ~vT , the transverse velocity.

´ T

ż

dtdσ|u|p1` c´2φ´ c´2 1

2
v2
T q “

ż

dtdσ|u|p´c2 ´ φ`
1

2
v2
T q (11)

Note that ρ
ş

dσ|u| “ ρLs “Ms. The first term is thus ´Msc
2. The second terms is exactly the mass density

of the string interacting with the gravitational field, while the third (kinetic) is the motion of the transverse
components of the string. Note that the longitudinal excitations do not contribute.

9. Let’s work in lightcone gauge. We have B`B´X “ 0 The vanishing of the stress-energy tensor gives us
9X2 `X 12 “ 0 and 9X ¨X 12 “ 0. But at the endpoints we get X 1 “ 0 so that 9X2 “ 0 and the endpoints with

Neumann boundary conditions need to move at the speed of light.

10. The cosmological constant term gives the equation of motion δS
δgab

“ ´p
Tab
4π `

λ1
2 gabq

?
´g. But by reparame-

terization invariance we need Tab “ 0 so that λ1 must be 0.

11. It is quick to derive the current Pµ under δXν “ εδµν :

BL
BpBαXµq

“ ´T
?
´ggαβBβXµ (12)

Similarly under δXλ “ εMλδ
µνXδ with Mλδ

µν “ pδ
λ
µδ

δ
ν ´ δ

δ
µδ
λ
ν q. Then we have

BL
BpBαXλq

pδλµδ
δ
ν ´ δ

δ
µδ
λ
ν qXδ “ ´T

?
´ggαβpXµBβXν ´XνBβXµq (13)

12. Write:

Xµpτ, σq “ xµ ` `2sp
µτ `

i`s
?

2

ÿ

nPZ´t0u

1

n
pαne

´inσ ` ᾱne
inσqe´inτ

9Xµpτ, σq “ `2sp
µ `

`s
?

2

ÿ

nPZ´t0u
pαne

´inσ ` ᾱne
inσqe´inτ

(14)

Now take the Fourier series (in σ) of the commutation relation:

tXµ
n ,

9Xµ
mu “

δn`m
2π

1

T
ηµν (15)

The only nonzero terms are those we get when we pair each mode with its negative (in σ). Also note that
there is no τ dependence on the right-hand side, so we need to pair each τ mode with its negative. Let’s
look at xµ, the zero mode of X. We can only pair this with the other mode pµ and we necessarily have:

txµ, pνu “
1

2π`2sT
ηµν “ ηµν (16)

Similarly, we can only pair αn with α´n giving:

tαµm, α
ν
nu ` tᾱ

µ
m, ᾱ

ν
mu “

2mδm`n
2πi`2sT

ηµν (17)

By parity symmetry, both of these brackets should be the same. We get then that:

tαµm, α
ν
nu “ tᾱ

µ
m, ᾱ

ν
mu “ ´iδm`nη

µν (18)

13. For each coordinate on the n-torus, we have Xipτ, σ ` 2πq “ Xpτ, σq ` 2πniRi. Then the corresponding
momenta have difference p´ p̄ “ 2

`2s
niRi while the total momentum is quantized in multiples of p` p̄ “ 2mi

Ri
.

Therefore we have:

αi0 “
1
?

2

ˆ

mi
`s
Ri
` ni

Ri
`s

˙

(19)
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14. We begin with a redefined pµ Ñ 2pµ as in the book.

X 1
µ
pτ, σq|σ“0 “ `2spp

µ ´ p̄µq `
`s
?

2

ÿ

n

pαn ´ ᾱnqe
´inτ

9Xµpτ, σq|σ“0 “ `2spp
µ ` p̄µq `

`s
?

2

ÿ

n

pαn ` ᾱnqe
´inτ

(20)

So then

X 1 ` λ 9X “ `2s ppλ` 1qpµ ` pλ´ 1qp̄µq `
`s
?

2

ÿ

n

e´inτ ppλ` 1qαn ` pλ´ 1qᾱnq “ 0

This gives pµ “ 1´λ
1`λ p̄

µ and similarly αµ “ 1´λ
1`λ ᾱ

µ
n.

Further:

X 1
µ
pτ, σq|σ“π “ `2spp

µ ´ p̄µq `
`s
?

2

ÿ

n

pαµne
´iπn ´ ᾱµne

iπnqe´inτ Ñ
ÿ

n

αµnpe
´iπn ´

1` λ

1´ λ
eiπnqe´inτ

9Xµpτ, σq|σ“π “ `2spp
µ ` p̄µq `

`s
?

2

ÿ

n

pαµne
´iπn ` ᾱµne

iπnqe´inτ Ñ
ÿ

n

αµnpe
´iπn `

1` λ

1´ λ
eiπnqe´inτ

(21)

This gives:

p1` λqe´iπn ´ p1´ λq
1` λ

1´ λ
eiπn “ 0 ñ sinpπnq “ 0 ñ n P Z. (22)

The full equation is then

Xµ “ xµ `
2`2sp

µ

1´ λ
`

i
?

2`s
p1´ λq

ÿ

nPZ´t0u

αµn
n
e´inτ pcospσnq ` iλ sinpσnqq (23)

Clearly as λ Ñ 0 we recover Neumann boundary conditions. On the other hand as λ Ñ 8 we see that the
endpoint of the string is constrained to be unable to move and we indeed recover Dirichlet.

15. Looking at the DD solution:

X 1
µ
pτ, σq “ wµ `

?
2`s

ÿ

nPZ
αµne

´inτ cospnσq (24)

At the endpoints the momentum flow is

wµ ˘
?

2`s
ÿ

nPZ
αµne

´inτ (25)

16. In conformal gauge we have L “ 2T B`X
µB´Xµ “

T
2 pBτ ` BσqX

µpBτ ´ BσqX
µ “ T

2 pp
9Xq2 ´ pX 1q2q so that

Π “ T p 9Xq and
ş

dσΠ 9X ´ L “ T
2

ş

dσ pp 9Xq2 ` pX 1q2q ¨ 9Xq as we needed.

For the closed string:

9X “
`2sppµ ` p̄µq

2
`

`s
?

2

ÿ

n‰0

pαne
´inσ ` ᾱne

inσqe´inτ X 1 “
`2sppµ ´ p̄µq

2
`

`s
?

2

ÿ

n‰0

pαne
´inσ ´ ᾱne

inσqe´inτ

Assuming no winding, we have p “ p̄. In the hamiltonian, the only contributions that will not vanish is
when each einσ is paired with e´inσ. So we can look at this mode-by-mode. Between the two of these, the
cross terms involving αnᾱne

´2inτ will cancel. We will get:

T

2
ˆ
`2s
2
ˆ 2π ˆ

ÿ

n‰0

pαnα´n ` ᾱnᾱ´nq ˆ 2 “
1

2

ÿ

n‰0

pα´nαn ` ᾱ´nᾱnq “
8
ÿ

n“1

pα´nαn ` ᾱ´nᾱnq

The zero mode will contribute `4sp
2 ˆ 2π ˆ T {2 “ 1

2`
2
sp

2 as required.
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For NN we again have p “ p̄

9X “ 2`2sp
µ `

?
2`s

ÿ

n‰0

αn cospnσqe´inτ X 1 “ ´i
?

2`s
ÿ

n‰0

αn sinpnσqe´inτ

The zero mode gives 4`4sp
2 ˆ π After squaring this, we can only pair cospnσq either with itself or cosp´nσq.

Pairing it with itself will give α2
n cos2pnσqe´inτ which will be cancelled by the ´α2

n sin2pnσqe´inτ obtained
from multiplying sinpnσq with itself. On the other hand, pairing cospnσq and sinpnσq with their negative
frequency counterparts and integrating gives two factors of παnα´n so that in total we get:

`2sp
2 `

1

2

ÿ

n‰0

α´nαn “ `2sp
2 `

8
ÿ

n“1

α´nαn (26)

The exact same logic applies for DD except now only the difference term contributes. Instead of 2`2sp
µ we

have wµ “ py ´ xqµ{π which must thus give zero mode px´ yq2{p2π`sq
2.

Lastly, for DN we have no zero-modes at all, only:

Xµpσ, τq “ xµ ´
?

2`s
ÿ

kPZ` 1
2

αµk
k
e´ikτ sinpkσq (27)

ñ 9Xµ “ i
?

2`s
ÿ

k

αµke
´ikτ sinpkσq, X 1

µ
“ ´

?
2`s

ÿ

k

αµke
´ikτ cospkσq

By the same reason as in DD and DN, the only terms that don’t cancel is when we pair each sinpkσq with
its negative and similarly for cos. We get

T

2
`2s ˆ π ˆ 2ˆ

ÿ

nPZ` 1
2

α´nαn “
1

2

ÿ

nPZ` 1
2

α´nαn “
8
ÿ

n“1

α´n` 1
2
αn´ 1

2
(28)

17. Immediately we have tLm, L̄nu “ 0. For tLm, Lnu we have:

tLm, Lnu “
1

4

ÿ

k,l

tαm´kαk, αn´lαlu

“
1

4

ÿ

k,l

αn´lαm´ktαk, αlu ` αm´ktαk, αn´luαl ` αn´ltαm´k, αluαk ` tαm´k, αn´luαkαl

“ ´
i

4

ÿ

k,l

αn´lαm´k kδk`l ` αm´kαl kδk`n´l ` αn´lαk pm´ kqδm´k`l ` αkαlpm´ kqδm´k`n´l

“ ´
i

4

ÿ

k

αn`kαm´kk ` αm´kαn`kk ` αn`m´kαk pm´ kq ` αkαn`m´kpm´ kq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

kÑk`n

“ ´
i

2

ÿ

k

αm´kαn`kk ` αm´kαn`kpm´ n´ kq

“ ´i
1

2

ÿ

k

αm´kαn`kpm´ nq Ñ ´ipm´ nq
1

2

ÿ

k1

αm`n´kαk “ ´ipm´ nqLm`n

The exact same logic applies to the conjugate charges.
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Chapter 3: Quantization of Bosonic Strings

1. For simplicity we will ignore the µ index in our calculation first.

First consider rLm, Lns with m ` n ‰ 0. Then expanding in terms of commutators: This is the same as
before, but now we must be careful about commutation:

rLm, Lns “
1

4

ÿ

k,l

r: αm´kαk :, : αn´lαl :s

Note that the indices m´ k, k, n´ l, l sum to n`m, if any pairwise sum of them is equal to zero (necessary
for a nonvanishing commutator), then the other two will have sum equal to n`m. Then as long as m`n ‰ 0
αp, there will be no normal-ordering ambiguity and we will recover the standard commutation relations as
before.

So the remaining case to consider is n “ ´m. Take m positive WLOG. The logic of the question from last
chapter applies, but now we must be careful about the ordering of the αi outside of the commutator.

rLm, L´ms “
1

4

ÿ

k,l

rαm´kαk, α´m´lαls

“
1

4

ÿ

k

αm´kαlkδk´m´l ` α´m´lαkpm´ kqδm´k`l ` α´m´lαm´kkδk`l ` αkαlpm´ kqδk`l

“
1

4

ÿ

k

αm´kαk´mk ` α´kαkpm´ kq ` α´m`kαm´kk ` αkα´kpm´ kq

(29)

We can split this into k ě 1 and k ď 1. The k “ 0 term is already in normal order. When k ě 1, the first,
third, and fourth terms of the sum are out of normal order. The first term has only m terms out of normal
order. Rearranging these gives the constant:

1

4

m
ÿ

k“1

kpk ´mq “
1

4

mpm2 ´ 1q

6

The fourth term has all terms out of normal order and gives the formally infinite sum

8
ÿ

k“1

kpm´ kq

The last term has all but the first m terms out of normal order, and so contributes the sum

8
ÿ

k“m`1

p´m` kqk “ ´
8
ÿ

k“1

pm´ kqk `
m
ÿ

k“1

pk ´mqk

The first part of this exactly cancels with the third term’s infinite contribution. The last part of this gives
exactly the same contribution as the first term.

Now, for k ď ´1 only the first two terms contribute. The first term contributes
ř

kpm´kqk while the second
term contributes

ř

kp´kqpm´ kq which cancel. Thus the term left behind is exactly:

2ˆ
1

4

mpm2 ´ 1q

6
“
mpm2 ´ 1q

12
(30)

Note however that in fact our oscillators carry with them a µ index which we have ignored. If we incorporate
it, then each normal ordering of αµi α

j
ν will include a factor of ηµν which would have to be summed over. This

will add in a copy of D to our final result for the normal ordering term.

Finally, we see that the normal ordering constant a must be equal to:

1

2

ÿ

k

αi´kα
i
k Ñ

ÿ

k“0

αi´kα
i
k `

1

2

ÿ

ką0

rαik, α
i
´ks “: L0 : `

D ´ 2

2

ÿ

k

k

loomoon

ζp´1q

“ ´
D ´ 2

24
(31)
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2. I believe that the treatment of the prior derivation of the central term was sufficiently careful, as I did not
need to use any zeta regularization to compute an infinite sum. I only used zeta regularization in calculating
the normal-ordering constant

3. Given that the Witt algebra is already given as an associative algebra, the commutator directly satisfies the
Jacobi identity, since pa´ pb´ cqq ` pb´ pc´ aqq ` pc´ pa´ bqq “ a` b` c “ 0. Adding a central term gives

rLa, rLb, Lcss`rLb, rLc, Lass`rLc, rLa, Lbss “
1

12
δa`b`cpapa

2´1qpb´cq`bpb2´1qpc´aq´cpc2´1qpa´bqq (32)

This is zero by algebra.

4. For the closed string, we have:

9Xµpτ, σq “ `2sp
µ `

`s
?

2

ÿ

n‰0

pαµne
´inσ ` ᾱµne

inσqe´inτ

X 1
µ
pτ, σq “

`s
?

2

ÿ

n‰0

pαµne
´inσ ´ ᾱµne

inσqe´inτ

Taking X` “ x` ` `sp
`τ sets α`n , ᾱ

`
n “ 0 for all n ‰ 0.

9Xµ `X 1
µ
“ `2sp

µ `
?

2`s
ÿ

n‰0

αµne
´inσe´inτ

9Xµ ´X 1
µ
“ `2sp

µ `
?

2`s
ÿ

n‰0

ᾱµne
inσe´inτ

Let’s just look at the constraint p 9X `X 1q2 “ 0 and then the other constraint will give the same result for
the right-movers.

0 “ `4sp
2 `

?
2`3s

ÿ

n‰0

p ¨ αne
´inpσ`τq ` 2`2s

ÿ

n,m‰0

αn ¨ αme
´ipn`mqpσ`τq

The zero mode gives p2 “ 0. Noting that αn ¨ αm “ ´α`nα
´
m ´ α`mα

´
n ` αinα

i
m “ αinα

i
m, we look at the

remaining terms of each mode individually, so:

0 “ `sp ¨ αn `
?

2
ÿ

m

αim´nα
i
m “ ´`sp

`α´ ` �
��
�

`sp
iαi

loomoon

αi is transverse

`
?

2
ÿ

m

αm´nαn

ñ α´ “

?
2

`sp`

ÿ

m

αim´nα
i
m

loooooomoooooon

2L0

“

?
2

`sp`

«

:
ÿ

m

αim´nα
i
m : ´2aδn

ff

5. Firstly, we see that L0´ L̄0 can only differ by an integer, otherwise there’s no combination of α´nᾱ´m acting
on |pµy that will give a physical state. Now lets say they differ by an integer n. Then αi´nᾱ

i
´1 will be the

lowest-lying excitation at level pn` 1, 1q. We see there are 24 of these that transform under SOp24q, so they
must give us a massless particle. We note also that we have exactly 24 excitations at levels pn ` k, kq for
1 ď k ă n, as the only way to get them is applying αi´n´kᾱ

i
´1´k. On the other hand, each of these has

mass-shell condition:
0 “ pL0 ´ aqα´n´kᾱ´k |p

µy ñ `2sm
2 “ 4pn` k ´ aq

However if this is massless for some value of k, it will be massive for k ` 1, breaking Lorentz invariance.

Note that L ´ L̄0 generates translations along σ so this shows that any state should be invariant under
σ Ñ σ ` c.

6. Note that SOp25q acts on 25 ˆ 25 traceless symmetric tensors. Note that if we restrict to a subgroup
SOp24q that leaves one of the spatial direction fixed, the SOp25q representation breaks down into two SOp24q
representations: the symmetric tensor representation (including trace) on the 24 transverse directions, and
the vector representation in those directions as well. This is exactly what we have at level two. So, we see
we can arrange these two SOp24q rep’ns into the traceless symmetric SOp25q tensor rep.
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7. The generators (for the closed string) are:

Jµν “ T

ż 2π

0
dσpXµ 9Xν ´Xν 9Xµq “ xµpν ´ xνpµ ´ i

8
ÿ

n“1

rαµ´nα
ν
n ´ α

ν
´nα

µ
n ` p. . . qs

Upon computing the commutator rJµν , Jρσs the xµpν ´ xνpµ will give no problems, and there will be no
cross terms between the right and left moving modes. So it is enough to look at the left movers. I’m gonna
pass on doing this computation...

8. For NN boundary conditions, αµk is associated to the wavefunction cospkσq, σ P r0, πs. This has eigenvalue 1
under flip if k is even and ´1 if k is odd. Thus this αk must transform identically: ΩαµkΩ´1 “ p´1qkαk. For
DD boundary conditions, we have sinpkσq, which has opposite eigenvalues, so instead we get p´1qk`1

9. This is a Lie algebra of dimension npn´ 1q{2, which already looks promising. In the case of all θi equal, we
can pick basis so that the Rij are all 1. This is clearly sopnq. Now, take a diagonal unitary matrix γ (note
γT “ γ). It clear that λ̃ij :“ γ1{2λijγ

´1{2 gives the right structure under transposition:

λ̃T “ γ´1{2λTγ1{2 “ ´γ´1{2λγ1{2 “ ´γλ̃γ

But since λ̃ij is just a conjugation action on the λij , we will still have that the Lie algebra structure is
preserved, and maintain sopnq.

For the second part, again when all the θi “ 0, this is just the definition of the symplectic group and we have
λ “ ´ωλTω´1 “ ωλTω for ω the canonical symplectic written in the px1, p1, x2, p2, . . . q basis. Now note that
the new symplectic form γ can be written as σ1{2ωσ´1{2 with σ “ diagpeiθ1 , eiθ1 , eiθ2 , eiθ2 , . . . q. Then define
λ̃ “ σ´1{2λσ1{2 and note that

λ̃T “ σ1{2λTσ´1{2 “ ´σ1{2ωλωσ´1{2 “ ´γλ̃γ

as required. Again, conjugation action will preserve the Lie algebra structure, so this will remain spp2nq.

10. In the symmetric case, we have λT “ λ, so these are symmetric matrices of N indices. Naturally SOpNq
acts on these, and we see that they can be written as Fb F for F the fundamental representation. This can
be decomposed as the trivial representation and the traceless symmetric representation.

In the anti-symmetric case with N even, I know that the symplectic group acts on RN . I’ll call this the
fundamental rep, and then note that tensoring it with its dual again gives an antisymmetric N ˆN matrix
on which SppNq can act. This can be decomposed into the singlet and the skew-traceless antisymmetric
matrix.

11. Traceless means that any pair of indices contracted with ηµν gives zero. Locally, we can pick the metric so
that only η`´ “ η´` “ 1 is nonzero. This means that Ti1...in “ 0 if any one i is set to ` with the other set
to ´. Thus we can have only T`¨¨¨` and T´¨¨¨´ nonzero.

12. The round metric is

ds2 “
4dzdz̄

p1` zz̄q2

The Lie derivative is:
LXgab “ XcBcgab ` gacBbX

c ` gcbBaX
c (33)

Working with z, z̄ we get:
LXgzz “ 2gzz̄BzX

z̄ “ 0

LXgzz “ 2gzz̄BzX
z̄ “ 0

LXgzz̄ “ pXzBz `X
z̄Bz̄qgzz̄ “ λpz, z̄qgzz̄

(34)

The first two equation shows us that Xz, X z̄ must be holomorphic and anti-holomorphic respectively. We
want the function λ to be well-defined on the entire Riemann sphere and so the last equation gives us:

´ 2
pXz z̄ `X z̄zq

1` zz̄
“ λpz, z̄q (35)

8



We see that Xz, X z̄ cannot have any poles. Further, they cannot grow faster than z2, z̄2 respectively as
z Ñ 8 otherwise λ will blow up at the north pole. So our solutions space is spanned by Bz, zBz, z

2Bz and
their conjugates.

Next, right away we can see that the only nonzero Christoffel symbols in the round metric are Γzzz and Γz̄z̄z̄.
Second, because T is traceless, by the previous problem we see it has only two components: Tzz and Tz̄z̄.
Now looking at ∇βTαβ we see that this gives two equations:

gzz̄∇z̄Tzz “ Bz̄Tzz
gzz̄∇zTz̄z̄ “ BzTz̄z̄

(36)

Note that there can be no Christoffel contribution. This simply asks for globally-defined holomorphic 2-
forms. Let’s look at Tzz. Around z “ 0, it must be a polynomial to avoid poles. Transforming to w “

1{z, dw “ ´dz{z2 ñ dz
dw “ ´z

2 “ ´w´2 we get Twwpwq “ p
dz
dw q

2Tzzpwq. Note that the right hand side will
only have poles at least as bad as w´2 so we cannot have any global section of this vector bundle. Thus,
there are no Teichmuller parameters.

13. We can think of the torus as C{Λ. Note that scaling and rotation preserve the complex structure of the
fundamental parallelogram so WLOG we can pick Λ “ Z-spant1, τu with τ P H. Thus we need vector fields
on C that respect the translation-invariance under Λ. Any translation-invariant holomorphic function is
zero, we can only have the constant vector fields Bz, Bz̄.

We now look for holomorphic and anti-holomorphic traceless tensors. Again, Tzz and Tz̄z̄ be translation-
invariant w.r.t the lattice, so again they must be constants. We get dzbdz and dz̄bdz̄ as our two Teichmuller
deformations. As real tensors these are:

ˆ

1 0
0 ´1

˙

“ dxb dx´ dy b dy,

ˆ

0 1
1 0

˙

“ 2dxb dy,

14. Not sure exactly how they want us to calculate this. Let’s assume they are OK with Gauss-Bonnet. For the
disk with the flat metric, we have right away that the curvature R vanishes. The geodesic curvature at the
boundary is a constant, and is easily seen to be 1. Integrating this over the boundary of the disk gives 2π so
that χ “ 1.

Using the round metric, it is quick to see that the only contribution to Rµν “ Rzµzν ` Rz̄µz̄ν is for Rzzzz̄ “

´Bz̄Γ
z
zz and Rz̄z̄z̄z “ BzΓ

z̄
z̄z̄ giving Rzz̄ “

2
p1`|z|2q

. Tracing this gives R “ 1. Integrating this over half the

sphere gives 2π. The geodesic curvature vanishes on the great circle by symmetry, and we get χ “ 1 again.

15. Any such surface can be decomposed as a sphere with 2n holes connected to n handles. Let’s integrate the
scalar curvature over each piece individually. First the curvature integrated on the sphere with 2n disks
removed is equal to the curvature integrated on the Riemann sphere: 4π minus the curvature integrated on
2n disks. We have just done this in the previous problem, and we get 2π ˆ 2n. Lastly, the curvature on the
handles is just the same as the curvature on the sphere with two holes cut out, which we have just calculated
is 4π ´ 2ˆ 2π “ 0. Thus the total curvature is just 2πp2´ 2nq, giving us χ “ 2´ 2n as required.
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16. Our point particle action is S0 “
ş

dτepe´2pBτxq
2 ´m2q. Let’s look at:

ż

DXDe
Vgauge

e´S0 „

ż

DXDeDbDc e´S0´
ş

bpδF qc´i
ş

BF peq

Note we don’t need an α index on B, b, c because they just parameterize the continuous symmetry with no
discrete parameters:

pδτ1τqpτq “ δpτ ´ τ1q

Using Polchinski’s convention for coordinate transformation (he also has ´BA of Kiritsis),

δτ1Xpτq “ ´δpτ ´ τ1qBτX, δτ1epτq “ ´Bτ pδpτ ´ τ1qepτqq

and

rδτ1δτ2spτq “ ´pδpτ´τ1qBτδpτ´τ2q´δpτ´τ2qBτδpτ´τ1qq Bτ ñ f τ3τ1τ2 “ δpτ3´τ1qBτ3δpτ3´τ2q´δpτ3´τ2qBτ3δpτ3´τ1q

Then the BRST transformation is given by:

δεX “ iεc 9X

δεe “ iε 9pcXq

δεb “ εBA

δεc “ iεc 9c

δεB “ 0

(37)

Now let’s take F peq “ e´ 1. Then we get a ghost action

bAc
αδαF

α Ñ

ż

dτ1dτ2bpτ1qcpτ2qδτ2 p1´ epτ2qq

“

ż

dτ1bpτ1qBτ1

ż

dτ2cpτ2qrδpτ1 ´ τ2qepτ1qs “ ´

ż

dτ 9bc

We enforce this constraint by integrating over B. Now we will have δεe “ 0 and δεb “ iεpTX`T ghq. Because
we are in Euclidean signature, we have p “ BtX “ i 9X and similarly p “ ´ic (´i because the real time
Lagrangian has term ´i9bc). Then the BRST current (equal to charge because we’re in 1D) is:

QB “ pXδBX ` pbδBb “ ´c 9X2 ´ icip´
1

2
9X `

1

2
m2 ´ 9bcq “ ´c

1

2
9X `

1

2
m2 “ c

1

2
pp2 `m2q “ cH.

Clearly Q2
B “ 0. As before, the ghosts generate a two-state system. Our set of states is given by

|kµ, Òy , |kµ, Óy. Following convention, c raises and b lowers. QB |k, Óy “
1
2pk

2 ` m2q |k, Òy so all states of
the form |k, Òy with k2 `m2 ‰ 0 are BRST exact. Similarly all states |k, Òy are BRST closed along with
all states of the form |k, Óy with k2 `m2 “ 0. So the closed states that are not exact are |k, Óy, |k, Òy with
k2 `m2 “ 0. We take only the states with b |ψy “ 0. The reason is that all states |k, Òy are physical, and
so we would need amplitudes between such states to be proportional to δpk2 `m2q in order for the states
to decouple, but amplitudes cannot have such extreme singularities Don’t understand this. Appreciate
it, and its relation to Siegel gauge..

17. I believe these variations have Kiritsis taking c Ñ ´ic in his formalism. They also follow directly from
Polchinski’s formalism. Under a diffeomorphism δξ,ξ̄X “ ´ξBX ´ ξ̄B̄X. These are two copies of the repa-
rameterization algebra developed in the previous problem, and so the commutation relations are the same.
We get, again in Polchinski’s formalism (37)

δεX “ iεpcBX ` c̄d̄Xq

δεc “ iεpcBc` c̄B̄c̄q

δεb “ iεpTX ` T ghq

(38)
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I see no problem with Q2
B giving zero when acting on the X and c fields.

δBpcBX ` c̄d̄Xq “ iεp���
��cpBcqBX `���

��
c̄pB̄c̄qB̄X ´ cBp���cBX ` c̄B̄c̄Xq ´ c̄Bp���cBX ` c̄B̄c̄Xqq

and the remaining terms die by the equations of motion. The c variation will always die because we’ve
already shown the transformations satisfy a Lie algebra with Bianchi identity.

It looks like the b field will be nontrivial. If one of the equations of motion is the TX ` T gh “ 0 then this
will be zero right away. Otherwise, we want to compute (WLOG in the holomorphic sector):

δBpT
X`T ghq “ δBp

1

α
pBXq2`2bBc`Bbcq “ iεr

2

α
BXBpcBXq`2pTX`T ghqBc`2b BpcBcq`BpTX`T ghqBc`Bb cBcs

The purely bc terms cancel. I’m left with

2

α
rpBXq2Bc` BXB2Xcs

I don’t know how to get rid of this. I can write it as a total derivative less something proportional to pBXq2Bc
and perhaps note that this is just Bc times the stress tensor, which perhaps vanishes classically? At any rate,
there is no need to use d “ 26 here.

18. Integrating over σ will as usual pick out the zero mode. For T`` this gives us
ÿ

n

p2nb´n`mcn ` n`mc´nbn`mq “
ÿ

n

pm´ nq : bn`mc´n :

and similarly for the right-movers. To get the central charge we’ll have to proceed as before, noting that
only rLm, L´ms can give a nonzero central term. As before, we expect only a finite part of the infinite sum
to contribute to this. We thus take out the only terms of the sum with m,n having the same sign:

m
ÿ

n“1

pm` nqbm´ncn,
m
ÿ

n“1

p´2m` nqb´nc´m`n

Then our commutators of these finite terms give:
ÿ

k,k1

pm` kqp´2m` k1qrbm´kck, b´k1c´m`k1s “
ÿ

k,k1

pm` kqp´2m` k1qpbm´kcm`k1 ´ b´k1ckqδk´k1

“

m
ÿ

k“1

pm` kqp´2m` kqpbm´kcm`k ´ b´kckq

Looking at the non-normal-ordered part, this leaves:

m
ÿ

k“1

bm´kc´m`kpm` kqpk ´ 2mq Ñ
m
ÿ

k“1

pm` kqpk ´ 2mq “
1

6
pm´ 13m3q

19. We have

jB “
BL
BpB̄Xq

cBX `
BL
BpB̄cq

cBc “
2

2πα1
pBXq2c`

1

π
bcBcÑ cTX ` bcBc “ cTX `

1

2
cT gh

I don’t understand how other references include a 3
2B

2c.

20. Let’s do this for the open string, so we are then just calculating the holomorphic sector. We have:

QB “
8
ÿ

m“´8

: pLX´m `
1

2
Lgh´m ´ aδm,0qcm :

Note that the a is just from the X component of the theory since by definition Q contains the term : cT gh :
already in normal order.
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We now need to consider the total BRST charge Q` Q̄. Then:

Q2
B “

ÿ

n,m

prLXm, L
X
n s ` rL

gh
m , L

gh
n s ` pm´ nqL

X
m`n ` pm´ nqL

gh
m`n ` 2amδm`nqc´mcm

This will vanish only if the commutators give no anomalous term. From previous exercises we see this is
only if:

dpm3 ´mq

12
`
pm´ 13m3q

6
` 2am “ 0

This happens exactly when d “ 26 and a “ 1.

21. We now have Q` Q̄ that we need to be zero on states. Again, each of Q, Q̄ will no change the level, so their
sum will not either, and we have a (double) grading on the space which they will preserve.

Q “ Q0 `Q1, Q0 “ c0pL
X
0 ´ 1q, Q1 “ c´1L

X
1 ` c1L

X
´1 ` c0pb´1c1 ` c´1b1q

and Q̄ is the conjugate of this.

At level zero we will again have Q0 “ c0L
X
0 ` c̄0L̄

X
0 . We now have two copies of the Clifford algebra and our

Siegel gauge condition will make it so that we only consider states |Ó, Ó̄, p, p̄y. Now we need ppL0 ´ 1qc0 `

pL̄0´ 1qc̄0q |Ó, Ó̄, p, p̄y “ pL0´ 1q |Ò, Ó̄, p, p̄y ` pL̄0´ 1q |Ó, Ò̄, p, p̄y so we need `2sp
2

4 “
`2s p̄

2

4 “ 1 i.e. the total mass
is m2 “ ´4. We thus have the tachyon state.

Also because b0 |ψy “ 0 for any physical state, we will have tQ, b0u |ψy “ 0 “ pL0 ´ aq |ψy so we have
L0 ´ 1 “ L̄0 ´ 1 “ 0 and this gives us the level-matching condition. So the next level we can have a state is
at p1, 1q.

As in the open string treatment, the most general such state has nine terms:

|ψ1y “ pζ ¨ α´1ζ̄ ¨ ᾱ´1 ` ζab ¨ α´1b̄´1 ` ζac ¨ α´1c̄´1

` b´1ζba ¨ ᾱ´1 ` ξbbb´1b̄´1 ` ξbcb´1c̄´1

` c´1ζca ¨ ᾱ´1 ` ξcbc´1b̄´1 ` ξccc´1c̄´1q |Ó, Ó̄, py

Let’s act on this with Q0 ` Q1. First lets look at Q0. On the αᾱ term it will give eigenvalue c0
α2

0
2 ` c̄0

ᾱ2
0

2

while something like the ζabαb̄ term it will give eigenvalue c0
α2

0
2 ` c̄0p

ᾱ2
0

2 ´ 1q. This will be compensated by
the action of the c̄0pb̄´1c̄1q (from Q1) on ζabα´1b´1. The exact same argument can be applied to any of
those four terms - there will always be one the four bc terms of Q1 ` Q̄1 that will give us the extra factor of
1 from its commutation relation with that term in |ψ1y (it commutes with everything else).

So we get a term c0
`2sp

2

4 |ψ1y which then gives the p2 “ 0 constraint. The remaining term comes from the
c´1L

X
1 ` c1L

X
´1 ` c.c. action. The c´1L1 ` c1L´1 will each annihilate everything except six terms, giving

ζ ¨ p c´1ζ̄ ¨ ᾱ´1 ` ζab ¨ p c´1b̄´1 ` ζac ¨ p c´1c̄´1

` p ¨ α´1ζba ¨ ᾱ´1 ` ξbbp ¨ α´1b̄´1 ` ξbcp ¨ α´1c̄´1 ` c.c.
(39)

and the conjugate of this will contribute the conjugate terms. For this to all be zero we need each of the
ζi ¨ p “ 0 as well as their conjugates. We also need ξbb “ ξbc “ ξcb “ 0. We also see that ζba “ ζab “ 0.

On the other hand the general form of an exact state is also given by (39) for the ζi and ξi arbitrary. Thus
all the terms involving c and/or c̄ are exact and so upon quotienting we get ζac “ ζbc “ ξcc “ 0. Lastly we
get the relation that we should identify ζiζ̄j “ ζiζ̄j `piζ

1
j ` ζ

1
ip ie we project out any tensor of the form pb ζ 1

or ζ 1 b p. This is equivalent to identifying ζ – ζ 1 ` ξp and identically for ζ̄.

So we have eliminated everything except for ζ, ζ̄, each of which must be transverse to p and we identify ζ
differing by a longitudinal p component. This is 24ˆ 24 parameters, as required.

22. If I have the Clifford algebra C`p2q, any vector v will have an orbit generated by 1, b0, c0, b0c0, so there can
be no irreducible representation of dimension greater than 4. Further, there is a vector v0 annihilated by
b. Consider v1 “ cv0 and assume it is distinct. Now bv1 “ bcv0 “ v0 ´ cbv0 “ v0. So v1 and v0 span the
irreducible representation meaning that any irrep in fact has dimension 2. Thus, any higher dimensional
generalization would only be (probably direct or semidirect) extensions of this and the trivial irrep, and give
us no new information.
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Chapter 4: Conformal Field Theory

1. We’ll do this directly. First observe:

d

dt
|t“0e

´itPµfpxq “ ´Bµf

d

dt
|t“0e

´ it
2
ωµνJµνfpxq “ ´ωµνx

νBµ

d

dt
|t“0e

´itDfpxq “ x ¨ Bfpxq annoying that there is no -

d

dt
|t“0e

´itKµfpxq “ ´px2Bµ ´ 2xµpx ¨ δqqfpxq

(40)

The last one is exactly the first-order expansion of xµ`x2aµ

1`2a¨x`a2x2 . Note the dilatation and special conformal
generators are the negative of Di Francesco’s (SO ANNOYING OGM).

Now let’s do the commutator

rJµν , Pρs “ ´BρpxµBν ´ BνBµq “ ´pηµρBν ´ ηνρBµq “ ´ipηµρBν ´ ηνρBµq

rPµ,Kνs “ ´Bµpx
2Bν ´ 2xνx ¨ Bq “ ´p2xµBν ´ 2ηµνx

λBλ ´ 2xνδ
λ
µBλq “ 2iJµν ´ 2iηµνD

rJµν , Jρσs “ ´ipηµρJνσ ´ ηµσJνρ ´ ηνρJµσ ` ηνσJµρq Ð Everyone has done this one like 20 times

rJµν ,Kρs “ ´ipηµρKν ´ ηνρKµq

rD,Kµs “ xν ¨ Bνrx
2Bµ ´ 2xµpx

λBλqs ´ rx
2Bµ ´ 2xµx ¨ Bsx

λBλ

“ �2x
νxνBµ ´ 2xνηµνpx ¨ Bq ´���

��2xµpx ¨ Bq ´��
�x2Bµ `��

��2xµx ¨ B “ iKµ

rD,Pµs “ ´Bµx
λBλ “ ´Bµ “ ´iPµ

rJµν , Ds “ 0

The way we did the rJ,Ks commutator is by noting it should look the same as rJ, P s, since P is just
translation about the point at 8. The rJ,Ds commutator follows because rotation is scale invariant.

2. We see immediately that the Jµν can be mapped to the Mµν corresponding to a SOpp, qq subgroup of
SOpp` 1, q ` 1q. The full group has:

rMµν ,Mρσs “ ´ipηµρMνσ ´ ηµσMνρ ´ ηνρMµσ ` ηνσMµρq (41)

Note the commutation relations of J with P and K gives us:

rJµν ,
1

2
pKρ ˘ Pρqs “ ´i

ˆ

ηµρ
1

2
pK ˘ P qν ´ ηνρ

1

2
pK ˘ P qµ

˙

Writing these as Mρ,d`1 and Mρ,d respectively, we see that we get the second and fourth terms nonzero and
we get exactly (41). Note at this stage I didn’t need to do such linear combinations of K and P . That is
important for appreciating that we want:

rMµd,Mνd`1s “ ´iηµνMdd`1 “ ´iηµνMd,d`1 “ iηµνD

and we get exactly this:

1

4
rpK ´ P qµ, pK ` P qνs “

1

4
prKµ, Pνs ´ rPµ,Kνsq “ iηµνD

We needed that combination so that Jµν wouldn’t appear. As required rJµν , Ds “ rMµν ,Md,d`1s “ 0 for
µ P 0 . . . d´ 1. I’m getting the wrong sign. Perhaps our friend’s convention is off.
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3. This comes from noting that for f “ z ` εpzq

ˆ

Bf

Bz

˙∆ ˆ

Bf

Bz̄

˙∆̄

´ 1 “ p1` Bεq∆p1` B̄εq∆̄ ´ 1 “ ∆Bε` ∆̄B̄ε

ñ Φpzqp1´ p∆Bε` ∆̄B̄εqq “ Φ1pfpzq, f̄pz̄qq “ p1` εB ` ε̄B̄qΦ1pzq

ñ p1´ p∆Bε` ∆̄B̄ε` εB ` ε̄B̄qqΦpzq “ Φ1pzq

ñ Φpzq ´ Φ1pzq “ p∆Bε` εB ` ∆̄B̄ε` ε̄B̄qΦpzq

How weird... think about this in terms of active/passive. Contrast with Di Francesco.

4. As in the 2-point greens function case, note that:

δεG
N “ 0 ñ

˜

N
ÿ

i“1

εpziqBzi `∆iBεpziq ` c.c.

¸

GN “ 0

We can WLOG look at just the holomorphic sector (set ε̄ “ 0) Now first set εpzq “ 1. This directly gives
ř

i BiG
N “ 0, as we wanted. Next, take εpzq “ z. This gives

ř

ipziBi `∆iqG
N “ 0. Finally, take ε “ z2 to

get
ř

ipz
2
i Bi ` 2zi∆iqG

N “ 0 as desired. Note in all these cases, we are exactly performing the global SLp2q
transformations, so these Ward identities will always hold.

5. The first Ward identity tells us that the function can only depend on z12, z23. Then the next two can be
written as:

px1B1 ` x2B2 ` x3B3 ` Σ∆iqfpx12, x23q “ ppx1 ´ x2qB12 ` px2 ´ x3qB23 ` Σ∆iq f “ 0

px2
1B1 ` x

2
2B2 ` x

2
3B3 ` Σ2xi∆iqfpx12, x23q “

`

px2
1 ´ x

2
2qB12 ` px

2
2 ´ x

2
3qB23 ` Σ2xi∆i

˘

f “ 0

We can subtract out B23 to get the differential equation:

0 “

ˆ

x1 ` x2

x2 ` x3
´ 1

˙

x12B12 `
ÿ

i

ˆ

2xi
x2 ` x3

´ 1

˙

∆i Ñ px12 ` x23qx12B12 ` px12 ` x12 ` x23q∆1 ` x23p∆2 ´∆3q

ñ 0 “
`

x2
12B12 ` x23x12B12 ` 2x12∆12 ` x23p∆1 `∆2 ´∆3qf

˘

Now write fpx12, x23q “ egpu, x23q with u “ log x12. This substitution gives the ODE:

peu ` x23qg
1puq ` 2∆1e

u ` x23p∆1 `∆2 ´∆3q “ 0 ñ gpuq “

ż log x12

´8

du
2∆1e

u ´ x23p∆1 `∆2 ´∆3q

eu ` x23

This integral can be done and gives:

C

x∆1`∆2´∆3
12 px12 ` x23q

∆1`∆3´∆2
“

C

x∆1`∆2´∆3
12 x∆1`∆3´∆2

13

We can do the same for B23 and get the general form:

λ123

x∆1`∆2´∆3
12 x∆1`∆3´∆2

13 x∆2`∆3´∆1
23

ˆ c.c.

for λ123, λ̄123 undetermined constants (call their product C123).

6. Again specialize to the holomorphic part. We see GN depends only on relative positions x12, x13, x14. We
can WLOG take Gp4q to have the form:

Gp4qpz1, z2, z3, z4q “
fpz1, z2, z3, z4q

z∆12
12 z∆13

13 z∆14
14 z∆23

23 z∆24
24 z∆34

34

Here, because f is arbitrary, we have not made any assumptions. The Ward identities imply the following:

14



• f depends only on the relative positions zij

•
ř

iăj ∆ij “ ∆ with ∆ “
ř

i ∆i and
ř

i ziBif “ 0

• ∆23`∆24`∆34 “ 2∆1, ∆13`∆14`∆34 “ 2∆2, ∆12`∆14`∆24 “ 2∆3, ∆12`∆13`∆23 “ 2∆4

and
ř

i z
2
i Bif “ 0

These give 4 constraints for the 6 ∆ij , so the system is underdetermined. The most symmetric solution is
given by:

∆ij “ ∆i `∆j ´
1

3
∆

It remains to find the general form of f .

• The first ward identity gives us that it can only depend on the zi through zij .

• Further, it must transform trivially under dilatation, so we see that it can only depend on ratios of the
zij with an equal number of each zij in the numerator and denominator.

• Under special conformal transformations, each such ratio will transform as
zij
zkl
Ñ

zij
zkl
pzi ` zj ´ zk ´ zlq,

and more generally
ź

a

zia ja
zka la

Ñ
ź

a

zia ja
zka la

ˆ
ÿ

a

pzia ` zja ´ zka ´ zlaq

The third Ward identity shows that f must transform trivially under these, and so f can only depend
on ratios where each zi appears an equal number of times in the numerator and denominator.

In total: we need ratios of zij with an equal number of zij in the numerator and denominator, and each zi
appears the same number of times in the numerator and denominator. All such ratios can be obtained as
rational functions of:

x :“
z12z34

z13z24
, y :“

z14z24

z13z24

But we see that y “ 1´x so in fact the most general such function is any function of x alone, as was required.

7. With conformal invariance (rescaling in particular), an infinite cylinder has no moduli, so you can set its
radius to be whatever you like and get the same theory.

8. Let’s perform the OPE within the correlator:

xΦipz1qΦjpz2qΦkpz3qy “
ÿ

`

z
∆`´∆i´∆j

12 z̄
∆̄`´∆̄i´∆̄j

12 Cij` xΦ`pz2qΦkpz3qy

By the orthonormality assumption of the OPE, we then have

xΦ`pz2qΦkpz3qy “
δ`k

z2∆k
23 z̄2∆̄k

23

ñ xΦipz1qΦjpz2qΦkpz3qy “
Cijkpz12q

z2∆k
23 z̄2∆̄k

23 z
∆i`∆j´∆k

12 z̄
∆̄i`∆̄j´∆̄k

12

9. We assume that µ ! 1{r. The integral is in fact real, and we can approximate it by

ż

d2p
cosppr cospθqq

p2 `m2
“

ż

dθ

ż 8

0

p dp e´
1
2
ppr cospθqq2

p2 ` µ2
“

ż

dθ
1

2

ż 8

1
2
µ2r2 cos2pθq

du e´u

u
“

1

2

ż 2π

0
dθΓp0, µ̃2r2 cos2pθqq

It is known that Γp0, εq “ ´γ ´ log ε so up to a constant (that can be absorbed into the redefinition of µ)
we get;

´
`2s
2π

1

2
p2πq logpµ2|x´ y|2q “ ´

`2s
2

logpµ2|x´ y|2q

10. By Stokes’ theorem its clear. Let Ω be any disk enclosing the origin:

ż

Ω
d2zB̄B log |z|2 “ i

ż

Ω
dz ^ dz̄ B̄B log |z|2 “ ´i

¿

BΩ

dzB log |z|2 “ ´i

¿

BΩ

dz

z
“ 2π

15



Alternatively we could put in a regulator and evaluate this directly:

ż

Ω
d2zBd̄ logp|z|2 ` µ2q “

ż

Ω
d2zB

z

|z|2 ` µ2
“

ż

Ω
d2z

µ2

p|z|2 ` µ2q2

As µ Ñ 0 this approaches 0 everywhere except for the origin. Taking |z| “ r and integrating in polar
coordinates (note d2z “ 2dxdy “ 2rdrdθ):

2π ˆ 2ˆ

ż 8

0

µ2r

pr2 ` µ2q2
“ 2π

as required.

11. We have:

1

4π`2s

ż

d2ξ
?
´g gabBaX BbX ñ Tab “ ´

4π
?
´g

δS

δgab
´

1

`2s

ˆ

BaXBbX ´
1

2
gabBcXB

cX

˙

This is clearly traceless. Let’s specialize to the holomorphic sector to get T pzq “ ´ 1
`2s

: BXBX : and of course

this is the non-singular part of the BXpzqBXpwq OPE as z Ñ w.

12. The scaling dimensions of conserved currents don’t change.

For a current to be conserved, we must that the surface operator 1
2πi

ű

dzJpzq is topological (independent of
contour). Applying dilatation z Ñ z{λ on this does not change the operator, so long as it does not pass any
operator insertions. So we have:

1

2πi

¿

dzJpzq ` c.c. “
1

2πi

¿

d
z

λ
J 1pz{λ, z̄{λq ` c.c.

And thus we get Jpz, z̄q “ λ´1J 1pz{λ, z̄{λq, and we get J has scaling dimension 1.

On the other hand for Tµν , we have the conserved charge:

Pν “

¿

dnµTµν

Applying dilatation, we see from exponentiating the commutation relation for rD,Pνs that Pν “ P 1ν{λ so

Pν “

¿

dnµTµν ` c.c. “
1

λ

¿

dnµ

λ
T 1µνpz{λ, z̄{λq ` c.c.

loooooooooooooooomoooooooooooooooon

“P 1νq

“ P 1ν{λ

giving us that
Tµνpz, z̄q “ λ´2T 1µνpz{λ, z̄{λq

so T properly has scaling dimension 2.

13.

x

N
ź

n“1

eipXpz,z̄qy “

ż

DXe´
1

2π`2s

ş

d2zBX B̄X`i
ş

d2z Xpzq
ř

i piδ
2pz´ziq

“ 2πδpΣpiqe
´ 1

2

ş

d2σd2σ1JpσqJpσ1qGpσ,σ1q “ 2πδpΣpiqe
´ 1

2

řN
i,j“1 pipjxXpziqXpzjqy

Appreciate both the UV divergence (from coincident points in the correlator) and the IR divergence (from
the correlator going as a logarithm) will cancel (think Kosterlitz-Thouless/Mermin Wagner stuff here):

µ2
`2s
4
pΣpiq

2
ε2

`2

4

ř

p2
i

Momentum conservation removes the IR, and if we normal-order the vertex operators within the product we
will not get the UV divergence.
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14. By explicit calculation:

T pzqrpBXq4spwq „
´3αpBXq2pwq

pz ´ wq4
`

4pBXq4

pz ´ wq2
` . . .

T pzqrpB2Xq2spwq „
´2α

pz ´ wq6
`

4pBXB2Xqpwq

pz ´ wq3
`

4pB2Xq2pwq

pz ´ wq2

T pzqrB3XBXspwq „
´3α

pz ´ wq6
`

6pBXq2pwq

pz ´ wq4
`

6pBXB2Xqpwq

pz ´ wq3
`

6pB2Xq2pwq

pz ´ wq2
` . . .

where ` . . . are terms that are Oppz ´wq´1q or higher powers, which will not affect the non-primary terms.
We see that the combination:

pBXq4 `
α

2
B3XBX ´

3

4α
pB2Xq2

gives a primary operator of dimension 4. Along the way I noticed that there are no primary operators of
dimension 2 or 3 that are finite sums of products of derivatives of BX.

I can’t help but think that this might have something to do with the Schwarzian.

15. We look at:

: i

?
2

`s
BXpzq :: eipXpwq : “ i

?
2

`s

8
ÿ

n“0

: BXpzq :: pXpwqqn :
pipqn

n!
` finite

“ i

?
2

`s

8
ÿ

n“0

p´q
`2s
2

n

z ´ w

pipq2 : Xpwqn´1 :

n!
“
`sp
?

2

1

z ´ w
Vppwq ` finite

16. Directly:
ÿ

n,m

piaqnpibqm

n!m!
: Xnpzq :: Xmpwq :

First lets look at when n “ m and say we contract everything. Then we need to contract all n Xpzq with

all n Xpwq. There are n! ways to do this, and each produces a factor of ´ `2

2 log |z ´ w|2. The diagonal
components thus give the sum:

ÿ

n

1

n!

ˆ

ab`2s
2

log |z ´ w|2
˙n

“ |z ´ w|ab`
2
s{2

Now a more general term, say : Xpzqn :: Xpwqm : where we want to contract k ă n,m of them we must
choose k Xpzq and kXpwq to contract the Xpzq with and then figure out the order to contract those k
amongst themselves (k!), so we have

`

n
k

˘

ˆ
`

m
k

˘

ˆ k! “ n!m!
pm´kq!pn´kq!k! ways to do this. The contraction again

gives the logk term as before, and now we have a remaining factor of piaq
n´kpibqm´k

pn´kq!pm´kq! : Xpzqn´k :: Xpwqm´k :.

For each k-contracted set which gives the logk term, we should therefore multiply it by:

8
ÿ

m,n“k

piaqn´kpibqm´k

pn´ kq!pm´ kq!
: Xpzqn´k :: Xpwqm´k :“ eiaXpzq`ibXpwq

So the OPE is:
: eiaXpzq :: eiaXpwq :“ |z ´ w|ab`

2{2eiaXpzq`ibXpwq

17. Directly:

BzJpzqBwJpwq “ BzBw

ˆ

1

pz ´ wq2

˙

“ ´
6

pw ´ zq4
` finite

We have no 2
pz´wq2

term, as would otherwise be required

17



18. The stress energy tensor is:

T pzq “ ´
1

2
: ψpzqBψpzq :ñ T pzqψpwq “ ´

1

2
ψpzqp

´1

pz ´ wq2
q `

1

2

Bψpzq

z ´ w
“

1

2

1

pz ´ wq2
ψpwq `

Bψpwq

pz ´ wq

so this shows that ψ is primary with weight 1{2.

19. I’ll instead have the notation w “ g ˝ fpzq. For T pzq “ pf 1q2T pfq ` tf, zu consider h “ g ˝ f . Then we have:

T pzq “ pf 1q2T pfq ` Cpfq “ pf 1q2ppg1q2T pg ˝ fq ` Cpg ˝ fqq ` Cpfq “ ph1q2T phq ` pf 1q2Cpgq ` Cpfq

So we get the desired cocycle property:

Cphq “ pf 1q2Cpgq ` Cpfq

Now, we need Cpfq to have units of rzs´2. The most naive guess is to let Cphq “ h2, but this gives:

h2 “ pf 1q2g2 ` f2g1

If that last factor of g1 were not there, we would be done. Instead we must think more deeply. We also need
the Schwarzian to include a term linear in the third derivative, and the only such term is a constant times
f3{f 1. Let us look at how this transforms:

h3

h1
“ pf 1q2

g3

g1
` 3

f2g2

g1
`
f3

f 1

Now what stops us is the cross-term. The only terms that we can add to f3{f 1 that involve less than third
derivatives in ε are f2, pf 1q2 pf2{f 1q2.

There is one last term we could have built out of terms of order ď 3 that would give units of rzs´2: pf3{f2q2,
however in the limit of an infinitesimal transformation z ` εpzq, this would give pε3{ε2q2 which is nonlinear
in ε, so this term cannot contribute. .

ph1q2 “ pf 1g1q2 has none of the properties we’d like, and adding it would break the term that pf 1q2 multiplies
being proportional to Cpgq. Similarly, adding f2 would break the term that pf 1q2 doesn’t multiply being

proportional to Cpfq. What is left is
´

f2

f 1

¯

. This transforms as:

ˆ

h2

h1

˙2

“ pf 1q2
ˆ

g2

g1

˙2

`

ˆ

f2

f 1

˙2

`
2f2g2

g1

The cross term is exactly of the form of the cross term in f3{f 1, and so by appropriately subtracting:

h3

h1
´

3

2

ˆ

h2

h1

˙2

“ pf 1q2

˜

g3

g1
´

3

2

ˆ

g2

g1

˙2
¸

`
f3

f 1
´

3

2

ˆ

f2

f 1

˙2

Another way to do this is to first look at the general nth derivative of the global conformal transformations
(the Möbius transformations). Note that:

g “
az ` b

cz ` d
, g1pzq “

ad´ bc

pcz ` dq2
“

1

pcz ` dq2
ñ Bnz g “

n!p´cqn´1

pcz ` dqn`1

In particular:

g2pzq “
´2c

pcz ` dq3
, g3pzq “

6c2

pcz ` dq4

The simplest combination of g1, g2, and g3 that can give zero is:

pg2q2 ´
2

3
g3pzqg1pzq

18



We want this to have units of rgs{rzs2 and to behave as ε3pzq to leading order when g “ z ` εpzq. The only
way to do this (which fixes overall normalization and all) is to divide through by ´2{3pg1pzqq2 and get:

g3

g1
´

3

2

ˆ

g2

g1

˙2

.

It is easy to check that this satisfies the cocycle property for composition, namely:

tz3, z1u “

ˆ

Bz2

Bz1

˙2

tz3, z2u ` tz2, z1u (42)

Since for h “ g ˝ f we get:

h3

h1
´

3

2

ˆ

h2

h1

˙2

“
f3

f 1
`3

f2f 1g2

f 1g1
`
pf 1q3g3

f 1g1
´

3

2

ˆ

f2g1 ` pf 1q2g2

f 1g1

˙2

“ tf, zu`pf 1q2
g2

g1
´

3

2

g2

g1
“ tf, zu`pf 1q2tg, fpzqu

20. I will use shorthand
`

z1

z

˘

for Bz1

Bz and
`

z1

zz

˘

for Bz1

B2z
, also I will just write Γzzz, gzz̄, g

zz̄ as Γ, g, g´1 respectively.
Now

Γ “ g´1Bg ñ Γ1 “ g´11B1g1 “ g´1B

ˆˆ

z

z1

˙

g

˙

“

ˆ

z

z1

˙

Γ´

ˆ

z

z1

˙2ˆz1

zz

˙

So

pΓ1q2 “

ˆ

z

z1

˙2

Γ2 ´ 2Γ

ˆ

z

z1

˙3ˆz1

zz

˙

`

ˆ

z

z1

˙4ˆz1

zz

˙2

B1Γ1 “

ˆ

z

z1

˙

B

«

ˆ

z

z1

˙

Γ´

ˆ

z

z1

˙2ˆz1

zz

˙

ff

“

ˆ

z

z1

˙2

BΓ´ Γ

ˆ

z

z1

˙3ˆz1

zz

˙

` 2

ˆ

z

z1

˙2ˆz1

zz

˙2

´

ˆ

z

z1

˙3ˆ z1

zzz

˙

To cancel out the Γ term we look at 2BΓ´ Γ2. We see this transforms as:

2B1Γ1 ´ Γ1
2
“

ˆ

z

z1

˙2

p2BΓ´ Γ2q ` 3

ˆ

z

z1

˙4ˆz1

zz

˙2

´ 2

ˆ

z

z1

˙3ˆ z1

zzz

˙

“

ˆ

z

z1

˙2

p2BΓ´ Γ2 ´ 2tz1, zuq

So that

Tzz´
c

24
p2BΓ´Γ2q “

ˆ

z1

z

˙2

pTz1z1´
c

24
p2B1Γ1´Γ1

2
qq`

c

12
tz1, zu´

c

24
2tz1, zu “

ˆ

z1

z

˙2

pTz1z1´
c

24
p2B1Γ1´Γ1

2
qq

So indeed T̂zz “ Tzz ´
c

24p2BΓ´ Γ2q transforms as a tensor.

21. We have:

´∇̄Tzz̄ “ ∇T̂zz “ gzz̄ B̄T̂ “ ´
c

24
gzz̄ B̄r2Bpg´1Bgq ´ pg´1Bgq2s “ ´

c

24
gzz̄

“

2BB̄pg´1Bgq ´ 2pg´1BgqB̄pg´1Bgq
‰

We can recognize this as:

c

24
2gzz̄pBRz̄z ´ ΓzzzRz̄zq “

c

24
2gzz̄∇zRz̄z̄ “

c

24
∇zR “

c

24
BR “ ´

A

2
BR

so we have A “ ´c{12

22. The first part of the action is truly invariant. Let us look at how R changes under Weyl rescaling:

´2e´χg´1B̄peχg´1Bpeχgqq “ e´χpR´ 2g´1BB̄χq “ e´χpR´ 2BB̄χq

Consequently:
?
´gRÑ

?
´gpR´ 2∇2χq

So the action part will transform as:

SLpgαβe
χ, φq “ SLpgαβ, φq ´

1

48π

ż

d2ξ
?
gφ∇2χ “ SLpgαβ, φq `

1

24π

ż

d2ξ
?
ggαβBαφBβχ
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23. The most general variation of the effective action is:

δ logZ “ ´
1

4π

ż

Σ
d2ξ
?
gpa1R` a2qδφ´

1

4π

ż

BΣ
dξpa3 ` a4K ` a5n

a∇aqδφ (43)

The counterterms that we can introduce are:
ż

Σ
d2ξ
?
gb1 `

ż

BΣ
dξpb2 ` kb3q (44)

and the variation of the counterterm action:
ż

Σ
d2ξ
?
gb1δω `

1

2

ż

BΣ
dξpb2 ` b3n

aBaqδω

So we can use this to set a2, a3, a5 “ 0. Further, we know the bulk integral’s variation is in fact:

δ logZ “ ´δSeff “
1

4π

ż

d2ξ
?
g Tαβδg

αβ “ ´
1

4π

ż

d2ξ
?
g Tαα δφ “

c

48π

ż

d2ξ
?
gRδφñ a1 “ ´

c

12

Now let’s start with a flat metric and do two changes:

δφ1δφ2 logZ “ ´
c

24π

ż

d2ξ
?
g δφ2∇2δφ1 ´

a4

4π

ż

dξ
?
g δφ2n

aBaδφ1

“
c

24π

ż

d2ξ
?
g Baδφ2Baδφ1 `

´ c

24π
´
a4

4π

¯

ż

dξ
?
g δφ2n

aBaδφ1

Note that the second term is not symmetric under δφ1 Ø δφ2 , and so we must have the counterterm a4
4π “

c
24π .

A variation of this argument can be used to show that c is truly a constant, independent of any worldsheet
coordinates.

24. Take the map L
2π log z, mapping the plane to the cylinder of circumference L. We get:

T cyl “ pBz1q´2pT plane ´ tz1, zuq “

ˆ

2π

L

˙2

z2

˜

T plane ´
c

12

1

2z2

ˆ

L

2π

˙2
¸

“

ˆ

2πz

L

˙2

T plane ´
c

24

So the zero mode of T cyl is modified. By T cyl has the expansion
ř

n Lne
´2πinx so we see L0 gets modified

by ´ c
24 .

Because L0 is a codimension 1 operator, it will get modified the same way, whether on the cylinder or torus.

25. Each raising operator L´n acts by raising the level by n, and so assuming each one gives a unique state not
expressible in terms of the action of the other L´k, we get that it will contribute:

1` qn ` q2n ` ¨ ¨ ¨ “
1

1´ qn
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to the partition function. All together these give

1
ś8
n“1p1´ q

nq
ñ Trre2πiτp∆´c{24qs “

q∆´c{24

ś8
n“1p1´ q

nq
.

This also shows that at level n there will generically be as many states as there are partitions of the number
n.

26. Consider a nontrivial state |hy so that Ln |hy “ 0 for some n sufficiently positive. Then:

0 “ xh|L´nLn |hy “ xh| p
npn2 ´ 1q

12
c´ 2nhq |hy

If c “ 0 we get a contradiction unless either |0y is null (and thus decouples) or otherwise h “ 0, and so we
get a vacuum state.

I think we need to add the assumption of irreducibility to have a unique ground state (ie a counterexample
would be TQFTs with multiple ground states).

27. It is enough to show that L1 and L2 acting on this state give zero, since then all other Ln can be obtained
by commutators of these two. Indeed:

L1pL´2 ´
3

4
L2
´1q |1{2y “ p3L´1 ´

3

4
p2L0L´1 ` 2L´1L0qq |1{2y “ p3L´1 ´

3

4
p2L´1 ` 4L´1L0qq |1{2y “ 0

L2pL´2 ´
3

4
L2
´1q |1{2y “ p4L0 `

2p22 ´ 1q

12
c´

3

4
3pL´1L1 ` L1L´1qq |1{2y “ p4L0 `

1

4
´

9

2
L0qq |1{2y “ 0

28. The null state’s field must satisfy:

pL´2 ´
3

4
L2
´1q xψw

ź

i

ψwiy “

«

ÿ

i

ˆ

1{2

pwi ´ wq2
´

1

wi ´ w
Bi

˙

´
3

4

B2

B2w

ff

xψw
ź

i

ψwiy (45)

For the three-point function (holomorphic sector) this gives:
„

1{2

pw ´ w1q
2
`

1

w ´ wi
B1 `

1{2

pw ´ w2q
2
`

1

w ´ wi
B2 ´

3

4
B2
w



λ

pw ´ w1q
1{2pw1 ´ w2q

1{2pw2 ´ wq1{2
“ 0

This gives:
7λ

16

pw1 ´ w2q
3{2

pw ´ w1q
5{2pw2 ´ wq5{2

“ 0

which gives λ “ 0. We could have inferred this from fermion parity.

Next, for the four-point function, first note that all the ψ have the same scaling dimension, so WLOG we
can write this as:

xψpz1qψpz2qψpz3qψpz4qy “
1

z12z34
h

ˆ

z12z34

z13z24

˙

plugging this into (45) gives a complicated-looking differential equation, but this can be simplified substan-
tially by taking z1 “ z, z2 “ 0, z3 “ 8, z4 “ 0. Notice then that z here is indeed the cross ratio. We then
get the simpler differential equation:

2zgpzq ` 2p1´ z2qg1pzq ´ 3zp1´ zq2g2pzq “ 0

This can be solved in terms of known functions (we should more specifically give boundary conditions by
specifying residues of gpzq at z “ 0, 1,8). All in all we get:

gpzq “
z2 ´ z ` 1

1´ z

Thus

xψpzqψpz1qψpz2qψpz3qy “
1

z12z34
`

1

z14z23
´

1

z13z24

exactly as we would get for Wick contraction.
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29. Assume it is not primary - then it is a descendant. By positivity of scaling dimensions, it must be a descendant
of a field of scaling dimension 0, but as we have shown two exercises ago, the only such field is the vacuum
|0y. The vacuum is translation invariant Bz1 “ 0 and so it has no descendants of scaling dimension 1. (It
does have T as a descendant of scaling dimension 2 under B2

z1).

30. Assume z ą w. On one hand,

: rJapzq, Jbpwqs :“ JapzqJbpwq “
ÿ

m,n

rJam, J
b
nsz

´m´1w´n´1

On the other

JapzqJbpzq “
Gab

pz ´ wq2
`
ifabc J

cpwq

z ´ w
` . . . “

ÿ

m

mGabz´2
´w

z

¯m´1
`

ÿ

m,n

ifabc J
c
mw

´m´1z´1
´w

z

¯n

“
ÿ

m

mGabz´m´1wm´1 `
ÿ

m,n

ifabc J
c
mw

´pm´nq´1z´n´1

“
ÿ

m,n

´

mδm`nG
abw´m´1w´n´1 ` ifabc J

c
m`nw

´m´1z´n´1
¯

so we get:
rJam, J

b
ns “ mδm`nG

ab ` ifabc J
c
m`n

31. Rewrite the first part of the action as ´ 1
4λ2

ş

d2ξTrrpg´1Bgq2s. Now note:

δpg´1Bgq “ g´1Bδg ´ g´1 δg g´1Bg

Then we can write the variation of the action as:

´
1

2λ2

ż

d2ξTr
“

pg´1Bµδg ´ g
´1 δg g´1Bµgqpg

´1Bµgq
‰

“
1

2λ2

ż

d2ξTr

»

—

–

δg

¨

˚

˝

Bµpg
´1Bµg g´1q ` g´1Bµgg

´1Bµgg´1
loooooooooomoooooooooon

g´1Bµg Bµpg´1q

˛

‹

‚

fi

ffi

fl

“
1

2λ2

ż

d2ξTr
“

g´1δg Bµ
`

g´1Bµg
˘‰

So we see that we must have g´1Bµg be a conserved current if we only had the first part of the action. In
z, z̄ cooredinates we have BJz ` B̄J z̄ “ 0. We would like both J “ Jz and J̄ “ J z̄ to be separately conserved
B̄J “ BJ̄ “ 0. However, this is equivalent to also having εµνJν conserved. However BµJν ´ BνJµ “ ´rJµ, Jνs
gives that Bµε

µνJν “ ´ε
µνJµJν ‰ 0 for nonabelian algebras.

On the other hand, the second term has variation:

ik

8π

ż

B
d3ξ εαβγTr

”

pg´1Bαδg ´ g´1δgg´1Bαgqpg´1Bβgqpg´1Bγgq
ı

` perms.

this will all vanish identically as an action on B, since TrpA ^ A ^ Aq is already closed for our 1-form
A “ g´1dg. On the other hand, the first term in parenthesis contributes a boundary term when α is
transverse

ik

8π

ż

BB
d2ξ εβγTrpg´1δgg´1Bβgpg´1Bγgqq “ ´

ik

8π

ż

BB
d2ξ εβγTr

”

g´1δg Bβ
`

g´1Bγg
˘

ı

Appreciate the difference between this and the factor of 3 in Di Francesco. I believe we only account for 1 of
the 3 terms, since only 1 of the 3 indices will give a transverse direction.

This gives a total equation of motion of:

1

2λ2
Bµpg´1Bµgq ´

ik

8π
εµνB

µpg´1Bνgq “ 0 (46)
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Taking the basis z, z̄, Bz “ 2Bz̄, εzz̄ “ i{2, we get:

rBz̄pg
´1Bzgq`Bzpg

´1Bz̄gqs´
ikλ2

4π

“

iBz̄pg
´1Bzgqg

´1 ´ iBzpg
´1Bz̄gq

‰

“

ˆ

1`
kλ2

4π

˙

Bz̄pg
´1Bzgq`

ˆ

1´
kλ2

4π

˙

Bzpg
´1Bz̄gq

When λ2 “ 4π{k (meaning k must be positive) the second term goes away and we get the conservation law
B̄Jz. Taking the conjugate of this equation gives the other conservation law.

d̄pg´1Bgq “ 0 Ñ ´BpB̄g g´1q “ 0

In particular the classical solutions factorize into the form gpz, z̄q “ fpzqf̄pz̄q. It is also quick to show that
gpz, z̄q Ñ Ωpzqgpz, z̄qΩ̄pz̄q (for Ω, Ω̄ two independent matrices valued in the same rep’n of G) keeps the action
invariant, and so we see that the GˆG classical invariance of the action is enhanced to a full Gpzq ˆGpz̄q
invariance. This is the real power of WZW models, and should be appreciated.

32. Importantly, the 3D action does not have any metric dependence. For the 2D boundary we have:

1

4λ2

ż

d2ξ
?
ggµνTrrg´1Bµg g

´1Bνgs

this gives a stress tensor:

Tµν “ ´
π

λ2

ˆ

Trrg´1Bµg g
´1Bνgs ´

1

2
gµνg

αβTrrg´1Bαg g
´1Bβgs

˙

we see that this is traceless. The holomorphic part is:

´
π

λ2
TrrJ2s “

k

4
JaJa

the constant out front can have a field strength renormalization from its classical value (because the J are
not free fields), and so we would not expect it to agree with the one given in the definition of T .

Give another reason for this discrepancy. Try to account for it.

33. This one is direct. Take z ą w

rJapzq, Ripwqs “
ÿ

m

Jamz
´m´1Ripwq “

ÿ

n

z´1
´w

z

¯n
TijRjpwq

and so we get:
JamRipwq “ wmT aijRjpwq

34. We have:
1

2pk ` h̄q

ÿ

n,m

z´2´pn`mq : JamJ
a
n :“

ÿ

k

Lmz
´2`m

Appropriately shifting, we see that Lm “
1

2pk`h̄q
: Jm`nJ´n : as required. The only term here that doesn’t

give zero when acting on a WZW primary is Ja´1J
a
0 which acts as Ja´1T

a
ij and this terms appears twice, so

we get that

|χiy “ pL´1δij ´
1

k ` h̄
T aijJ

a
´1q |Rjy

is null. But we also have that:

xpJa´1Rpz1qqRpz2q . . . RpzN qy “
1

2πi

¿

z1

dz

z ´ z1
JapzqRpz1qRpz2q . . . RpzN q

“ ´
1

2πi

ÿ

i‰1

¿

zi

dz

z ´ z1
Rpz1qRpz2q . . . J

apzqRpzkq . . . RpzN q

“ ´
1

2πi

ÿ

k‰1

¿

zk

dz

z ´ z1

1

z ´ zk
Rpz1qRpz2q . . . T

a
ijRjpzkq . . . RpzN q

“
ÿ

k‰1

T aijRjpzkq

z1 ´ zk
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Here we chose to do this with Rpz1q, but we could have picked arbitrary zi. This means that correlators
must satisfy:

˜

Bz1 ´
1

k ` h̄

N
ÿ

j‰i

T ai b T
a
j

zi ´ zj

¸

x

N
ź

k“1

Rpzkqy “ 0

where T ai acts on the ith primary field in the correlator.

35. I think its instructive to do this one out in detail. First let’s take a look at just TGpzq acting on any current
Japwq. We want the singular terms:

1

2pk ` h̄q
pJbJbqpzqJapwq “

1

2pk ` h̄q

1

2πi

¿

z

dx

x´ z
pJbpxqJbpzqJapwq ` JbpxqJbpzqJapwqq

“
1

2pk ` h̄q

1

2πi

¿

z

dx

x´ z

„ˆ

Gba

px´ wq2
`
if bac J

cpwq

x´ w

˙

Jbpzq ` Jbpxqpz Ø xq



“
1

k ` h̄

ˆ

GabJbpzq

pz ´ wq2
`

1

2
fabc

JcpwqJbpzq ` JbpzqJcpwq

z ´ w

˙

but note that last term will have

JcpwqJbpzq ` JbpzqJcpwq “
2Gbc

pz ´ wq2
`

2ifcbdJ
dpwq

w ´ z
` pJcJbqpwq ` pJbJcqpwq

The first term will cancel when multiplied by the anti-symmetric fabc, as will the last (regular) term. The
second term will give fabcfcbd “ ´fabcfdbc “ 2h̄δad, by the definition of dual coxeter number. On the other
hand we have Gab “ kδab so altogether we get:

1

k ` h̄

pk ` h̄qJapzq

pz ´ wq2
“

Japwq

pz ´ wq2
`
BJapwq

pz ´ wq

as we wished. Note we could have run this logic in reverse, and demanded that a stress tensor must its OPE
make second term involving BJa have coefficient 1, giving the required normalization of p2pk ` h̄qq´1. Now
note that if we define THpzq :“ 1

2pk`h̄Hq

ř

aPHpJ
aJaqpzq, then as long as we are taking the OPE with Ja for

a P H, we see that the singular terms are exactly the same. Indeed, we get the same factor of kδab from the
quadratic OPE term, and the sum over fabcfdbc restricts b and c to be in H by the subgroup property, so we
get h̄H . Thus pTG ´ THqJ

a “ TG{HJ
a is regular for a P H.

For the next step, again lets first just look at the singular terms in the TGTG OPE:

T pzqT pwq “
1

2pk ` h̄q

1

2πi

¿

dx

x´ w
T pzqJapxqJapwq

“
1

2pk ` h̄q

1

2πi

¿

dx

x´ w

„ˆ

Japxq

pz ´ xq2
`
BJapxq

z ´ x

˙

Japwq ` Japxqpw Ø xq



“
1

2pk ` h̄q

1

2πi

¿

dx

x´ w

„

k dimG

pz ´ xq2px´ wq2
`
BJapxq Japwq

z ´ x
` pw Ø xq



“
c{2

pz ´ wq4
`

2T pwq

pz ´ wq2
`
BT pwq

pz ´ wq

here we have c “ k dimG
k`h̄

as required. The same logic applies to the THpzqTHpwq OPE, where we would get:

cH{2

pz ´ wq4
`

2THpwq

pz ´ wq2
`
BTHpwq

pz ´ wq
, cH “

k dimH

k ` h̄H
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Now it remains to evaluate:

TGpzqTHpwq “
1

2pk ` h̄Hq

1

2πi

¿

dx

x´ w

ÿ

aPH

TGpzqJ
apxqJapwq

“
1

2pk ` h̄Hq

1

2πi

¿

dx

x´ w

„ˆ

Japxq

pz ´ xq2
`
BJapxq

z ´ x

˙

Japwq ` Japxqpw Ø xq



“
1

2pk ` h̄Hq

1

2πi

¿

dx

x´ w

„

k dimH

pz ´ xq2px´ wq2
`
BJapxq Japwq

z ´ x
` pw Ø xq



“
cH{2

pz ´ wq4
`

2THpwq

pz ´ wq2
`
BTHpwq

pz ´ wq

so indeed TGpzqTHpwq ´ THpzqTHpwq “ TG{HpzqTHpwq has a regular OPE. This further gives us that
TG{HpzqTG{Hpwq has singular part coming from TG{HpzqTGpwq “ TGpzqTGpwq ´ TGpzqTHpwq, which gives:

pcG ´ cHq{2

pz ´ wq4
`

2TG{Hpwq

pz ´ wq2
`
BTG{Hpwq

z ´ w

So a G theory can be re-written as a set of “decoupled” CFTs with stress tensors TH and TG{H . Now take
G “ SUp2qm ˆ SUp2q1. This theory have total level m` 1. So now take the diagonal subgroup SUp2qm`1.

We see that the G{H theory has central charge:

cG ´ cH “

ˆ

mˆ 3

m` 2
`

1ˆ 3

1` 2

˙

´
pm` 1q ˆ 3

m` 1` 2
“ 1`

3m

m` 2
´

3pm` 1q

m` 3
“ 1´

6

pm` 2qpm` 3q

exactly coincident with the prescribed formula for the minimal models. So, we expect at m “ 1 to get the
Ising CFT.

36. We have
ψipzq “

ÿ

n

ψinz
´n´1{2 ñ xψipzqψjpwqy “

ÿ

n,mPZ
xψinψ

j
my z

´n´1{2w´m´1{2

“

8
ÿ

m“0

xψimψ
j
´my z

´m´1{2wm´1{2

“
δi
?
zw

«

8
ÿ

m“0

´w

z

¯m
´

1

2

ff

“
δij

2
?
zw

z ` w

z ´ w

the 1{2 comes from the zero-mode Clifford algebra tψi0, ψ
j
0u “ δij .

37. We can get this directly from the Ward identity:

xT pz1qφpz2qφpz3qy “

ˆ

Bz2

z1 ´ z2
`

Bz3

z1 ´ z3
`

∆

pz1 ´ z2q
2
`

∆

pz1 ´ z3q
2

˙

1

pz2 ´ z3q
2∆
“

∆

z2
12z

2
13z

2∆´2
23

.

Next, we can write:

xX|T pzq |Xy “ lim
wÑ0

w̄´2∆ x0|Xp1{w̄qT pzqXp0q |0y “ lim
wÑ0

w̄´2∆ ∆

z2w̄´2∆
“

∆

z2
.

Finally, let’s look at the OpNq fermion. We have that T pzq “ ´1
2

řN
i“1 : ψiBψi : so we get:

xS|T |Sy “ ´
1

2
ΣN
i“1 lim

zÑw

»

—

—

—

–

Bw

ˆ

z ` w

2
?
zw

1

z ´ w

˙

´ Bw
1

pz ´ wq
looooomooooon

Normal ordering constant

fi

ffi

ffi

ffi

fl

“ ´
N

2
p´

1

8w2
q “

N{16

w2

as required.
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38. This is direct:

DθX̂ “ pBθ ` θBzq pX ` iθψ ` iθ̄ψ̄ ` θθ̄F q “ iψ ` θBX ` θ̄F ` θθ̄Bψ̄, D̄θ̄X̂ “ iψ̄ ` θ̄BX ` θF ` θ̄θB̄ψ

Now we only want the θθ̄ terms of pDθX̂qpD̄θ̄X̂q as everything else will vanish in the Berezin integral. This
gives:

S “
1

2π`2s

ż

d2z

ż

dθ̄dθ θθ̄pBXBX ´ F 2 ` iψ̄Bψ̄ ` iψB̄ψq “
1

2π`2s

ż

d2zpBXBX ` iψ̄Bψ̄ ` iψB̄ψq

we have dropped F 2 because it has no dynamics or interactions with X,ψ whatsoever.

39. Expanding

eip¨X̂ “ eipµpX
µ`iθψµ`iθ̄ψ̄µ`θθ̄Fµq “ p1` iθp ¨ ψqp1` iθ̄p ¨ ψ̄qp1` θθ̄p ¨ F qeipX

Imposting EOM’s gives F “ 0 right away. Now for the rest:

DθX̂
µDθ̄X̂

νeipX |θθ̄ “ rpBX
µBXν ` iψ̄µBψ̄ν ` iψν B̄ψµq ` piBXνψµqp ¨ ψ ` piBXµψ̄νqp ¨ ψ̄seipX

again using the equations of motion we get rid of the Bψ̄, d̄ψ terms. Now we get:

rBXµBXν ` piBXνψµqp ¨ ψ ` piBXµψ̄νqp ¨ ψ̄seip¨X “ pBXµ ` ipp ¨ ψqψµqpBXν ` ipp ¨ ψqψνqeip¨X

40. Following the same logic as the N “ p2, 0q case, we can now compute in the R sector:

tGα0 , Ḡ
β
0u “

4k

2

ˆ

´
1

4

˙

δαβ ` 2L0δ
αβ

for this to be positive we need:
2p∆´ k{4q ě 0 ñ ∆ ě k{4.

In the NS sector, we have a positivity condition on

tGα´1{2, Ḡ
β
1{2u “ ´2σaαβJ

a
0 ` 2δαβL0

The positivity condition on this operator translates to the matrix:

2∆1´ 2σaαβJ
a

being positive semidefinite. But the determinant of this matrix is given by

∆2 ´ |J |2 “ ∆2 ´ j2

So for this to be ě 0, given that ∆ ě 0, we need ∆´ j ě 0

41. This calculation is also direct:

T pzqT pwq “
1{2

pz ´ wq4
` 2

´ 1
`2s
pBXq2pwq

pz ´ wq2
`
B

´

´ 1
`2s
pBXq2pwq

¯

z ´ w

`
`s
2
BXpzq

Q
?

2`3s
2

2

pz ´ wq3
`
`s
2
BXpwq

Q
?

2`3s
2

´2

pz ´ wq3
´
`2s
2

Q2

2`2s

´6

pz ´ wq4

“
1{2p1` 3Q2q

pz ´ wq4
`

2T pwq

pz ´ wq2
`
BT pwq

z ´ w

we thus get a central charge equal to 1` 3Q2 as required.
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42. The integral over the zero mode will give no contribution from the BXBX̄ term in the action and instead
will just:

ż

DX exp

˜

´

ż

d2z
?
g

˜

Q

4π`s
?

2
Rp2q ´ i

ÿ

i

piδ
2pz ´ ziq

¸

Xpzq

¸

This is a δ-functional on the pi. We have:

δ

«

Q

4π`s
?

2
Rp2q ´ i

ÿ

i

piδ
2pz ´ ziq

ff

but this can only happen if, after integrating over z, we get:

Q

`s
?

2
χ “ i

ÿ

i

pi ñ i
?

2`s
ÿ

i

pi “ Qχ.

Give an interpretation of the vertex operators as “contributing curvature”.

43. Note that:

rL´m, J´ns “ nJ´m´n `
A

2
mpm´ 1qδm`n

Take pm`nq “ 0 and look at the central term. We see that we cannot simply identify L:m “ L´m, J
:
n “ J´n

because then the commutation relation above has a central term ´mA off from the correct central term. This
can be corrected by redefining just the zero mode J:0 “ J0 ` A. We see that then the hermitian conjugates
satisfy the same algebra. We see sufficiency. Is this necessary?

We now show that we cannot change the algebra in any other way and keep the commutation relations.
Firstly, we cannot add a (necessarily zero weight) central term to any other J:m “ J´m relation since only
J0 transforms with 0 weight. In fact we cannot form any linear combination J̃m of the Jm and expect the
commutation relations to hold, since each Jm has different eigenvalue under L0. We can thus only rescale
the Jm- and applying rL1, Jms shows that to keep the commutation relation, this rescaling must be the same
for all Jm - but this would necessarily modify the central term by changing the charge A.

The same logic applies to the L:m. We cannot mix Lm for different m to define L:m since they have different
weight under L0. There is also no consistent way to rescale all of them and keep the commutation relations
the same. The only possibility is adding a central term to the relation L:0 “ L0, but any redefinition of this
will modify the central charge of the conjugate theory.

44. Noting that

bpzqBcpwq “ cpzqBbpwq “
1

pz ´ wq2

Bbpzqcpwq “ Bcpzqbpwq “ ´
1

pz ´ wq2

BbpzqBcpwq “ BcpzqBbpwq “ ´
2

pz ´ wq3

we can just directly compute the TT OPE:

T pzqT pwq “ p´λbpzqBcpzq ` p1´ λqBbpzqcpzqq p´λbpwqBcpwq ` p1´ λqBbpwqcpwqq

“ λ2pbBcqpzqpbBcqpwq ` λpλ´ 1q rpbBcqpzqpBbcqpwq ` pBbcqpzqpbBcqpwqs ` p1´ λq2pBbcqpzqpBbcqpwq

“ ´
λ2 ` p1´ λq2 ` 4λpλ´ 1q

pz ´ wq4
`
λ2p´bpzqBcpwq ` Bcpzqbpwqq

pz ´ wq2
`
p1´ λq2pBbpzqcpwq ´ cpzqBbpwqq

pz ´ wq2

` λpλ´ 1q
BcpzqBbpwq ` BbpzqBcpwq

z ´ w
´ 2λpλ´ 1q

bpzqcpwq ` cpzqbpwq

pz ´ wq3

The first term on the last line will die since we can take z Ñ w and ignore first-order terms capturing the
differences. The second term in the last line will become:

´ 2λpλ´ 1q
Bbpwqcpwq ` Bcpwqbpwq

pz ´ wq2
´ λpλ´ 1q

B2bpwqcpwq ` B2cpwqbpwq

pz ´ wq
(47)
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the second two terms in the first line contribute a pz ´ wq´2 term of:

λ2p2Bcpwqbpwqq ` p1´ λq2p2Bbpwqcpwqq

this will combine with the pz ´ wq´2 terms in (47) to give:

2 rλBcpwqbpwq ` p1´ λqBbpwqcpwqs “ 2T pwq

as required. Finally, the pz ´ wq´1 terms all collected give coefficient (dropping the w dependence, as it is
understood):

λ2p´BbBc` B2cbqq ` p1´ λq2pB2bc´ BcBbq ´ λpλ´ 1qpB2bc` B2cbq

“ ´λ2
((((

(((pBbBc` BcBbq ´ 2λBbBbc` 1BbBc` rλ2 ` λp1´ λqspB2cbq ` rp1´ λq2 ` λp1´ λqspB2bcq

“ λB2cb` p1´ λqB2bc` p1´ 2λqBbBc “ BT

as required. So altogether we get exactly the stress tensor OPE needed to satisfy the Virasoro algebra with
central charge:

´2pλ2 ` p1´ λq2 ` 4λpλ´ 1qq “ ´2p6λ2 ´ 6λ` 1q “ 1´ 3Q2, Q “ p1´ 2λq

45. The BRST current is:
jBpzq “ cpzqTXpzq ` pbcBcqpzq

There are several OPEs to do. Let’s start with the easier ones:

pcTXqpcTXq „ cpzqcpwq

„

cX{2

pz ´ wq4
`

2T pwq

pz ´ wq2
`
BT pwq

z ´ w



“ ´

8
ÿ

n“1

pz ´ wqn

n!
cpwqBncpwq

„

cX{2

pz ´ wq4
`

2T pwq

pz ´ wq2
`
BT pwq

z ´ w



„ ´

1
2c
X cpwqBcpwq

pz ´ wq3
´

1

2

1
2c
X cpwqB2cpwq

pz ´ wq2
´

1

6

1
2c
X cpwqB3cpwq

z ´ w
´

2T pwqcpwqBcpwq

z ´ w

(48)

Next:

pcTXqpbcBcq ` pbcBcqpcTXq „
TXpzqcpwqB(̧wq

z ´ w
`
cpzqBcpzqTXpwq

z ´ w

„
2T pwqcpwqBcpwq

z ´ w

(49)

This exactly cancels the last term in the previous expression. Now the hard one. Being careful of fermion
minus signs, I’ll underline the contractions that will give them:

pbcBcqpbcBcq “ pbcBcqpbcBcq ` pbcBcqpbcBcq ` pbcBcqpbcBcq ` pbcBcqpbcBcq

` pbcBcqpbcBcq ` pbcBcqpbcBcq `���
���

pbcBcqpbcBcq `���
���

pbcBcqpbcBcq

(50)

the last two terms are canceled because they contribute only pz ´ wq´1 singularities multiplying cpzqBcpwq
which is Opz ´ wq and so only contributes finite terms. The remaining terms give:

´
cpzqcpwq

pz ´ wq4
`
cpzqBcpwq

pz ´ wq3
´
Bcpzqcpwq

pz ´ wq3
`
BcpzqBcpwq

pz ´ wq2
`
cpzqBcpzqbpwqcpwq

pz ´ wq2
`
bpzqcpzqcpwqBcpwq

pz ´ wq2
(51)

The last two terms will cancel, as they contribute a pz ´wq´1 singularity with numerator cB2cbc` BcBcbc`
bBccBc` BbccBc. All of these terms are evaluated at w, so all are zero. Now we have (all evaluated at w)

´Bcc` cBc´ Bcc

pz ´ wq3
`
´1

2B
2cc` BcBc´ B2cc` BcBc

pz ´ wq2
`
´1

6B
3cc` 1

2B
2cBc´ 1

2B
3cc` B2cBc

z ´ w

“
3cpwqBcpwq

pz ´ wq3
`

3
2cpwqB

2cpwq

pz ´ wq2
`

2
3cpwqB

3cpwq ` 3
2B

2cpwqBcpwq

z ´ w

(52)
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Combining Equations (48), (49) and (52) we get:

jBpzqjBpwq “
p3´ 1

2c
XqcpwqBcpwq

pz ´ wq3
`
p3

2 ´
1
4c
XqcpwqB2cpwq

pz ´ wq2
`
p2

3 ´
cX

12 qcpwqB
3cpwq ` 3

2B
2cpwqBcpwq

z ´ w
(53)

Now for Q2
B “ 0, we need to look at jBpzqjBpwq residue as z Ñ w as a function of w and ensure that this

has no residue in w. First we just need to look at the pz ´ wq´1 term and reduce it all to the integral:

Q2
B “

1

2πi

¿

dw

„ˆ

2

3
´
cX

12

˙

cpwqB3cpwq `
3

2
B2cpwqBcpwq



“
1

2πi

¿

dw

ˆ

13

6
´
cX

12

˙

cpwqB3cpwq

This will vanish exactly when cX “ 26 as required.

NB in Polchinski, there is an additional cB3c term in the definition of jB that contributes to this OPE (which
makes Equation (53) look nicer), but the conclusion about D “ 26 is still the same.

46. This is the type of question with a two-line answer that depends on a lot of conceptual build up. It is
instructive to go through some of the details. Here I will set `2s “ 2. First lets start with the system of two
Majorana-Weyl fermions ψ1, ψ2. This has central charge c “ 1. Moreover, we can compute everything in
terms of

ψ “
1
?

2
pψ1 ` iψ2q, ψ̄ “

1
?

2
pψ1 ´ iψ2q.

Note both ψpzq and ψ̄pzq are in the holomorphic sector. The anti-holomorphic fields, if we considered them,

can be labeled as in polchinski by ψ̃pz̄q, ˜̄ψpz̄q. These fields give OPE:

ψpzqψpwq “ Opz ´ wq, ψ̄pzqψ̄pwq “ Opz ´ wq ψpzqψ̄pwq “
1

z ´ w
` : ψψ̄ :pwq `Opz ´ wq (54)

Now Jpzq “: ψψ̄ : pzq can be seen to have scaling dimension 1 by OPE, so it is a conserved current (and
necessarily a primary operator in a unitary theory). Indeed JJ “ pz ´ wq´2 and Jψ “ ψpz ´ wq´1, Jψ̄ “
ψ̄pz ´ wq´1 so ψ, ψ̄ have charge ˘1 under J . From extending equation (54) to terms of order pz ´ wq the
stress energy tensor T “ ´1

2 : ψiBψi :“ 1
2J

2.

Now note that this shares everything in common with the free scalar theory. The central charge c “ 1. The
up1q currents there are J “ iBφ and have the same OPE. The analogues of the fermions ψ, ψ̄ are then the
operators e˘iφpzq respectively. Indeed these have charge ˘1 under J . But it would be surprising if these
operators anti-commuted, being built out of bosons and all. In fact they do! By Baker-Campbell-Hausdorff:

eiφpzqeiφpz
1q “ e´rφpzq,φpz

1qseiφpz
1qeiφpzq “ ´eiφpz

1qeiφpzq

since rφpzq, φpwqs “ ´ log z´w
w´z “ ´iπ The anti-commutation property comes out of the non-locality of the

vertex operators in terms of φ. We can make the exact same argument for eiφpzqe´iφpwq or any combination
thereof. So all of these fields are in fact fermionic. They have the same OPEs as the fermions above:

e˘iφpzqe˘iφpwq “ Opz ´ wq, e˘iφpzqe¯iφpwq „
1

z ´ w

Note also the OPE

: eiφpzq :: eiφpwq : “ exp

„

´

ż

dz1dw1 logpz1 ´ w1qδφpz1qδφpw1q



: eiφpzqe´iφpwq :

“
1

z ´ w
p1` iBφpwqpz ´ wq `Opz ´ wq2q

“
1

z ´ w
` iBφpwq `Opz ´ wq

as required.
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We can actually perform this procedure to the bc ghosts as well, for any value of λ. The trick is to note that
we have performed it for λ “ 1{2, and now the stress-energy tensor changes to:

T λ “ T λ“1{2 ´ pλ´ 1{2qBp: bc :q

If we still take b “ eiφ, c “ e´iφ then : bc :“ iBφ and so the stress-energy tensor looks like:

T λ “ ´
1

2
pBφq2 ´ ipλ´ 1{2qB2φ

which is just the Coloumb gas model with Q “ ´ip2λ´ 1q. The central charge is 1` 3Q2 “ 1´ 3p2λ´ 1q2,
exactly as we want. The conformal weights are k2{2 ˘ iQk{2 Ñ 1

2 ˘ pλ ´ 1{2q at the lowest level, and this
is exactly λ and 1 ´ λ as desired. Note that b and c are hermitian, so we need φ to be anti-hermitian.
Equivalently we can write φ “ iρ for ρ hermitian. Then

b “ e´ρ, c “ eρ, J “ ´Bρ.

Note ρ has opposite OPE from φ so that Bρpzq Bρpwq „ 1
pz´wq2

.

Now lets look at the bosonic βγ theory. Can we bosonize this too? For one, the charge is J “ ´βγ which
has opposite sign OPE JpzqJpwq “ ´ 1

z´w , so we will now need ρ to have the regular-sign OPE (ie the

same as φ). We’ll just call this hermitian field φ. Let’s take β “ e´φ, c “ eφ as before and J “ ´Bφ.
Already there is an issue. If φ satisfies the standard OPE then β and γ will be anticommute. Further,
βγ “ e´φpwqeφpzq “ Opz´wq while by the same logic ββ „ γγ „ pz´wq´1. We want ββ “ Oppz´wq0q, γγ “
Oppz ´ wq0q, βγ „ ´pz ´ wq´1, γβ „ pz ´ wq´1.

Another way to see that we are missing something: we can try to write a Coulomb gas model for the βγ
theory:

T λ “ T λ“1{2 ´ pλ´ 1{2qBpβγq “ ´
1

2
J2 ´

ˆ

1

2
´ λ

˙

BJ “ ´
1

2
pBφq2 `

1´ 2λ

2
B2φ

notice the ´ sign in front of 1
2J

2, as we want. We have a coulomb gas model with Q “ 1 ´ 2λ. This gives
a central charge 1 ` 3Q2 “ 4 ´ 6λ ` 12λ2. On the other hand, the βγ theory should have central charge
´1` 3Q2. We are off by 2.

All of this indicates that we need to add an uncoupled c “ ´2 including fermions–namely the bc fermi theory
at λ “ 1– and redefine βγ in terms of φ to incorporate this. Take η, ξ of scaling dimensions 1, 0 and charges
¯1 respectively. Then define

β “ e´φBξ, γeφη.

We now have the OPE:

βpzqγpwq “ pz ´ wq ˆ ´
1

pz ´ wq2
“ ´

1

z ´ w
, γpzqβpwq “

1

z ´ w

This is 4.15.2. Further because ηη “ Opz ´wq and BξBξ “ Opz ´wq we get ββ “ Oppz ´wq0q and likewise
for γγ as needed. We also know how to interpolate between NS and R sectors by taking φÑ φ{2 etc.

The total current ´ : βγ : stays the same because we look for the constant term in the expansion:

βpzqγpwq “ ´
1

pz ´ wq2
e´φpzqeφpwq “ ´

1

pz ´ wq2
`

pz ´ wq ´ Bφpwqpz ´ wq2
˘

Ñ Bφpwq ñ J “ ´Bφpwq

so we identify : βγ : with Bφ, which are both ´J . This is 14.15.10. Writing out the full stress tensor now
gives:

´
1

2
pBφq2 `

1´ 2λ

2
B2φ´ ηBξ “ T λ“1{2 ` p1{2´ λqBpβγq

It remains to show that T λ“1{2 “ ´1
2βBγ `

1
2Bβγ “

1
2p2Bβ γ ´ Bpβγqq. Now looking at the βγ OPE to order

z ´ w we get:

e´φpzqBξpzqeφpwqηpwq “ Bξpzqηpwqe´φpzqeφpwq

“

ˆ

´1

pz ´ wq2
` : Bξη :

˙ˆ

pz ´ wq ´ pz ´ wq2Bφ`
1

2
pz ´ wq3ppBφq2 ´ B2φq

˙
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NOTE I had to assume that while ξ, η and eφ, e´φ separately anticommute with their partners, the e˘φ

fields commute with the ξ, η fields. Give an interpretation/example in condensed matter of this.

The order z ´ w term here is:

: Bξη : ´
1

2
ppBφq2 ´ B2φq

So this is the normal ordered product of Bβ γ. The Bpβγq “ B2φ term will cancel the B2φ term there and
we’ll get the stress tensor

´ηBξ ´
1

2
pBφq2 “ T λ“1{2

which is 4.15.8 as desired.

We can also bosonize the η, ξ theory in terms of an auxiliary bosonic field χ, but this was not necessary for
the exercise.

47. We are looking at DN boundary conditions. Let us do this directly from definitions:

Xpτ, σq “ x´
?

2`s
ÿ

kPZ`1{2

αk
k
e´ikτ sinpkσq “ x` i

`s
?

2

ÿ

kPZ`1{2

αk
k
pz´k ´ z̄´kq

ñ xXpz, z̄qXpw, w̄qy “ ´
`2s
2

ÿ

k,lPZ`1{2

αkαl
kl

pz´k ´ z̄´kqpw´l ´ w̄´lq

“
`2s
2

8
ÿ

k“0

1

k ` 1{2

„

´w

z

¯k`1{2
´

´ w̄

z

¯k`1{2

´

´w

z̄

¯k`1{2
`

´ w̄

z̄

¯k`1{2


Now we have

8
ÿ

k“0

xk`1{2

k ` 1{2
“ 2

8
ÿ

k“0

p
?
xq2k`1

2k ` 1
“ 2 arctanhp

?
xq “ ´plogp1´

?
xq ´ logp1`

?
xqq.

Our convention on the square root branch cut is along the negative real axis. We get:

´
`2s
2

”

logp1´
a

w{zq ´ logp1`
a

w{zq ´ logp1´
a

w̄{zq ` logp1´
a

w̄{zq ` c.c.
ı

so the final result gives us:

´
`2s
2

”

log |1´
a

w{z|2 ´ log |1`
a

w{z|2 ´ log |1´
a

w̄{z|2 ` log |1`
a

w̄{z|2
ı

.

We can simplify this to:

´
`2s
2

„

log |

?
z ´

?
w

?
z `

?
w
|2 ´ log |

?
z ´

?
w̄

?
z `

?
w̄
|2 ` log |

?
z `

?
w̄|2



.

For ND boundary conditions, the ´ between the two logs becomes a `.

Interpret this in terms of image charges
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48. Firstly, BX B̄X requires no normal ordering constant to be added ordinarily, since it has a wick contraction
of zero. Now to go from the plane from the disk we have x “ z´i

z`i . Vice versa is z “ i1`x
1´x . This gives

log |z ´ w|2 “ log |x´ y|2 ` log |
2

p1´ xqp1´ yq
|2

log |z ´ w̄|2 “ log |1´ xȳ|2 ` log |
2

p1´ xqp1´ ȳq
|2

So for NN and DD boundary conditions we get:

xXNN px, x̄qXNN py, ȳqy “ ´
`2s
2

`

log |x´ y|2 ` log |1´ xȳ|2 ´ 2 log |p1´ xqp1´ yq|2 ` 4 log 2
˘

xXDDpx, x̄qXDDpy, ȳqy “ ´
`2s
2

`

log |x´ y|2 ´ log |1´ xȳ|2
˘

.

So NN boundary conditions correspond to putting an image charge of the same sign at 1{x˚ while DD
boundary conditions correspond to putting an image charge of opposite sign at 1{x˚ as well as a neutralizing
charge of the opposite sign at 1–corresponding to 8 in the H setting. Interpret this.

Differentiating the above with BxB̄y shows that in either case only the logp1´ xȳq term contributes:

xBXNN pxqB̄XNN pȳqy “
`2s
2

1

p1´ xȳq2

xBXDDpxqB̄XDDpȳqy “ ´
`2s
2

1

p1´ xȳq2
.

This will become singular only as z approaches the boundary of the unit circle. We encounter the divergence

˘
`2s
2

1
p1´xȳq2

in the NN and DD cases respectively and so we can define

‹
‹BXpzqB̄Xpw̄q

‹
‹ “ BXpzqB̄Xpw̄q ¯

`2s
2

1

p1´ zw̄q2

On the other hand for BX BX we get the normal ordering constant:

‹
‹BXpzqBXpwq

‹
‹ “ BXpzqBXpwq `

`2s
2

1

pz ´ wq2

We have X̄p1{w̄q “ ˘Xpwq so consequently BXpwq “ ˘B̄1{w̄Xp1{w̄q. Now its a quick check (being careful
to keep subscripts on B̄ so we know what we’re differentiating w.r.t.):

‹
‹BXpzqB̄w̄Xp1{w̄q

‹
‹ “ BXpzqB̄w̄Xp1{w̄q ¯

`2s
2

1

p1´ z{w̄q2

ñ ‹
‹BXpzqB̄1{w̄Xp1{w̄q

‹
‹ “ BXpzqB̄1{w̄Xp1{w̄q ¯ p´w̄

´2q
`2s
2

1

p1´ z{w̄q2

ñ ‹
‹BXpzqBXpwq

‹
‹ “ BXpzqBXpwq `

`2s
2

1

pz ´ wq2

where the extra minus sign in the Dirichlet boundary condition case removes any sign ambiguity in the last
line. Thus, we see that indeed ‹

‹BXpzqBXpwq
‹
‹ “ ˘

‹
‹BXpzqB̄Xp1{w̄q

‹
‹ for Neumann and Dirichlet boundary

conditions respectively.

32



49. Using the doubling trick we have ψ̄pz̄q “ ψpz˚q. So zi “ We can compute the correlator by Wick contraction:

x

m
ź

i“1

ψpziq
2n´m
ź

j“1

ψ̄pz̄jqy “ x
n
ź

i“1

ψpwiqy “
1

2nn!

ÿ

πPS2n

sgnpπq
n
ź

i“1

1

wπp2i´1q ´ wπp2iq
“ Pf

” 1

wi ´ wj

ı

where wi “ zi for z “ 1 . . .m and wi`m “ z˚i for z “ 1 Ñ 2n´m

50. I feel that this has already been done in 2.3.31. Rotating to euclidean signature, the most general solution
for X is

Xpτ, σq “ xµ `
`2s
2
pp` p̄qτ `

`2s
2
pp´ p̄qσ ` i

`s
?

2

ÿ

k‰0

e´kτ

k
pαke

´ikσ ` ᾱke
ikσq

The first boundary condition 9X “ 0 at σ “ 0 gives:

αk “ ´ᾱk, p` p̄ “ 0

while the second boundary condition X 1 “ 0 at σ “ π gives:

sinpkπq “ 0 ñ k P Z` 1{2 p´ p̄ “ 0

Thus we have neither momentum nor winding-number. So for the mode expansion is:

Xpτ, σq “ x´
?

2`s
ÿ

kPZ`1{2

αk
k
e´kτ sinpkσq “ x` i

`s
?

2

ÿ

kPZ`1{2

αk
k
pz´k ´ z̄´kq

as desired. This gives:

BX “ ´i
`s
?

2

ÿ

kPZ`1{2

αkz
´k´1, B̄X “ i

`s
?

2

ÿ

kPZ`1{2

αkz̄
´k´1

51. We have N scalars with BXipzq “ Oij B̄Xjpz̄q on the real axis. Because the conformal group includes the
translation group, Oij must be translationally invariant, ie it cannot depend on z. Further because Xi is a
scalar B ` B̄ and B ´ B̄ both act on it in an invariant way. These are the two boundary conditions we can
set on each Xi. So we see that Oij can definitely be a diagonal matrix of ˘1s. However, because all the
scalars are identical we can also transform X 1jpz, z̄q “ RjiX

ipz, z̄q, with R any orthogonal matrix (not just
special orthogonal) and still get a valid boundary condition. So O is any orbit of the matrix of ˘1s under
the conjugation action of the orthogonal group O Ñ P TOP . This can be easily appreciated as boundary
conditions for an open string along the various coordinate directions being either Neumann or Dirichlet.

Its surprising that O can’t vary on the real axis - corresponding to the D-brane changing which Xi live on it.
Think about this more.

52. Everything is in the NS sector. Let’s first evaluate xψNN pzqψNN pwqy. We have

ÿ

n,m

x0| bn`1{2bm`1{2 |0y
looooooooooomooooooooooon

δn“´m´1

z´n´1w´m´1 “

8
ÿ

n“0

z´n´1 “
1

z ´ w

For the NS sector we have the following cases:
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• NN: bn`1{2 ` b̄n`1{2 “ 0

• DD: bn`1{2 ´ b̄n`1{2 “ 0

• DN: bn ` b̄n “ 0

so we see that xψpzqψ̄pw̄qy will add an extra minus sign in the NN case. It will not do so in the in the DD
case. Collecting our results.

xψNN pzqψNN pwqy “
1

z ´ w
, xψNN pzqψ̄NN pw̄qy “ ´

1

z ´ w̄

xψDDpzqψDDpwqy “
1

z ´ w
, xψDDpzqψ̄DDpw̄qy “

1

z ´ w̄

Lastly, for the DN case, ψ now takes integer values and so:

xψDN pzqψDN pwqy “
ÿ

n,m

x0| bnbm |0y
looooomooooon

δn“´m

z´n´1{2w´m´1{2 “

8
ÿ

n“0

z´n´1{2wn´1{2´
1

2
loomoon

zero mode

z´1{2w´1{2 “
z ` w

2
?
zwpz ´ wq

.

Because bn “ ´b̄n we then also have

xψDN pzqψ̄DN pw̄qy “ ´
z ` w̄

2
?
zw̄pz ´ w̄q

.

53. On to the R sector.

• NN: bn ´ b̄n “ 0

• DD: bn ` b̄n “ 0

• DN: bn`1{2 ´ b̄n`1{2 “ 0

Let’s again evaluate xψNN pzqψNN pwqy. The calculation is exactly the same as the DN calculation above.
Using the above relations between the b and b̄ in the different sectors we’ll get:

xψNN pzqψNN pwqy “
z ` w

2
?
zwpz ´ wq

, xψNN pzqψ̄NN pw̄qy “
z ` w̄

2
?
zw̄pz ´ w̄q

xψDDpzqψDDpwqy “
z ` w

2
?
zwpz ´ wq

, xψDDpzqψ̄DDpw̄qy “ ´
z ` w̄

2
?
zw̄pz ´ w̄q

xψDN pzqψDN pwqy “
1

z ´ w
, xψDN pzqψ̄DN pw̄qy “

1

z ´ w̄

54. There are several ways to do this. One way is directly by using the identity relating an expectation of an
exponential to the exponential of an expectation:

xeiaXpzqyRP2 “ xeiaXpzqe´iaX̄pz̄qyCP1 9 exp

ˆ

a2

2
ˆ 2 xXpzqX̄pz̄qy

˙

“ exp

ˆ

´
a2`2s

2
logp1` zz̄q

˙

“
1

p1` |z|2qa2`2s{2
.

It is not clear that we haven’t omitted a proportionality constant. Another way to compute this is to note

that x: Xpz, z̄qXpz, z̄q :y “ ´ `2s
2 log |1` zz̄|2 and so expanding out:

eiaX “
8
ÿ

n“0

piaqn

n!
xXpz, z̄qny .

Now we do wick contractions. For each even term we need to put 2n elements in to n pairs. There are
p2n´ 1qp2n´ 3q . . . p3qp1q ways to do this. Simplifying we get:

8
ÿ

n“0

p´1qnpaq2n

2nn!

ˆ

´
`2s
2

˙n

logn |1` zz̄|2 “ exp
´

log |1` zz̄|a
2`2s{2

¯

“ p1` |z|2qa
2`2s{2

34



This doesn’t look right. If instead we had:

eiaXpzqe´iaX̄pz̄q “
8
ÿ

n,m“0

piaqn

n!

p´iaqm

m!
x: XpzqnX̄pz̄qm :y “

ÿ

n

a2n��n!

��n!n!

ˆ

´
`2s
2

logp1` zz̄q

˙n

“
1

p1` |z|2qa2`2s{2

as required.

In doing this problem, I needed to consider the eiaXe´iaX̄ correlator rather than the eiapX`X̄q correlator -
otherwise I would get an ill-defined one-point function that blows up as z Ñ 8 (ie is not a globally-defined
differential). Perhaps this comes from boundary conditions in the case of RP2, since H1 “ Z2 and so we can
enforce anti-periodic boundary conditions that would be consistent with a negative charge vertex operator
being placed a ´1{z̄.

55. For the non-supersymmetric theory, we have the action (on the sphere, with
?
´gR2 “ 1):

S “
1

4π`2s

ż

d2z
?
ggαβBαXBβX `

Q

4π`s
?

2

ż

d2z
?
gRp2qX “

1

2π`2s

ż

d2zBX B̄X `
Q

4π`s
?

2

ż

d2z X

this gives a stress-energy tensor:

T “ ´
1

`2s
BX2 `

Q

`s
?

2
B2X

Now for N “ 1 we might expect an action of the form:

S “
1

4π`2s

ż

d2z
?
ggαβBαXBβX `

Q

4π`s
?

2

ż

d2z
?
gRp2qX “

1

2π`2s

ż

d2zBX B̄X `
Q

4π`s
?

2

ż

d2z X

This gives:

T “ ´
1

`2s
BXBX `

Q

`s
?

2
B2X ´

1

2
ψBψ, G “ i

?
2

`s
ψBX ´ iQBψ

The TT OPE will give central charge 3
2 ` 3Q2. G remains primary, so we’ll have TG “ 3

2
Gpwq
pz´wq2

`
BGpwq
z´w .

Finally, GG will give
1

pz ´ wq3
`

2Q2

pz ´ wq3
`
���

���
���

�
?

2
`s
QBX ´

?
2
`s
QBX

pz ´ wq2
`

2T

z ´ w

so we get ĉ “ 1` 2Q2 as desired.

Now for N “ 2, following the same example, we still get get same TT OPE and G˘ remains primary, so we
have the TG˘ OPE staying the same. The GG OPE will have ĉ “ 1` 2Q2 as before and J will have to be
modified to include B2X so as to remain primary under T .

56. For X a compact scalar valued in S1 of radius R we have the solutions X “ 2πRpnσ1 `mσ2q, which have
vanishing Laplacian. The action of these instanton solutions is:

S “
1

4π`2s

ż 1

0
dσ1

ż 1

0
dσ2

1

τ2
|τB1X ´ B2X|

2 “
πR2

`2sτ2
|nτ ´m|2

Expanding X “ Xcl ` χ, we get no cross-terms in the action. We now do the path integral over the χ with
periodic conditions around both cycles. χ separates into the zero mode χ0 ` δχ and δχ can be expanded
in terms of eigenfunctions of the laplacian on periodic functions. These are precisely e2πipm1σ1`m2σ2q with

eigenvalues p2πq2

τ2
|m1τ ´m2|

2. They form an orthonormal basis. The contribution to the action is then

1

4π`2s

ÿ

m1,m2PZ2

λm1m2 |Am1m2 |
2

The measure on the space of functions comes from the norm of δX

||δX ||
2 “

1

`s

ż

d2σ
?
gpdχq “

ÿ

m1,m2

|Am1m2 |
2

`2s
ñ

ż

Dχ “
ż 2πR

0

dχ0

`s

ż 8

´8

ź

m1,m2‰t0,0u

dAm1,m2

`s
.
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Note the difference with Kiritsis. This is crucial to get the right factors of 2π in the end. This then gives:

ż

Dχe´Spχq “ 2πR

`s
ˆ

ź

m1,m2PZ2
ě0zt0,0u

ż 8

´8

dAm,n
e
´
λm1m2 |Am1m2 |

2

4π`2s

p2π`sq2
“

2πR

`s
ˆ
ź

m,n

1

d

2π

λm1m2

“
2πR

`s
ˆpdet1

∇2

2π
q´1{2

Henceforth a primed sum or product means that we omit the origin 0 or t0, 0u and sum over the integers. It
remains to evaluate

ź

d

2π

λn,m
“ exp

˜

´
1

2

ÿ

m,n

1
log

ˆ

2π

τ2
|m` nτ |2

˙

¸

Notice that this sum can be obtained by explicitly calculating the Eisenstein series

Gpsq “
´ τ2

2π

¯s ÿ

m,n

1 1

|m` nτ |2s

and evaluating 1
2G

1p0q. Let’s do that. First note:

ÿ

m,n

1 1

|m` nτ |2s
“ 2ζp2sq `

ÿ

n

1ÿ

m

1

|m` nτ |2s

The derivative of 2ζp2sq at s “ 0 yields ´2 logp2πq. On the other hand 2ζp0q is ´1, which multiplies the
order s factor in the expansion of

`

τ2
2π

˘s
(none of the subsequent terms will have an Ops0q term to multiply

this). This gives logp2π{τ2q. Together these contribute

´
1

2
logp2πτ2q

to 1
2G

1p0q.

Note also because this is a periodic function of τ of period one, we can represent it as a Fourier series in τ

ÿ

m

1

|m` nτ |2s
“

ÿ

pPZ
e2πipnτ1

ż 1

0
dte´2πipt

ÿ

mPZ

1

ppm` tq2 ` n2τ2
2 q
s
“

ÿ

pPZ
e2πipnτ1

ż 8

´8

dt
1

pt2 ` n2τ2
2 q
s

looooooooooomooooooooooon

combine
ş1
0 with

ř

Z

Using a clever Gamma function manipulation (following Di Francesco here):

1

Γpsq

ÿ

p

ż 8

´8

dt

ż 8

0
dx e2πippnτ1´tqxs´1e´xpt

2`n2τ2
2 q “

?
π

Γpsq

ÿ

p

ż 8

0
dxxs´3{2 e´xn

2τ2
2´π

2p2{x`2πipnτ1 .

Now at p “ 0 this reduces to ?
πΓps´ 1{2q

Γpsq
|nτ2|

1´2s

Summing this over n gives 2
?
πΓps´1{2q

Γpsq ζp2s ´ 1q. We have explicit series formulae for these at s “ 0.

Extracting the first-order term (this is in fact finite at s “ 0) gives πτ2
3 .

Now let’s evaluate the sum over p ‰ 0. I’ll directly take s “ 3{2 here. We get a sum over an integral that is
now solvable:

?
πΓps´ 1{2q

Γpsq

ÿ

pą0

e´2πipnτ1

ż 8

0
x´3{2e´xn

2τ2´π2p2{x “
?
πs

ÿ

pą0

?
π

πp
pe´2πipnpτ1`iτ2q ` e´2πipnpτ1´iτ2qq

We see that the contribution to G1p0q from this will be:

2
ÿ

ną0
loomoon

“
ř

n
1

ÿ

p

1

p
pq ` q̄q “ ´2

ÿ

ną0

logp|1´ qn|2q “ ´2 logpe
πτ2

6 |ηpτq|2q “ ´2 logp|ηpτq|2q ´
πτ2

3
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we see that the p “ 0 term cancels this last part and we are left with 1
2G

1p0q “ ´ logp
?
τ22πq ´ logp|η|2q,

and so:

ZpR, τq “
R

`s
?
τ2|ηpτq|2

ˆ
ÿ

m,n

e
´ πR2

τ2`
2
s
|m´nτ |2

.

While we’re at it, let’s simplify this even further by applying Poisson summation. We have the 1D case for
the Gaussian:

ÿ

n

e´πan
2`πbn “

1
?
a

ÿ

ñPZ
e´

π
a
pn`i b

2
q2 .

Performing this over the m variable we get

ÿ

m,n

e
´ πR2

`2sτ2
pm2´m

2nτ1
hkkkkikkkkj

pnτ ` nτ̄q`n2|τ |2q
“
`s
?
τ2

R

ÿ

m̃,n

e
´ πR2

`2sτ2
n2|τ |2

e
´
π`2sτ2
R2

ˆ

m̃`i
R2nτ1
`sτ2

˙2

“
`s
?
τ2

R

ÿ

m̃,n

e
´πR

2

`2s
n2τ2´

π`2s
R2 m̃

2τ2´2πim̃nτ1

“
`s
?
τ2

R

ÿ

m̃,n

e
πpiτ1´τ2q

1
2

´

`s
R
m̃` R

`s
n
¯2

e
πp´iτ1´τ2q

´

`s
R
m̃´ R

`s
n
¯2

“
`s
?
τ2

R

ÿ

m̃,n

q
P2
L
2 q̄

P2
R
2

with PL “
1?
2
pm`s{R ` nR{`sq, PR “

1?
2
pm`s{R ´ nR{`sq. We then get a simple form for the partition

function:

ZpR, τq “
ÿ

m̃,n

q
P2
L
2 q̄

P2
R
2

|ηpτq|2
.

57. We follow Polchinski Vol 2 on advanced CFT. The following operator product arises when we calculate
correlation functions of the energy-momentum tensor:

´TO “ ´Tzzpz, z̄q g
ż

d2wφ∆,∆pw, w̄q

We get:

B̄z̄T pz, z̄qφpw, w̄q “ B̄z̄

„

∆

pz ´ wq2
`

Bw

z ´ w



φpw, w̄q “ p´2π∆Bzδpz ´ wq ` 2πδpz ´ wqBwqφpw, w̄q

Where the last line was obtained using basic delta-function identities. Integrating over w gives:

´B̄z̄TO “ 2πgp∆´ 1qBφ

Thus, unless ∆ “ 1 we get that T gains an anti-holomorphic part. The exact same equation (with z Ñ z̄)
holds for T̄ . Further, the conservation equation d̄Tzz ` BTzz̄ “ 0 gives us that

Tzz̄ “ 2πgp1´∆qφ.

There cannot be an overall constant, since this is zero when φ “ 0. Here we will define βpgq by:

T ii pz, z̄q “ ´2π
ÿ

i

1
βpgqOipz, z̄q

where the sum runs over operators of dimension ď d. The trace is T aa “ 2Tzz̄ “ ´4πgp1´∆qφ so under this
deformation β “ p2´ 2∆qg. We now want to go to second order. The next contribution will come from:

´T
1

2
pOOq2 “ ´Tzzpz, q̄

g2

2!

ż

d2wd2w1φpw, w̄qφpw1, w̄1q
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Doing an OPE we get to leading order:

φ∆,∆pw, w̄qφ∆,∆pw
1, w̄1q „

C

|z ´ w|2∆
φ∆,∆pw

1, w̄1q

where here C is the coefficient of the φ∆,∆ 3-point function. We can now preform the w,w1 integrals and
get:

2πCg2

ż

dr

r2∆´1
ˆ

ż

dw1φpw1, w̄1q

Assuming ∆ “ 1 we get a log term that must be regulated in the UV and IR. Regulation in the UV gives a
scale that breaks conformal invariance. Rescaling by 1` ε increases the log by ε. Equivalently we get

δg “ ´2πCεg2

This gives a second-order contribution to the beta function of Cg2 as required. If the operator is not exactly
marginal, the second order term will still have this form, plus higher-order corrections in ∆´ 1 and g.

58. Generalizing the preceding analysis to a deformation by a family of marginal operators gaφ
a
1,1, for the

deformation to be marginal at second order in g we need the three-point function to satisfy λcabgagb “ 0 so
that the second order term does not contribute the 1{r integral and thus does not break conformal invariance.
In this case that means that we require

λcab gaā gbb̄ “ 0.

59. Again, we work from the same chapter of Polchinski. For a general 2D QFT with a stress tensor, we can
define the quantities

F pr2q “ z4 xTzzpz, z̄qTzzp0, 0qy

Gpr2q “ 4z3z̄ xTzzpz, z̄qTzz̄p0, 0qy

Hpr2q “ 16z2z̄2 xTzz̄pz, z̄qTzz̄p0, 0qy

From rotational invariance, these can only depend on r2 “ |z|2. The conservation law B̄Tzz ` BTzz̄ “ 0 gives
us that:

4 9F ` 9G´ 3G “ 0, 4 9G´ 4G` 9H ´ 2H “ 0

where 9F , 9G indicates the operator 1
2rBr (ie differentiation wrt log r2). Note subtracting 3{4 of the second

one from the first gives:

4 9F ´ 2 9G´
3

4
9H “ ´

3

2
H

Define C “ 2F ´ G ´ 3
8H. Note that in a CFT, where G “ H “ 0, C is exactly the central charge c.

Further, from this definition we get that in the general setting 9C “ ´3
4H. But note that an exactly marginal

perturbation does not give the stress-energy tensor a trace, so 9C “ 0 and the central charge will remain
fixed.

This technology wasn’t developed in Kiritsis. I’m unsure how he would have wanted us to
show this.

60. Note under τ Ñ τ ` 1 the η function is invariant and we our constraint comes from:

1

2
pP 2

L ´ P
2
Rq P Zñ GijmjGikG

klnl “ mkn
k P Z

as required. So in particular we have P 2
L´P

2
R P 2Z. We can interpret pPL, PRq as being a vector lying in an

even, Lorentzian lattice, with signature pN,Nq. Note in the 1D case then get that

P 1 ¨P 2 :“ P 1
LP

2
L´P

1
RP

2
R “

1

2

„

p
R

`s
n`

`s
R
mqp

R

`s
n1 `

`s
R
m1q ´ p

R

`s
n´

`s
R
mqp

R

`s
n1 ´

`s
R
m1q



“ pmn1`nm1q P Z
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Going to higher dimensions and turning on G and B gives us the same result (take `s “ 1 for simplicity
here). All terms will cancel except the ones given by the relative minus sign of G on the second term

1

2

”

min
1i ` nim1i `((((

((((
(

pnin1j ` n1injqBij

ı

P Z

The last term cancels by antisymmetry. Here ni,mi P Z (note the index convention, different from Kiritsis).

Under τ Ñ ´1{τ the η function is a modular form of weight 1{2, so ηpτqN is a modular form of weight N{2
and |ηpτq|2N “ |τ |´N |ηp´1{τq|2N . Let us now look at the remaining part

Θpτq :“
ÿ

P“pPL,PRqPΓ

q
1
2
P 2
L q̄

1
2
P 2
R

is also a modular form of this weight. Let’s show this. We can use the Poisson resummation formula to
write:

ÿ

p1PΓ

δpp´ p1q “
1

VΓ

ÿ

p2PΓ˚

e2πipp2 ñ
ÿ

pPΓ

fppq “
1

VΓ

ÿ

qPΓ˚

f̂pqq

here V ´1
Γ is the covolume of Γ. Taking f “ eiπτP

2
L´iπτ̄P

2
R and doing a 2N -dimensional Fourier transform, we

see that f̂pqq “ 1
|τ |N

e´iπQ
2
L{τ`iπQ

2
R{τ̄ . We can use this to write:

Θpτq “
ÿ

PPΓ

exp
“

πipτP 2
L ´ τ̄P

2
Rq
‰

“
1

|τ |NVΓ

ÿ

QPΓ˚

exp

„

πip´
1

τ
Q2
L `

1

τ̄
Q2
Rq



Now as long as Γ “ Γ˚, that is, Γ is an even, Lorentzian, self-dual lattice. Then VΓ “ 1 and the sum over
Q P Γ˚ is the same as the sum over P P Γ. So we get

Θpτq “ |τ |´NΘp´1{τq

which is the exact same transformation law as the |η|2N in the denominator, and so we get that ZpRq is
indeed modular invariant.

61. We have in fact done this in the first part exercise 46.

62. Certainly this is an order 2 involution, just like RÑ 1{R. Now we know Vm,n Ñ Vm,´n under this involution,
so

¨rH01s „
ÿ

n,m

C2n,2mrV2n,2ms ` C
2n`1,2mrV2n`1,2ms “

1

2
prH0s ¨ rH0s ` rHπs ¨ rH |π|sq ` rH0s ¨ rHπs

rHπ 1s ¨ rHπ 1s „
ÿ

n,m

C2n,2mrV2n,2ms ´ C
2n`1,2mrV2n`1,2ms “

1

2
prH0s ¨ rH0s ` rHπs ¨ rH |π|sq ` rH0s ¨ rHπs

rH01s ¨ rH0π
1
s „

ÿ

n,m

C2n,2m`1rV2n,2m`1s “
1

2
prH0s ¨ rH0s ´ rHπs ¨ rHπsq

the only consistent transformation with these OPEs is exactly:

ˆ

H01

Hπ 1

˙

“
1
?

2

ˆ

1 1
1 ´1

˙ˆ

H0

Hπ

˙

63. Define the orbifold partition function as

`�̀1

“
1

2

ˆ

`�̀`´ �̀`` �́`´ �́˙

Note that the orbifolded theory itself has a Z2 symmetry obtained by taking all the states in the Z2 twisted
sectors to minus themselves:

˘�̀Ñ˘ �̀, ˘�́Ñ ´˘�́
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I can now orbifold again by this symmetry, defining (as before):

˘�̀1

“
1

2

ˆ

`�̀`´ �̀˘` �́˘´ �́˙

˘�́1

“
1

2

ˆ

`�̀´´ �̀˘` �́¯´ �́˙

Then forming the new partition function of this double orbifold theory I see that almost everything cancels:

1

2

ˆ

`�̀1

`´ �̀1

`` �́1

`´ �́1
˙

“` �̀
64. Note first that at R{` “ 1{

?
2 we get

PL “ m`
n

2
, PR “ m´

n

2

So we are summing over these lattice values in the numerator Θ of ZpRq. On the other hand, we have:

1

2
p|θ2|

2 ` |θ3|
2 ` |θ4|

2q “
ÿ

n,m

ˆ

1

2
p1` p´1qn`mqq

1
2
n2
q̄

1
2
m2
`

1

2
q

1
2
pn´1{2q2 q̄

1
2
pm´1{2q2

˙

This is a sum over all lattice points whose sum is an even integer union with the set of all half-lattice points,
but only half of the half-lattice points are counted in the sum. This agree exactly with the standard weighting
for the lattice generated by p1, 1q and 1

2p1,´1q which is exactly the original theta function numerator in the
untwisted ZpRq at R{`s “ 1{

?
2.

Squaring the Ising model theta function then gives:

|θ2θ3| ` |θ3θ4| ` |θ2θ4|

4|η|2
`

1

4

1

|η|2
p|θ2|

2 ` |θ3|
2 ` |θ4|

2q
loooooooooooooooomoooooooooooooooon

1
2
ZpRq

“
1

2
ZpRq `

1

2

ˆ

|η|

|θ2|
`
|η|

|θ3|
`
|η|

|θ4|

˙

exactly as we wanted.

65. Take `s “ 1 here. The partition function will still have 1 twisted sector and a single projection. So we
need to consider 4 terms. We have Z

“

0
0

‰

“ ZpR1, R2q “ ZpR1qZpR2q. Our vertex operators are labelled by
pm1, n1,m2, n2q, and g acts as pm1, n1,m2, n2q Ñ p´1qm2p´m1,´n1,m2, n2q. And so:

1

2
Z

„

0

1



“ Tr1rg q
L0´c{24q̄L̄0´c̄{24s “

X1Ñ´X1
hkkikkj

ˇ

ˇ

ˇ

ˇ

η

θ2

ˇ

ˇ

ˇ

ˇ

1

ηη̄

ÿ

m,n

p´1qm exp

„

iπτ
2

´

m
R2
` nR2

¯2
´ iπτ̄

2

´

m
R2
´ nR2

¯2


loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

X2ÑX2`πR2

1

2
Z

„

1

0



“ Trgrg q
L0´c{24q̄L̄0´c̄{24s “

ˇ

ˇ

ˇ

ˇ

η

θ4

ˇ

ˇ

ˇ

ˇ

1

ηη̄

ÿ

m,n

exp

„

iπτ
2

´

m
R2
` pn` 1

2qR2

¯2
´ iπτ̄

2

´

m
R2
´ pn` 1

2qR2

¯2


1

2
Z

„

1

1



“ Trgrg q
L0´c{24q̄L̄0´c̄{24s “

ˇ

ˇ

ˇ

ˇ

η

θ3

ˇ

ˇ

ˇ

ˇ

1

ηη̄

ÿ

m,n

p´1qm exp

„

iπτ
2

´

m
R2
` pn` 1

2qR2

¯2
´ iπτ̄

2

´

m
R2
´ pn` 1

2qR2

¯2


it is clear that the sum of all these is modular invariant. I am unsure if I should try to simplify this further.
Certainly (unlike the freely-acting orbifold case) this doesn’t look trivial. This is the CFT of fields valued in
the Klein bottle.
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66. Take `s “ 1 here. The symmetry interchanges |m1, n1,m2, n2y Ñ |m2, n2,m1, n1y We have Z
“

0
0

‰

“ ZpRq2.
In the g-trace, we will need m1 “ m2, n1 “ n2. Then, excitations around this state must have equal mode
number in m1,m2 and n1, n2 to contribute to the g-trace so for each factor of q

1
2
P 2
L q̄

1
2
P 2
R we have

Z

„

0

1



“ pqq̄q´2{24
ÿ

m,n

exp

„

iπ 2τ

2

`

m
R ` nR

˘2
´
iπ 2τ̄

2

`

m
R ´ nR

˘2


ź

n1

1

1´ q2n1

ź

m1

1

1´ q̄2m1

“
1

|ηp2τq|2

ÿ

m,n

exp
”

iπτ
`

m
R ` nR

˘2
´ iπτ̄

`

m
R ´ nR

˘2
ı

“
2

|ηpτq||θ
“

1
0

‰

pτq|

ÿ

. . .

On the other hand, the twisted sector we have boundary conditions X1pσ`2πq “ X2pσq, X2pσ`2πq “ X1pσq.
Applying τ Ñ ´1{τ on the preceding we get:

Z

„

1

0



“
1

|ηpτq||θ
“

0
1

‰

pτq|

ÿ

m,n

exp

„

iπτ

4

`

m
R ` nR

˘2
´
iπτ̄

4

`

m
R ´ nR

˘2


Taking τ Ñ τ ` 1 gives

Z

„

1

1



“
1

|ηpτq||θ
“

0
0

‰

pτq|

ÿ

m,n

p´1qmn exp

„

iπτ

4

`

m
R ` nR

˘2
´
iπτ̄

4

`

m
R ´ nR

˘2


.

Let us check if this is modular invariant. Clearly Z
“

0
0

‰

maps to itself under both S and T . Under T ,

Z
“

0
1

‰

maps to itself, and Z
“

1
0

‰

and Z
“

1
1

‰

get exchanged by the properties of theta functions. Further, under

τ Ñ ´1{τ Z
“

1
0

‰

and Z
“

0
1

‰

map to one another. However, Z
“

1
1

‰

does not map to itself under S, and we are led
to conclude that this Z2 symmetry is anomalous.

67. If we orbifold the single free scalar by acting as |m,ny Ñ p´1qm`n |m,ny we have Z
“

0
0

‰

“ ZpRq as before,
but now:

Z

„

0

1



“
ÿ

m,n

p´1qm`n exp
”

iπτ
2

`

m
R ` nR

˘2
´ iπτ̄

2

`

m
R ´ nR

˘2
ı

Taking τ Ñ ´1{τ gives that both m and n shift by 1{2

Z

„

1

0



“
ÿ

m,n

exp

«

iπτ
2

ˆ

m´
1
2

R ` pn´ 1
2qR

˙2

´ iπτ̄
2

ˆ

m´
1
2

R ´ pn´ 1
2qR

˙2
ff

Then doing τ Ñ τ ` 1 gives:

Z

„

1

1



“
ÿ

m,n

p´1qm`n`
1
2 exp

„

iπτ
2

´

m´ 1
2

R ` pn´ 1
2qR

¯2

´ iπτ̄
2

´

m´ 1
2

R ´ pn´ 1
2qR

¯2


this already looks a little weird. Out front we don’t necessarily have a ˘1. Further, doing τ Ñ τ ` 1 again
does not get us back to Z

“

1
0

‰

, we need τ Ñ τ ` 3.

68. In the untwisted sector we have our vacuum state |0y, with ∆ “ ∆̄ “ 0 as required. Now consider the
kth twisted sector. We have creation and annihilation operators αn`k{N satisfying the same commutation
relations rαr, αss “ rδr`s. However as X is a complex boson, the αr are complex numbers and so we have
two sets of them (which we can call αr, ᾱr following previous convention). From commuting them across,
we get:

xXpzqBXpwqy “ 2ˆ
1

w

8
ÿ

r“minp1,k{Nq

´w

z

¯r
“ 2ˆ

w
z

`

z
w

˘k{L

z ´ w

Then, differentiating with respect to z gives:

xBXpzqBXpwqy “ ´
2

pw ´ zq2

´w

z

¯k{N
p1´ k

Lp1´
z
w qq
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Taking the finite part of this ´1
2 of expression as w Ñ z gives us:

xT y “
kpL´ kq

2L2

as required.

69. We have the scalar propagator written in terms of the eigen-modes as:

xXpzqXp0qy “ ´
`2s
2

ÿ

m,n

1 1

|m` nτ |2
e2πipmσ1`nσ2q

Rather than trying to massage this into our appropriate logarithm of theta functions, let’s appreciate what
properties we want our correlator to have. For z Ñ 0, the small-distance behavior of the correlator should
reproduce the CP1 result, so we namely need it to go as:

´
`2s
2

log |z|2 `Opzq

Further, the only singularity on the torus is at z Ñ 0, nowhere else. Thus we should be able to write our
correlator as

´
`2s
2

logGpz, z̄q

where G must be a doubly-periodic harmonic function with a single zero at z “ 0 on the torus and no
poles. There are no such holomorphic functions since all non-constant elliptic functions need to have an
equal number of zeros and poles (and also more than one zero, since the coefficients of all zeros must sum
to 0). In other words, instead of looking at an elliptic function we should be looking at a section of a line
bundle over the torus with a single zero.

We see that the theta functions give us exactly this- and moreover rational functions of the theta functions
generate all such sections. The constraint of a single zero at z “ 0 together with modular invariance singles
out θ

“

1
1

‰

uniquely. To give it the appropriate coefficient of the zero, we must have:

Gpzq “

ˇ

ˇ

ˇ

ˇ

ˇ

θ
“

1
1

‰

pz, τq

Bzθ
“

1
1

‰

p0, τq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ˆ p1`Opzqq

The problem is that this is a quasi-periodic foundtion in z. Under z Ñ z ` τ we get that logG Ñ logG `

2πτ2 ` 4πImpzq. This can be remedied by adding e
´2π

z22
τ2 to G.

Also, under τ Ñ 1{τ , z Ñ z{τ from the ratio we pick up a factor of | exppiπz2{τq|2 “ e´2πImpz2{τq. But this

is exactly the same factor as is picked up by e
´2π Imz2

τ2 , so adding this term fixes modular invariance as well.
Our final result is then:

Gpzq “

ˇ

ˇ

ˇ

ˇ

ˇ

θ
“

1
1

‰

pz, τq

Bzθ
“

1
1

‰

p0, τq

ˇ

ˇ

ˇ

ˇ

ˇ

2

e
´2π pImzq

2

τ2 .

So we now have an explicit formula for ∆pz ´ w, τq on the torus. The Klein bottle is given by identifying
z – ´z̄ ` τ{2. Then we expect the propagator to be

∆K2pz ´ wq “ ∆pz ´ w, 2itq `∆pz ` w̄ ` it, 2itq

Next, for the cylinder we have the involution z – ´1{z̄ so we have the propagator:

∆C2pz ´ wq “ ∆pz ´ w, itq `∆pz ` w̄, itq

Finally, for the Möbius strip, we have two involutions and get

∆M2pz ´ wq “ ∆pz ´ w, 2itq `∆pz ` w̄, 2itq `∆pz ´ w ´ 2πpit` 1
2q, 2itq `∆pz ` w̄ ` 2πp´it` 1

2q, 2itq
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70. We already know how to calculate TrNS{Rpp˘1qF qL
cyl
0 q for the free fermion. Ω acts by sending a left-moving

state to a right-moving one and vice-versa. Only states that are left-right symmetric survive. First lets do
the NS sector. There is a single vacuum and we get:

TrNSrΩe
´2πtpL0`L̄0´c{12qs “ e2πt{24

8
ź

n“1

p1` e´2πtˆ2pn´1{2qq “

d

θ3p2itq

ηp2itq

TrNSrΩp´1qF e´2πtpL0`L̄0´c{12qs “ e2πt{24
8
ź

n“1

p1` e´2πtˆ2pn´1{2qq “

d

θ3p2itq

ηp2itq

Note that these two are the same, since only sectors with an equal number of left movers and right-movers
contribute, and this necessarily forces F to be even. Then, for the Ramond sector we have

TrRrΩe
´2πtpL0`L̄0´c{12qs “

?
2e´2πtp1{16´1{48q

8
ź

n“1

p1` e´2πtˆ2nq “

d

θ2p2itq

ηp2itq

TrRrΩp´1qF qL0´c{24q̄L̄0´c̄{24s “ 0

where the last one is zero as before, since for any state, there is a corresponding one with opposite p´1qF

eigenvalue, related by zero-modes.
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Chapter 5: Scattering Amplitudes and Vertex Operators

0. A worthwhile exercise (that is not in the book) is to show that we have the correct Regge behavior of
the Virasoro-Shapiro amplitude at large s, fixed t. From Stirling’s approximation for large s, we have
Γpa`sq
Γpb`sq „ sa´b, so:

S4ps, t, uq „
Γp´1´ `2st{4qΓp´1´ `2ss{4qΓp3` `

2
st{4` `

2
ss{4q

Γp2` `2st{4qΓp2` `2ss{4qΓp´2´ `2st{4´ `
2
ss{4q

„
Γp´1´ `2st{4q

Γp2` `2st{4q
s1``2st{4

Γp´1´ `2ss{4q

Γp´2´ `2st{4´ `
2
ss{4q

“
Γp´1´ `2st{4q

Γp2` `2st{4q
s1``2st{4

Γp3` `2st{4` `
2
ss{4q

Γp2` `2ss{4q

sinp`2sps` tq{4q

sinp`2ss{4q

Ñ
Γp´1´ `2st{4q

Γp2` `2st{4q

sinp`2su{4q

sinp`2ss{4q
s2``2st{2

Using the same argument, in the large s, t, u limit, we get the following soft behavior:

S4ps, t, uq „
s´1´`2ss{4t´1´`2st{4u´1´`2su{4

s2``2ss{4t2``2st{4u2``2su{4
„ e´

`2s
2
pps`3q log s`pt`3q log t`pu`3q log uq Ñ e´

`2s
2
ps log s`t log t`u log uq

1. Note that we need 3 more c ghosts than b ghosts since the difference of the zero modes must be three.
Now, c has scaling dimension 1 and b has scaling dimension ´2 so the total scaling of the correlator
x
śn`3
i“1 cpziq

śn
j“1 bpwjqy will be 3´n. Thus, viewed in the complex plane, we expect it to be a homogenous

rational function of degree exactly 3´ n.

We will have n contractions of the bs and cs with 3 cs left over. This gives:

x

n`3
ź

i“1

cpziq
n
ź

j“1

bpwjqy “
pzn`1 ´ zn`2qpzn`1 ´ zn`3qpzn`2 ´ zn`3q

pz1 ´ w1q . . . pzn ´ wnq
ˆ c.c.` perms.

where each permutations will pick up a sign for every odd combined permutation of the zi, wj . Another way
to do it is as follows:

As stated before, the correlator when viewed in the complex plane will be a homogenous rational function of
degree exactly 3´n. That way, it will be finite at infinity. We also know that this function is antisymmetric
upon swapping any of the zi, any of the wi, or any of the zi with the wi. Further, if any of the zi “ zj or
wi “ wj , this function will vanish. On the other hand, if zi “ wj , we expect a contribution of a pole 1

zi´wj
.

There is only one such homogenous rational function:

śn`3
iăj pzi ´ zjq

śn
iăjpwi ´ wjq

śn`3
i“1

śn
j“1pzi ´ wjq

.

This is indeed of degree 3´ n, as desired.

2. It is clear from plugging things in that when z1 Ñ 0, z2 Ñ 1, z3 Ñ8, the 4-point tachyon amplitude becomes:

lim
z3Ñ8

8πi

`2s
g2
c �δ

26pΣpq|z3|
2|z3 ´ 1|2

ż

d2z4|z4|
`2sp1¨p4 |1´ z4|

`2sp2¨p4 |z4 ´ z3|
`2sp3¨p41`

2
sp1¨p2 |z3|

`2sp1¨p3 |z3 ´ 1|`
2
sp2¨p3

here �δ “ 2πδ. Note all the terms that go to infinity cancel, since `2sp3 ¨ pp1 ` p2 ` p3q “ ´`
2
sp

2
3 “ ´4 which

cancels with the two powers of two outside the integral. Next, `2sp1 ¨ p4 “
1
2pp1 ` p4q

2 ´ 1
2p`

2
sp

2
1 ´ `2sp

2
4q “

´`2st{2´ 4 etc so we get:
8πi

`2s
g2
c �δ

26pΣpq

ż

d2z4|z4|
´`2st{2´4|1´ z4|

´`2su{2´4

as required.
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3. For a conformal transformation we have |x1ij |
2 “ ΩpxiqΩpxjq|xij |

2 where Ωpxiq is the local scale factor

det Bx1{Bx evaluated at xi. Then, the N -point tachyon amplitude will pick up Ωpx1q
2Ωpx2q

2Ωpx3q
2 from the

three terms outside of the integral. The terms inside the integral can be written as:

ź

iăj

p|zij |
2q`

2
spi¨pj{2

so zi in this term will pick up a power of
ř

j‰i `
2
spi ¨ pj{2 “ ´`

2
sp

2
j{2 “ ´2 on its scale factor. This exactly

cancels for z1, z2, z3. For the other zi, we note that d2zi will pick up the factor Ωpziq
2 upon transformation.

Another way to do this is directly from noting that each
ş

d2ziVpipzi, z̄iq for i ą 3 is invariant under conformal
transformation, and cpziqc̄pz̄iqVpipzi, z̄iq has scaling dimension zero, so transforms trivially under SL2pCq
transformations.

4. Note that the three-point tachyon amplitude is very simple and independent of momenta aside from a delta
function: Spk1, k2, k3q “

8πi
`2s
gc�δ

26pΣkq.

Let’s now consider the limit of a nearly on-shell particle of momenta k. From elementary field theory we get:

Spk1, k2, k3, kq4q „ i

ż

d26k

p2πq26

SS2pk1, k2, kqSS2p´k, k3, k4q

´k2 ` 4{`2s ` iε
“ i

ˆ

8πi

`2s

˙2

g2
c �δ

26pΣkiq
1

s` 4`2s ` iε

This has a pole when ´pk1 ` k2q
2 “ s “ ´4{`2s. We see that (ignoring the �δ term) this gives a residue of

´i64π2

`4s
g2
c

On the other hand we have from 5.2.5 a residue of:

8πi

`2s
g2
c ˆ 2π ˆ´

4

`2s
“ ´i

64π2

`2s
g2
c

exactly consistent with unitarity. Note we needed every constant to be as it was so that we could get such
agreement.

5. The massless state corresponds to ζµνBX
µBXνeip¨X . We don’t have to integrate.

Let’s calculate the correlator

xBXpz1qB̄Xpz1qe
ik1Xpz1q eik2Xpz2q eik3Xpz3qy “ iCXS2�δ

26pΣpq
ź

iăj

|zij |
α1ki¨kj

´

´
i`2s
2

¯´

k2
z12
` k3

z13

¯ ´

´
i`2s
2

¯´

k2
z̄12
` k3

z̄13

¯
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with the ghost correlator this gives:

iCXS2C
gh
S2

´`4s
4 �δ

26pΣpq
ź

iăj

|zij |
α1ki¨kj`2

´

k2
z12
` k3

z13

¯´

k2
z̄12
` k3

z̄13

¯

Now k2
1 “ 0 “ k1 ¨ k2 ` k1 ¨ k3. On the other hand ´4{`2s “ ´k

2
2 “ k2 ¨ k3 ` k1 ¨ k2 “ ´k

2
3 “ k2 ¨ k3 ` k1 ¨ k3.

Solving this gives k1 ¨ k2 “ k1 ¨ k3 “ 0 while k2 ¨ k3 “ ´4{`2s. Then, taking z1 Ñ 0, z2 Ñ 1, z3 Ñ8 gives:

´i
`2s
4
CXS2C

gh
S2�δ

26pΣpqζµνk
µ
2k

ν
2

Further, we have that ζµνk
µ
1 “ ζµνpk2 ` k3q

µ “ 0 so we can rewrite this symmetrically as

´i
`4s
16

CXS2C
gh
S2

looomooon

:“8πg1c{`
2
s

�δ
26pΣpqζµνk

µ
23k

ν
23 “ ´

iπ`2s
2
g1c�δ

26pΣpqζµνk
µ
23k

ν
23.

The overall constants can be determined from unitarity. The pole of the Veneziano amplitude at s “ 0 has
residue (using that s “ 0, s` t` u “ ´16{`2s) that is a delta function times:

8πi

`2s
g2
c ˆ 2π ˆ

4

`2ss

Γp´1´ `2st{4qΓp3` `
2
st{4q

Γp´2´ `2st{4qΓp2` `
2
st{4q

“ ´i
p4πq2

`2s
g2
c ˆ

4

`2ss

p
`2s
8
pt´uqq2

hkkkkkkikkkkkkj

p2` `2st{4q
2 “ ´iπ2g2

c

pt´ uq2

s
(55)

On the other hand, factorization of this into amplitudes with massless states yields a delta function times:

iC2
3pt

ÿ

ζ

ζµνζσρk
µ
12k

ν
12k

σ
34k

ρ
34 ˆ

1

pk1 ` k2q
2 ` iε

“ iC2
3ptpk12 ¨ k34q

2 ˆ
1

s
“ iC2

3pt

pu´ tq2

s
(56)

where we have used that, just as the sum over intermediate photon polarizations εµε
˚
ν can be replaced by just

ηµν , the sum over intermediate polarizations ζµνζρσ be replaced by 1
2pηµρηνσ`ηµσηνρq. Comparing equations

(55) and (56) We the get C3pt “ ´πigc. Equivalently, g1c “ 2gc{`
2
s.

6. This problem is so nasty - I’m pretty sure Kiritsis meant for us to just look at scattering 4 open string states
- which in and of itself is nasty enough.

We have already determined the normalization in the previous question. It is also simple to check that it
is correct to attach g1c to each vertex operator in the 3-point and 4-point functions by considering first the
2 tachyon Ñ 2 massless state scattering in the t and u channels, which relates the 3-point scatterings of
tachyons and massless states to one another, and then use the 2 Ñ 2 tachyon to tachyon scattering to express
its normalization in terms of the 3-point tachyon amplitude. All of this equates to taking g1c “ 2gc{`

2
s.

As a warm-up lets do the three-point massless amplitude. We compute the correlator

x: BXαpz1qe
ipiXpz1q : : BXβpz2qe

ipiXpz2q : : BXγpz3qe
ipiXpz3q : ˆc.c.y

In the holomorphic part, there are two types of contribution: One where each BX contracts with an exponen-
tial and one where two of the BX contract with one another and the last one contracts with an exponential.
Further, we see that pi ¨ pj “ 0, so the

ś

iăj |zij |
`2spi¨pj is unity. The first contribution gives:

i

ˆ

`2s
2

˙3 ˆ
kα2
z12

`
kα3
z13

˙ˆ

kα1
z21

`
kα3
z23

˙ˆ

kα1
z31

`
kα2
z32

˙

Ñ i

ˆ

`2s
2

˙3
1

22
pk1 ´ k2q

γpk2 ´ k3q
αpk3 ´ k1q

β

The second contribution gives

i

ˆ

`2s
2

˙2
«

ηαβ

z2
12

ˆ

kγ1
z31

`
kγ2
z32

˙

`
ηβγ

z2
23

ˆ

kα2
z12

`
kα3
z13

˙

`
ηαγ

z2
13

˜

kβ1
z21

`
kβ3
z23

¸ff
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Multiplying this by the c contribution z12z23z13 ˆ c.c. and setting z1 “ 0, z2 “ 1, z3 “ 8 we get the 3-point
amplitude:

πigc ζ1,αᾱζ2,ββ̄ζ3,γγ̄T
αβγT ᾱβ̄γ̄ , Tαβγ “ ηαβkγ12 ` η

βγkα23 ` η
αγkβ31 `

`2s
8
kγ12k

α
23k

β
31. (57)

Now let’s do the four-point amplitude. First, I will work with the open string (no CP indices, so Up1q gauge
symmetry) and use some tricks at the end to get the closed string amplitude. For the open string, there are
six possible orderings of the y1, y2, y3, y4. In three of these cases we can send y1 Ñ 0, y2 Ñ 1, y3 Ñ 8 and
vary y4. In the other three, cases we switch y2 and y3. This amounts to swapping sØ t. HOWEVER for
Polchinski’s trick, I only need to consider one of these six. WLOG I set y4 to be between y1, y2 in 0, 1. I’ll
also absorb `2s in the definition of s, t, u. So we have,

ź

iăj

|yij |
2ki¨kj Ñ |y|´u|1´ y|´t Ø |y|´u|1´ y|´s

We now get three types of contributions: If all the BXα contract with each other (3 terms), if two of the
BXα contract with each other (6 terms) and the remaining two contract with one of the eiki¨X , or if they all
contract with the eiki¨X (1 term).

In the first case we get:

`

´2`2s
˘2

ˆ

1

y2
12y

2
34

`
1

y2
13y

2
24

`
1

y2
14y

2
23

˙

Ñ
`

2`2s
˘2

ˆ

ηαβηγδ `
ηαγηβδ

p1´ yq2
`
ηαδηβγ

y2

˙

Integrating y from 0 to 1 gives

ig2
o�δ

26

4`4s
ˆ p2`2sq

2

ˆ

Γp1´ tqΓp1´ uq

Γp2` sq
`

Γp1´ tqΓp´1´ uq

Γpsq
`

Γp´1´ tqΓp1´ uq

Γpsq

˙

(58)

Now the annoying one1. Define Ki “
ř

j‰i
kj
yij

. Note:

K1 “ ´k
α
2 ´

kα3
y
, K2 “ kβ1 `

kβ4
1´ y

, K3 Ñ ´p1` yqkγ1 ´ yk
γ
2 ´ k

γ
4 , K4 “

kδ1
y
`

kδ2
y ´ 1

.

We can now write the pα1q3 contribution as ig2
o�δ

26

4`4s
p2`2sq

3 times:

ˆ

K3K4

y2
12

ηαβ `
K1K2

y2
34

ηγδ `
K1K4

y2
23

ηβγ `
K2K3

y2
14

ηαδ `
K2K4

y2
13

ηαγ `
K1K3

y2
24

ηβδ
˙

Ñ

”

´ pp1` yqkγ1 ` yk
γ
2 ` k

γ
4 qp

kδ1
y `

kδ2
y´1qη

αβ ´ pkα2 `
kα4
y qpk

β
1 `

kβ4
1´y qη

γδ ´ pkα2 `
kα4
y qp

kδ1
y `

kδ2
y´1qη

βγ

´ pkβ1 `
kβ4

1´y qpp1` yqk
γ
1 ` yk

γ
2 ` k

γ
4 q

ηαδ

y2 ` pk
β
1 `

kβ4
1´y qp

kδ1
y `

kδ2
y´1qη

αγ ` pkα2 `
kα4
y qpp1` yqk

γ
1 ` yk

γ
2 ` k

γ
4 q

ηβδ

p1´yq2

ı

Now we use shorthand ki`j “ ki ` kj . Looking at the first of the six terms above, we get the order pα1q3

to our scattering amplitude to be ig2
o�δ

26

4`6s
p2`2sq

3 multiplying:

´ ηαβ
ż 1

0
dy

´

kδ1ry
´1kγ1`4 ` k

γ
1`2s ` k

δ
2rpy ´ 1q´1kγ1`4 ` ypy ´ 1q´1kγ1`2s

¯

|y|´u|1´ y|´t

“ ηαβ
ˆ

kδ1k
γ
1`4

Γp1´ tqΓp´uq

Γp1` sq
` kδ1k

γ
1`2

Γp1´ tqΓp1´ uq

Γp2` sq
´ kδ2k

γ
1`4

Γp´tqΓp1´ uq

Γp1` sq
´ kδ2k

γ
1`2

Γp´tqΓp´uq

Γpsq

˙

` 5 perms.

(59)

1Wasted all of 1/17/20 on this. Not worth it
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Now for the order pα1q4 term. This is given by contracting each BX against an exponential, yielding

Kα
1 K

β
2K

γ
3K

δ
4 . Again we have y in r0, 1s

ipg1oq
4CD2�δ

26 p2`2sq
4

ż 1

0
dy

ˆ

kα2 `
kα4
y

˙

˜

kβ1 `
kβ4

1´ y

¸

´

kγ1`4 ` yk
γ
1`2

¯

ˆ

kδ1
y
`

kδ2
y ´ 1

˙

y´up1´ yq´t

This gives a 24 “ 16 terms. Its not terrible. The pα1q4 term is ig2
o�δ

26

4`6s
p2`2sq

4 times:

kα2 k
β
1 k

γ
1`4k

δ
1Bp´u, 1´ tq ` k

α
2 k

β
1 k

γ
1`4k

δ
2Bp1´ u,´tq ` k

α
2 k

β
1 k

γ
1`2k

δ
1Bp1´ u, 1´ tq ` k

α
2 k

β
1 k

γ
1`2k

δ
2Bp2´ u,´tq

` kα2 k
β
4 k

γ
1`4k

δ
1Bp´u,´tq ` k

α
2 k

β
4 k

γ
1`4k

δ
2Bp1´ u,´1´ tq ` kα2 k

β
4 k

γ
1`2k

δ
1Bp1´ u,´tq ` k

α
2 k

β
4 k

γ
1`2k

δ
2Bp2´ u,´1´ tq

` kα4 k
β
1 k

γ
1`4k

δ
1Bp´1´ u, 1´ tq ` kα4 k

β
1 k

γ
1`4k

δ
2Bp´u,´tq ` k

α
4 k

β
1 k

γ
1`2k

δ
1Bp´u, 1´ tq ` k

α
4 k

β
1 k

γ
1`2k

δ
2Bp1´ u,´tq

` kα4 k
β
4 k

γ
1`4k

δ
1Bp´1´ u,´tq ` kα4 k

β
4 k

γ
1`4k

δ
2Bp´u,´1´ tq ` kα4 k

β
4 k

γ
1`2k

δ
1Bp´u,´tq ` k

α
4 k

β
4 k

γ
1`2k

δ
2Bp1´ u,´1´ tq

(60)

The open string amplitude is then given by summing equations (58), (59) and (60) and multiplying that

result by ig2
o�δ

26

4`6s
. Call this Aαβγδo ps, t, u, `s, goq. Using Polchinski 6.6.23 we can write the closed string

amplitude as:

Acps, t, u, `s, gcq “ ζ1,αᾱζ2,ββ̄ζ3,γγ̄ζ4,δδ̄

πig2
c `

2
s

g4
o

g4
o sinpπ`2stqA

αβγδ
o ps, t, u, `s{2, goqrA

ᾱβ̄γ̄δ̄
o pt, u, s, `s{2, goqs

˚

where ζ are our 242 closed string polarization vectors.

If we had not determined the relationship between g1c and gc from the prior problem, we could have determined
it by using the KLT relation of the above formula from Polchsinski and specialized to relating g1o and go.
Then, we would only have needed to look at the (nice) leading order pα1q2 term in this calculation and
observed the pole structure at s “ 0 corresponding to massless exchange. Making this agree with the square
of the 3-point amplitude would then be sufficient. We illustrate the open string case with CP factors in
exercise 11

7. There are three types of propagators to consider: bulk-bulk, bulk-boundary, and boundary-boundary. Using
shorthand Xi “ Xpzi, z̄iq, XI “ XpwIq, from 4.7.9 we have:

x

m
ź

i“1

eipiXi
n
ź

I“1

eiqIXpwIqy “ �δ
26pΣp` Σqq exp

”

´
ÿ

iăj

pipj xXiXjy ´
1

2

ÿ

i,I

piqI xXiXIy ´
ÿ

IăJ

qIqJ xXIXJy

ı

Using the form of the propagators

xXiXjy “ ´
`2s
2
plog |zi ´ zj |

2 ` log |zi ´ z̄j |
2q

xXiXIy “ ´
`2s
2
plog |wI ´ zi|

2 ` log |wI ´ z̄i|
2q

xXIXJy “ ´`
2
s log |wI ´ wJ |

2

we get

�δ
26pΣp` Σqq

ź

i

|zi ´ z̄i|
`2sp

2
i {2

m
ź

iăj

|pzi ´ zjqpzi ´ z̄jq|
`2spi¨pj

ź

IăJ

|wI ´ wJ |
2`2sqIqJ

ź

I,i

|pwI ´ ziqpwI ´ z̄iq|
`2spi¨qI

Note an additional term which I believe Kiritsis dropped. The extension to RP2 is no more difficult. We

now have no boundary and the xXiXjy propagator is ´ `2s
2 plogpzi ´ zjq ` logp1` ziz̄jqq so we get:

�δ
26pΣp` Σqq

ź

i

|1` ziz̄i|
`2sp

2
i {2

ź

iăj

|pzi ´ zjqp1` ziz̄jq|
`2sp

2
i {2
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8. Forgetting c ghosts here, I can just integrate over all of H. The massless closed-string state of zero momentum
is given by BXpzqB̄Xpzq. Note that H “ PSL2pRq{SOp2q, so that:

´
`2sgc
2g2
o

1

VolpPSL2pRqq

ż

H
dz

1

|z ´ z̄|2
“ ´

`2s
8

1

VolpPSL2pRqq

ż

H

dxdy

y2
“ ´

`2s
8

VolpHq
VolpPSL2pRqq

“ ´
π`2s
2

Note that this answer is finite and invariant under conformal transformation. This gives an amplitude of
´πi

2 �δ
26p0q.

9. Let p1 be the momentum of the closed-string tachyon, and p2, p3 the the momenta of the open string tachyons.
We get 2p2 ¨ p3 “ p2

1 ´ p
2
2 ´ p

2
3 “ 2{`2s ñ p2 ¨ p3 “ 1{`2s, 2p1 ¨ p2 “ p2

3 ´ p
2
2 ´ p

2
1 “ ´4{`2s ñ p1 ¨ p2 “ ´2{`2s

I no longer have enough freedom to fix all three points. I can send one to 8 on the real line, and fix the
position of the closed string to be i P H. The remaining open string insertion can be anywhere on the real
line, so we must integrate over this. The ghost and vertex operator correlator gives:

pz1 ´ z̄1qpz1 ´ w3qpz̄1 ´ w3q |z1 ´ z̄1|
`2sp

2
1{2|z1 ´ w3|

2`2sp1¨p3

ż

R
dw2 |w2 ´ w3|

2`2sp2¨p3 |w2 ´ z1|
2`2sp1¨p2 �δpΣpq

Setting z1 “ i, w3 Ñ8 has momentum conservation and p2
3 “ 1{`2s, p

2
1 “ 4{`2s getting the w3 factors to drop

out. We are left with

2i 2`
2
sp

2
1{2

ż

R
dw pw2 ` 1q`

2
sp1¨p2 �δpΣpq “ 8i

?
π

Γp´1
2 ` 2q

Γp2q
�δpΣpq “ 4πi�δpΣpq

This gives a scattering amplitude of:

´
4πg2

o

`2s
�δ

26pΣpq.

10. The conformal Killing group is now SOp3q. Again, we can fix one operator to be at z “ 0, but the other one
can be at any value of |z| P r0, 1s (we have control over the phase). So we must integrate over the modulus.
We do this on the disk using the RP2 propagator. We insert one vertex operator at 0 and the other z. The
integral gives a delta function times:
ż 1

0
d|z2|cpz1qc̄pz̄1qcpz2qp1` |z1|

2q`
2
sp

2{2p1` |z2|
2q`

2
sp

2{2|pz1 ´ z2qp1` z1z̄2q|
´`2sp

2
Ñ

ż 1

0
rdr r´`

2
sp

2
p1` r2q`

2
sp

2{2

For the closed string tachyon, we have p2 “ 4{`2s. The integral is divergent, coming from the pz ´ wq´4

singularity as the two tachyons approach one another. If we had the milder pz ´ wq´1 singularity of the
open-string tachyon, this could be fixed. REVISIT

11. To simplify this problem, as Polchinski asks in his problem 6.9, I will look at the terms that contribute to the
e1 ¨ e2 e3 ¨ e4 amplitude, which comes from contracting BXαpy1qBX

βpy2q and BXβpy3qBX
δpy4q. There are six

possible orderings for the trace in the 4-point amplitude. We get ig1o
4

g2
o`

2
s
�δ26pΣpqˆ

`

2`2s
˘2

multiplying a sum of six

integrals. Using s :“ ´`2spp1` p2q
2 “ ´2p1 ¨ p2, t :“ ´`2spp1` p3q

2 “ ´2p1 ¨ p3, u :“ ´`2spp1` p4q
2 “ ´2p1 ¨ p4

and the shorthand r1234s for Trpλµ1λµ2λµ3λµ4q, we get:
„

r1234s

ż 0

´8

`r1423s

ż 1

0
`r1243s

ż 8

1



p|w|´u|1´ w|´tqdw

`

„

r1324s

ż 0

´8

`r1432s

ż 1

0
`r1342s

ż 8

1



p|w|´u|1´ w|´sqdw
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Note the second triplet of integrals swaps 2 with 3 so equivalently swaps s and t. We get the amplitude

ig2
o

2`2s
e1 ¨ e2 e3 ¨ e4�δ

26pΣpq
”

pr1234s ` r1432sqBp1´ u,´1´ sq

` pr1423s ` r1324sqBp1´ t, 1´ uq

` pr1243s ` r1342sqBp1´ t,´1´ sq
ı

Now in the s channel, the first and third Beta functions give us poles at s “ 0 with residues ´t and ´u “ t
respectively. This gives:

´
ig2
o

2`2s
�δ

26pΣpqe1 ¨ e2 e3 ¨ e4pr1234s ` r2143s ´ r1243s ´ r2134sq ˆ
t´ u

s
(61)

On the other hand, the 3-point vertex (again just the leading order of the two terms, compare with (57)) for
massless bosons comes from the correlator

ipg1oq
3

g2
o`

2
s

|w12w13w23| x: BX
µ1pw1qe

ik1Xpw1 :: BXµ2pw2qe
ik2Xpw2q :: BXµ3pw3qe

ik3Xpw3q :y

Ñ
ipg1oq

3

g2
o`

2
s

p´i2`2sqp´2`2sq

ˆ

pµ3
1

w2
12w13

`
pµ3

2

w2
12w23

` 2 perms.

˙

|w12|
2`2sp1¨p2´1|w13|

2`2sp1¨p3´1|w23|
2`2sp2¨p3´1

“ ´igo

?
2

`s
pηµ1µ2

1

2
pµ3

12 ` 2 perms.q

using g1o “ go{p
?

2`sq. Adding CP factors gives:

´
igo
?

2`s
pηµ1µ2pµ3

12 ` η
µ1µ3pµ2

13 ` η
µ2µ3pµ1

23 q pr123s ´ r321sq
loooooooomoooooooon

f123

We care about the e1 ¨ e2 e3 ¨ e4 term which means we only look at the p12 ¨ p34 “ t´ u contribution in the s
channel.

i

ż

d26k

p2πq26

Spk1, k2, kqSp´k, k3, k4q

´k2 ` iε
Ñ ´i

g2
o

2`2s
�δ

26pΣpq
t´ u

s
ˆ
ÿ

5

`

f125f534
˘

Lastly, note that the factors in equation (61) give Trpf12aλaf
34bλbq, and with suitable normalization, this

gives
ř

5 f
125f534, exactly as desired.

We thus see that the amplitude indeed factorizes, respecting the structure of the UpNq gauge group.

12. We have p2 `m2 “ 1
`2s
L0 for the open string.
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From 5.3.1 (and consequently 5.3.3) this gives:

i

2

V26

p4πq26

ż 8

0

dt

t13`1

transverse only
hkkkkkkikkkkkkj

Tr1re´2πtm2
s “

i

2

V26

p16π2`2sq
13

ż 8

0

dt

t13`1
Tr1re´2πtLcyl

0 s “
i

2

V26

p16π2`2sq
13

ż 8

0

dtN1N2ηpitq
2

t13`1ηpitq26

All together this gives:

iN1N2V26

ż 8

0

dt

2t

1

p8π2`2stq
13ηpitq24

as required.

13. We already know the form of our propagators on the torus from exercise 4.69. Take

Gpz, wq “

ˇ

ˇ

ˇ

ˇ

ˇ

θ
“

1
1

‰

pz ´ w, τq

Bzθ
“

1
1

‰

p0, τq

ˇ

ˇ

ˇ

ˇ

ˇ

2

e´2πpImzq2{τ2 .

This gives us
x
ź

i

: eikiXpzi,z̄iq :y “ iZT 2�δ
26pΣkq

ź

iăj

|Gpzi, zjq|
`2ski¨kj{2

where ZT 2 which is equal to the partition function of the torus Zpτq that we have also computed in the last
chapter. The amplitude is then:

i�δ
26pΣkq

gnc
p2π`sq26

ż

d2τ

τ2
2

1

τ12
2 |η|

48

n
ź

i“1

ż

dzi
ź

iăj

|Gpzi, zjq|
`2ski¨kj{2

14. We need to calculate the form of the propagators xXµpzqXνpwqy on the cylinder with NN boundary condi-
tions. Let’s use the image charge method. The finite cylinder can be thought of as the fundamental domain
of the quotient of the upper half plane by the action z Ñ λz for λ a real number corresponding to the
modulus of the cylinder. For X at z where 1 ă |z| ă λ we place images at each λnz in the upper half plane
as well as at λnz̄ on the lower half plane.

xXpzqXpwqy “ ´
`2s
2

ÿ

nPZ

´

log |λ´n{2z ´ λn{2w|2 ` log |λ´n{2z ´ λn{2w̄|2
¯

This gives
x
ź

i

: eipiX :y “ �δ
DpΣpq

ź

n

ź

iăj

|pλ´n{2zi ´ λ
n{2zjqpλ

´n{2zi ´ λ
n{2z̄jq|

`2spi¨pj

For open strings (operators inserted at the boundary) we must apply boundary normal ordering. We’ll get:

x
ź

i

‹
‹e
iqiX‹

‹y “ �δ
DpΣqq

ź

n

ź

IăJ

|pλ´n{2wI ´ λ
n{2wJq|

2`2sqI ¨qJ

Lastly, for the correlations between boundary and bulk operators we’ll get:

ź

n

ź

i,I

|λ´n{2wi ´ λ
n{2zi|

2`2spi¨qI

Taking the product of the above three equations (with only a single momentum-conserving delta function)
gives us the X correlator on the cylinder. The CKG here is simply the compact SOp2q so it is best to ignore
ghosts, integrate the insertions over the whole cylinder and divide at the end by the volume of the SOp2q
action: λ.

There is a cleaner way to do this. From exercise 4.69 we know the cylinder propagator can be written in
terms of the torus propagator as an involution:

∆C2pz ´ wq “ ∆pz ´ w, itq `∆pz ` w̄, itq
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Here ∆ “ ´
`2s
2 logGpz, z̄q from the problem above. This will then give us for m closed string and n open

string tachyons:

x
ź

i

:eipiXpziq :
ź

I

‹
‹e
iqIXpwIq‹

‹y “i�δ
DpΣp` Σqq

gmc g
n
o

p2π`sq26

ż 8

0

dt

2t

1

p2tq13ηpitq24

m
ź

i“1

ż

C
dzi

n
ź

I“1

ż

BC
dwI

ˆ
ź

iăj

rGpzi ´ zj ; τ “ itqGpzi ` z̄j ; τ “ itqs`
2
spi¨pj{2

n
ź

IăJ

GpwI ´ wJ ; τ “ itq`
2
sqI ¨qj

ˆ
ź

i,I

rGpwI ´ zi; τ “ itqGpwI ` z̄i; τ “ itqs`
2
spi¨qI{2

15. Here I assume Kiritsis meant εc “ 1, since equation 3.4.3 refers specifically to closed string ground states.
The open string constraint εo “ 1 comes from consistency of interactions stemming from the Jacobi identity
for Lie algebras. The one-loop contribution for the unoriented closed string comes from the cylinder + Klein
bottle + Möbius strip amplitude. As before, the only nonzero contributions come from states with an equal
number of left and right movers. All that this gives is an overall factor of εc in this amplitude:

ZK2 :“
1

2
TrrΩe´2πtpL0`L̄0´c{12qs “

iV26

2

ż

d26p

p2πq26
εc
e´π`

2
stp

2

ηp2itq24
ñ ΛK2 “ i

V26εc
p2π`sq26

ż 8

0

dt

4t1`13ηp2itq24

And working in the transverse channel t “ π{2` gives massless contribution:

εc2
26 ˆ 24i

V26

4πp2
?

2π`sq26

ż 8

0
d`

Similarly, the Möbius strip amplitude is given by

ZM2 “
1

2
TrorΩe

´2πtpL0´c{24qs “
iV26

2

ż

d26p

p2πq13

ζNe2πt`2sp
2

pηp2itqθ3p2itqq12
ñ ΛM2 “ i

V26ζN

p2π`sq26

ż 8

0

dt

2p2tq1`13pθp2itqηp2itqq12

In the transverse channel with 2t “ π{2` now:

´ζN21`13 ˆ 24i
V26

4πp2
?

2π`sq26

ż 8

0
d`

This gives a tadpole cancelation condition of:

εc2
26 ´ 214ζN `N2 “ 0

We have N is a positive integer. Further, we have that ζ is a sign. If ζ “ ´1 then ε must be negative, and
so by unitarity it is ´1, but there are no integer solutions N to 226 “ 214N `N2. Thus we need ζ “ 1 and
consequently ε “ ´1, N “ 213.
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Chapter 6: Strings in Background Fields

Note this chapter is specific to closed oriented strings. As such, we will not consider the effects of the boundary.

0. This is not a required problem but it certainly should be 2. Let’s calculate the β-functions of the nonlinear
sigma model. Here, I will borrow diagrams from the very nice set of TASI lecture notes of Callan and
Thorlacius

First, it is worth using a normal coordinate system for the Xµ (one in which all of the Γ symbols vanish
and all higher symmetrized Γ symbols also vanish). We want to look at radiative corrections to xT``y, since
they have integrals that are easier to handle than those for xT`´y. From conservation this will give us the
trace anomaly for xT`´y. We will first look at how G, B affect the trace on a flat worldsheet.

For the graviton contribution to βG, we have only only one diagram

This contributes an anomalous trace of

xT`´y “
1

4
Rµν BaX

µ
0 B

aXν
0

For the B contribution to βB, we have two such diagrams:

These contribute anomalous traces of:

´
1

16
HµρσHνρσ BaX

µ
0 B

aXν
0 ,

1

8
∇λHµνλε

abBaX
µ
0 BbX

ν
0

respectively.

The dilaton contribution also affects the trace on the flat world sheet (even though it does not couple at
R “ 0), by affecting the stress energy tensor as it is defined by varying the action w.r.t. the metric. Kiritsis
has worked this out before and shown that the dilaton contributes pBaBb´gablqΦ to the stress energy tensor,
from which we get a dilaton contribution of lξΦpXpξqq to the trace. Using covariant expressions for the
D’alambertian we arrive at a contribution

∇µ∇νΦpX0q BaX
µ
0 B

aXν
0 ´

1

2
∇λΦpX0qHµνλpX0qBaX0BbX0ε

ab

Combining all of this together, we see that we will get the β-functions:

βG “ Rµν ´
1

4
HµρσH

ρσ
ν ` 4∇µ∇νΦ, βB “ ´

1

2
∇λHλµν ´ 2∇λΦHλµν .

As pointed out, these are not quite that RG beta functions (for example compare βB to the correct form
in Kiritsis), but around the fixed point, they capture the correct first order behavior. In particular their
vanishing will mean that we have no Weyl anomaly.

2After seeing the details of this calculation, I can understand why it was omitted.
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Now we need to account for the effects of a curved worldsheet geometry. We can account for this by looking
at a xT`´T`´y correlator:

δ

δφpξq
xT`´p0qyeφδab “ ´

1

4π
xT`´pξqT`´p0qyδab (62)

Again we can get this by first looking at xT``T``y and appealing to conservation. The Weyl anomaly comes
from this diagram:

This gives xT`´T`´y “
πD
12 lδp2qpξq. Here we have a factor of D coming from each degree of freedom. This

can be used to integrate equation (62) to yield:

xT`´y “ ´
D

48
lφ “

D

24

?
γ R

Note that the ghosts (which are otherwise decoupled) will here contribute their factor of ´26.

We also now need to consider two-loop contributions of G,B to the TT correlator. The following diagrams
contribute:

The calculations here are very involved, but will precisely give us

α

8
p´R`

H2

12
q

Finally, the dilaton both modifies the energy-momentum tensor, giving rise to a tree-level propagator con-
tribution to the two-point function:

This contributes xT dil`´T
dil
`´y “ πα1p∇Φq2lδp2qpξq which will integrate to give a factor of α1

2 p∇Φq2
?
γR.

Also, the dilaton gives a loop-contribution to the unmodified energy-momentum tensor:
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Which contributes the term xT dil`´T
dil
`´y “ ´πα

1lΦlδp2qpξq which will integrate to give a factor of´α1

2 lΦ
?
γR.

Altogether this gives:

βΦ “ D ´ 26`
3

2
α1

„

4p∇Φq2 ´ 4lΦ´R`
1

12
H2



.

as required.

1. Each β-function of a coupling constant G,B,Φ as given in 6.1.5, 6.1.6, 6.1.7 is δ
δφ of that coupling constant,

since our scaling µ “ eφ ñ logµ “ φ. Since

T aa “
βΦ

12
Rp2q `

1

2`2s
pβGµνg

αβ ` βBµνε
αβqBαXBβX

The change in effective action under an infinitesimal Weyl transformation δgαβ “ ´gαβδφ is

δ logZ “ ´δS “
1

4π

ż

d2ξ
?
gT aa δφ “

1

4π

ż

d2ξ

„

βΦ

12

?
gRp2q `

1

2`2s

´

βGµν
?
g gab ` βBµνε

ab
¯

BaXBbX



δφ

We can integrate this to get the change after a finite conformal transformation:

1

4π

ż

d2ξ

„

?
gβΦ

ˆ

Rp2qφ´
1

2
gab∇aφ∇bφ

˙

`
φ

2`2s

´

βGµν ` β
B
µνε

ab
¯

BaXBbX



this vanishes, of course, when all beta functions are zero. When βG, βB are zero we can show (exercise 3)
that βΦ is a constant, and we recover the Liouville action from before.

2. First write G explicitly in the action:

S “
1

2κ2

ż

dDx
?
´detGe´2Φ

„

R` 4Gαβ∇αΦ∇βΦ´
1

12
GαδGβεGγζHαβγHδεζ ` 2

26´D

3`2s



The classical equations of motion from varying the action with respect to G give

0 “

R variation
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

Rµν ` 2∇µ∇νΦ´���
���4∇µΦ∇νΦ´ 2GµνlΦ` 4Gµνp∇Φq2`

p∇Φq2 variation
hkkkkkikkkkkj

���
���4∇µΦ∇νΦ

´
1

4
HµρσH

ρσ
ν

loooooomoooooon

H2 variation

´
1

2
Gµν

ˆ

R` 4p∇Φq2 ´
1

12
H2 `

2

3`2s
p26´Dq

˙

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

?
´detG variation

“ Rµν ` 2∇µ∇νΦ´
1

4
HµρσH

ρσ
ν

loooooooooooooooooomoooooooooooooooooon

:“βGµν

´
1

2
Gµν

ˆ

R´ 4p∇Φq2 ` 4lΦ´
1

12
H2 ` 2

26´D

3`2s

˙

(63)

With respect to B we get:

´
1

12
e´2Φp2pδBµν pBαBβγ ` 2 perms.qqHαβγq

IBP
hkkikkj

Ñ
2ˆ 3

12
e´2Φp∇αHαµνq

IBP
hkkikkj

Ñ ´
1

4
∇αpe´2ΦHαµνq

loooooooooomoooooooooon

:“βBµν

“ 0

Finally, with respect to Φ we get:

0 “ ´2

ˆ

R` 4p∇Φq2 ´
1

12
H2 ` 2

26´D

3`2s

˙

´8lΦ´16p∇Φq2 “ ´2

ˆ

R´ 4p∇Φq2 ` 4lΦ´
1

12
H2 ` 2

26´D

3`2s

˙

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

:“´ 2
3
βΦ

The term in parentheses is the same as the term in parentheses the bottom line of (63). This agrees with
Polchinski 3.7.21 (with appropriate conventions adopted)

δS “ ´
1

2κ2

ż

dDx
?
´detGe´2Φ

„

δGµν
ˆ

βGµν ´
1

2
Gµν

2

3
βΦ

˙

` δBµνβBµν ` 2δΦ
2

3
βΦ


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3. Let’s look at 2
3`2s
∇βΦ. We get:

8∇νΦ∇µ∇νΦ´ 4l∇µΦ´∇µR`
1

6
p∇µHαβγqH

αβγ

The contracted Bianchi identity ∇µR “ 2∇νRνµ together with the vanishing of βGµν gives:

∇µR “ 2∇νRµν “
1

2
∇νpHµρσH

ρσ
ν q ´ 4l∇µΦ

which in turn gives

8∇νΦ∇µ∇νΦ´
1

2
∇νpHµρσH

ρσ
ν q `

1

6
p∇µHαβγqH

αβγ

The fact that H is exact gives us dH “ 0 so BrαHβγδs “ 0. The symmetry properties of H imply that
summing over the four cyclic permutations of this gives zero. Contracting with the metric then implies a
contracted Bianchi-type identity for H, namely that ∇αHαβγ “ 0.

Using βB “ 0 together with the Bianchi identity, we have 0 “ ∇ρHµνρ “ 2∇ρΦHµνρ. So we have that H is
divergence-free, and ∇ρΦ dotted with any component of H is zero. This lets us rewrite:

´
1

2
∇νpHµρσH

ρσ
ν q “ ´

1

2
Hνρσ∇νHµρσ

1

6
∇µpHαβγqH

αβγ “ ´
1

6
Hαβγ p∇αHβγµ ´∇βHγαµ `∇γHαβµq “ ´

1

6
Hνρσ∇νHµρσ

ñ
1

12`2s
∇µβΦ “ ∇νΦ∇µ∇νΦ´

1

12
∇νpHµρσH

ρσ
ν q “ ´

1

2
∇νΦRµν ´

1

12
∇νHµν

One last step. I am missing something.

This gives that ∇µβΦ “ 0 as required. So βΦ “ c is a constant.

4. We get a linear dilaton giving rise to a Liouville action with Q “ 0. This is our familiar free massless boson
in 2D with 1D target space. So we get a string propagating in a single dimension.

5. Note that the only relevant parameters are `s, with units of length, and whatever length scales there are on
the manifold, all of which depend on its volume (since its compact) as V 1{D. In particular c “ βΦ depends
on `s as

c “ D `Op`2s{V
2{Dq.

I think this is correct, though it is different from Kiristis’ equation.

6. Note that a nonzero total flux of H over any closed 3-manifold is incompatible with H “ dB for a single-
valued B. We can write:

e
i

2π`2s

ş

M B
“ e

i

2π`2s

ş

N H

where M is the 2D manifold corresponding to the embedding of the world-sheet into the target space and
N is any manifold whose boundary is M . We need this to be independent of N , so for any three-cycle M3

we need:
1

2π`2s

ż

M3

H P 2πZñ
1

4π2`2s

ż

M3

H P Z
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7. (a) We have

H “ 2R2 sin2 ψ sin θ dψ ^ dθ ^ dφñ

ż

S3

H “
p2πRq2

4π2`2s
“
R2

`2s
P Z

(b) The dilaton is Φ “ 0. Using Mathematica, the Ricci tensor is:

Rµν “ diagp2, 2 sin2 ψ, 2 sin2 ψ sin2 θq

Which gives a Ricci scalar of 6{R2. From the previous part, H123 “ 2R2 sin2 ψ sin θ. From the metric
being diagonal, we get that H2

µν :“ HµρσH
ρσ
ν is diagonal. We have

H2
µν “ diagp8, 8 sin2 ψ, 8 sin2 ψ sin2 θq ñ βG “ Rµν ´

1

4
H2
µν “ 0

as desired. Next, βBµν “ ´1
2∇

αpHµναq. To take a contravariant divergence we divide by the volume
element and differentiate, but the volume element is sin2 ψ sin θ which will give H{

?
g is a constant, so

βµν will vanish.

Lastly, H2 “ p2R2q2{R6 “ 2{R6 so that ´R` 1
12H

2 “ ´ 4
R2 . Ignoring ghosts, this gives a central charge

of:

D ´ 6
`2s
R2
`Op`4sq “ D ´

6

k
`Op`4sq

as desired.

(c) Without using coordinates, the isometry of S3 is G “ SOp4q “ rSUp2q ˆ SUp2qs{Z2. TO see that
equivalence, think of of S3 as the unit quaternions, and take SUp2q ˆ SUp2q act as unit quaternions on
the left and right. We get a right G-action by: x Ñ a´1xb. Note the kernel is the set of pa, bq P G
ax “ xb for all x. In particular, for x “ 1 we get a “ b so the kernel lies in the diagonal subgroup.
To act trivially on all quaternions, a must be in the center, and for the unit quaternions this is exactly
˘1. So this is an injection ϕ : rSUp2q ˆ SUp2qs{Z2 Ñ SOp4q. Since SOp4q is compact and connected,
it is generated by the image of exponentiating sop4q, and so surjectivity of ϕ at the level of the Lie
algebras (which is true by dimension-counting) implies surjectivity and hence equivalence at the level
of Lie groups.

So we see that sop4q acting on S3 is just a simultaneous left and right copt of sup2q acting on SUp2q.
Thus, we view this as the CFT of a nonlinear sigma model with target space G “ SUp2q and the left,
right copies of the sup2q action correspond to currents J “ g´1Bg and J “ B̄g g´1

We indeed get the central charge c “ 3k
k`2 which has the large k expansion 3´ 6{k `Op1{k2q. Since k

in a non-negative integer in WZW models, except for the case k “ 0 corresponding to the trivial CFT,
we must have k ě 1, where we get R ě `s.

8. Here the metric has three degrees of freedom and Bµν , Φ both have only one degree of freedom (which can
be spatially varying). H, being a 3-index antisymmetric tensor, must vanish in 1`1D, and so we will always
have βB “ 0. The other two constraints become:

0 “ βGµν “
1

2
Rgµν ` 2∇µ∇νΦ, 0 “ βΦ “ ´24`

3

2
`2s
“

4p∇Φq2 ´ 4lΦ´R
‰

Translational isometry implies that R, g depend on only the time variable t. The x variable can therefore
parameterize either S1 or R endowed with constant metric.

Now taking the trace of the first equation implies Rptq “ ´2lΦpx, tq. Then the second equation will give:

16

`2s
“ 4p∇Φpx, tqq2 ´ 2plΦqptq

The only way for this to work is for R “ lΦ “ 0 so that ∇Φ can be a constant. We then have Φ “ αx` βt
so that α2`β2 “ 4{`2s, and g is Ricci flat everywhere (so we can pick it to be constant). In the case of either
α, β “ 0, we can also safely take x, t respectively to be periodic without having Φ be multi-valued.
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9. We still have βB “ 0, but βG “ Rµν ´∇µ∇νΦ while βΦ “ D ´ 26` 3
2`

2
sp4p∇Φq2 ´ 4lΦ´Rq

This can be recast in terms of a new 4D Ricci flat metric ds2 “ F pφqdφ2 ` φR2dΩ2
3.

Using Mathematica again to take the trace of this gives Rij for i “ j ě 1 proportional to R2φF 1pφq `
8φF pφq2 ´R2F pφq. Solving this differential equation for F gives

F pφq “
R2φ

4φ2 `R2c1

Setting c1 “ 0, F pφq “ R2{4φ will also make R00 vanish. Then we can take the dilaton to be zero Φpφq “ 0.

10. As stated in the problem, upon gauging the adapted compact Up1q : θ Ñ θ ` ε, which has radius 2π, we
modify our derivative operator to act as Bαθ Ñ Bαθ ` Aα, where Aα gives our connection on the Up1q
principal bundle associated with gauging the Killing symmetry. The action gets modified:

S Ě
R2

4π`s

ż

|Bθ|2 Ñ
R2

4π`2s

ż

|Bθ `A|2

This is a new theory, but we can return to the old one by enforcing that A be pure gauge as follows: introduce
an auxiliary field φ and add to S the term

i

2π

ż

φ εαβBαAβ “ ´
i

2π

ż

dφ^A.

Integrating out φ gives exactly a δ-function enforcing εαβBαAβ “ 0. This gives that A is closed, but it need
not be exact if our manifold has nontrivial topology. Going around any cycle,

ş

A can pick up a factor of
2πn.

For a closed, genus g Riemann surface, there are 2g cycles labeled by ai, bi, 1 ď i ď g coming from viewing
it as a 2g-gon. we have Riemann’s bilinear identity, namely for two closed 1-forms ω1, ω2,

ż

Σ
ω1 ^ ω2 “

g
ÿ

i“1

ˆ
ż

ai

ω1

ż

bi

ω2 ´

ż

ai

ω2

ż

bi

ω1

˙

(64)

Now take ω1 “ A, ω2 “ dφ. Now (64) gives us that 1
2π

ş

dφ^ A will not be zero in general, but in the path
integral, it suffices to have it be an integral multiple of 2π, since then the nontrivial holonomies will have no
contribution to the action. We have that A can have winding 2πZ, so the only solution is to have φ have
winding 2πZ. This will exactly leave over a factor of 2πZ. So we return to our original action by introducing
the field φ of period 2π. (NB if I had kept the fields dimensionful, then φ would have period 2π{R when θ
has period 2πR)

In this new, equivalent action, we can gauge-fix θ “ 0 (do I need ghosts? No because this is abelian Up1q)
and integrate out A. We get:

`4s{R
2

4π`2s

ż

d2ξ pBφq2

so we have obtained the same action but now on a circle of radius `2s{R instead of R.

In doing this path integral we get a determinant factor of
a

4π2`2s{R
2 “ 2π`s{R for each mode. Using zeta

function regularization this is equal to
a

R{2π`s which we can understand as adding a ´1
2 logpR{2π`sq term

to the action that will couple to the curvature R (Show why), this shifting the dilaton as required.

11. We can simplify things by using the conventions of the next problem to do this one. Here, we have a single
compact coordinate θ. In our convention:

Ĝµν “

ˆ

G00 G00Aj
G00Ai gij `G00AiAj

˙

, Bµν “ Bjdθ ^ dx
i `AiBjbijdxi ^ dxj , φ “ Φ´

1

4
log detG00
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From formula F.3 specialized to this case, we get that the metric and dilaton terms become
ż

dDx

b

´det Ĝµνe
´2Φ

”

R̂` 4pBµΦq2
ı

“

ż

dD´1x
a

´det g e´2φ

„

R` 4pBµφq
2 `

1

4
BµG00B

µG00 ´
1

4
G00pF

A
µνq

2



(65)
where Fµν “ BµAν ´BνAµ and R̂ corresponds to the original Ĝµν while R corresponds to gij . Further G00 “

From F.6-F.9, the antisymmetric tensor changes as:

´
1

12

ż

dD
b

´det Ĝ e´2ΦĤijkĤ
ijk “ ´

ż

dD´1x
a

´det g e´2φ

„

1

12
HijkH

ijk `
1

4
Ĥij0Ĥ

ij0



(66)

Here where Hij0 “ Ĥij0 and Hijk “ Ĥijk ´ pAiH0jk ` 3 perms.q. Here Hijk is defined so that it is invariant
under T -duality (TYSM Kiritsis for pre-organizing these terms for me) . Further, under T-duality

G00 Ñ G´1
00 “ G00 ñ BµG00B

µG00 invariant

gij Ñ gij ñ R invariant

Ai Ñ Bi

Bi Ñ Ai

Φ Ñ Φ´
1

2
logG00 ñ φÑ φñ pBµφq invariant.

(67)

We see that the
?
´det g e´2φ as well as first three terms of equation (65). We have that FAµν Ñ BµBν ´

BνBµ “: FBµν and FBij “ Hij0. The last term of (65) will therefore become swap with the last term of (66)
and we are done.

12. This one is quick. We have

ds2 “ G00dθ
2 ` 2G00Aidx

idx0 `Gijdx
idxj , B “ Bjdθ ^ dx

j ` pbij `AiBjqdx
i ^ dxj

Certainly we have G̃00 “ 1{G00, B̃i “ G00Ai{G00. Then Ãi “ Bi is consistent both for the i, 0 components
of the line element and the dxi ^ dxj components of the B-field as long as we keep b̃ij “ bij and g̃ij “ gij .
Finally, the dilaton must be shifted by Φ “ Φ´ 1

2 logG00.

13. The N commuting isometries correspond to a fibration by N -dimensional tori over each point in the base
space. As we have seen before (for strings valued in a N -dimensional torus target space), we have that modes
are described by two momenta pL, pR that Lie on an integral lattice. Naively, we can rotate pL, pR by any
GLpNq transformation, but the integrality condition restricts us to GLpN,Zq. Now GLpNq acts separately
on the left and the right momenta, but we are allowed to exchange between these two by applying T -duality,
which still preserves our Lorentzian norm, so the T -duality group gets enhanced to OpN,N,Zq.

14. This is clear, since orientation reversal acts trivially on gabGµνBaX
µBbX

ν while it acts with a minus sign on
εabBµνBaX

µBbX
ν . The corresponding vertex operators are:

: BXµB̄Xµe
ikX :, : GµνBX

µB̄Xν :, R : eikX :

If we assume the tachyon : eikX : is negative under parity then so are the dilaton and graviton.

This is incompatible with 6.1.10, as then parity will flip the sign of the dilaton in the exponential, substan-
tially changing the action of the theory.
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Chapter 7: Superstrings and Supersymmetry

1. We already know that TT will have the desired OPE, since the bosons and fermions are uncoupled and we
already have shown their own respective stress tensor OPEs. Next

GpzqGpwq “ ´
2

`4s
ψµpzqBX

µpzqψνpwqBX
νpwq

“ ´
2

`4s

ˆ

`2s
ηµν
z ´ w

` pz ´ wq : Bψµψνpwq :

˙ˆ

´
`2s
2

ηµν
pz ´ wq2

` : BXµBXνpwq :

˙

“
D

pz ´ wq3
`
´ 2
`2s
BXµBX

µpwq ´ 1
`2s
ψµBψµpwq

z ´ w

“
ĉ

pz ´ wq3
`

2T pwq

z ´ w

Finally

T pzqGpwq “ ´
1

`2s

ˆ

: BXµBX
µpzq : `

1

2
ψµBψµpzq

˙

i

?
2

`2s
ψνBX

νpwq

“ ´i

?
2

`4s

ˆ

´
`2s
2

ψµBX
µpwq ` ψµB

2Xµpwqpz ´ wq

pz ´ wq2
´
`2s
2

ψµBX
µpwq

pz ´ wq2
` p´q

`2s
2

BµψBX
µpwq

pz ´ wq

˙

“
3

2

Gpwq

pz ´ wq2
`
BGpwq

z ´ w

2. We will take the OPE of jBpzqjBpwq, but just look at the pz ´ wq´1 term as a function of w, as this, when
integrated around the origin in w will give Q2

B. This is an extension of exercise 4.45, and there is nothing
conceptually further, except for some βγ manipulation. There are altogether 16 terms to consider, and we
will get c “ 15. The algebra is heavy, so I will skip this. An alternative is to do this as in Polchinski 4.3.

To do it this way, note the following OPEs:

jBpzqbpwq „
Tmatterpzq

z ´ w
´

1

pz ´ wq2

ˆ

bcpzq `
3

4
βγpzq

˙

`
1

z ´ w

ˆ

´bBcpzq `
1

4
Bβγpzq ´

3

4
βBγpzq

˙

“ ¨ ¨ ¨ `
1

z ´ w

„

Tmatterpzq ´ Bb cpwq ´ 2bBcpwq ´
1

2
Bβγpwq ´

3

2
βBγpwq



“ ¨ ¨ ¨ `
Tmatterpwq ` Tghpwq

z ´ w
ñ tQB, bnu “ Ln

Similarly

jBpzqβpwq “ ¨ ¨ ¨ `
Gmatterpwq `Gghpwq

z ´ w
ñ rQB, βns “ Gn

Now note that the Jacobi identity on QB reads:

trQB, Lms, bnu ´ t

pm´nqbm`n
hkkkikkkj

rLm, bns , QBu ´ r

Ln
hkkkikkkj

tbn, QBu, Lms “ 0 ñ trQB, Lms, bnu “ pm´ nqLm`n ´ rLm, Lns

So if the total central charge is zero we’ll get trQB, Lms, bnu “ 0, implying that rQb, Lms is independent of
the c ghost. But on the other hand this operator has ghost number 1, so it must therefore vanish. Further,
the Jacobi identity also yields

rtQB, QBu, bns “ ´2rtbn, QBu, QBs “ 2rQB, Lns

since we just showed that this last term vanishes, we must have QB, QB is also independent of c, but again
since Q2

B has positive ghost number, we get that it is in fact zero. We can do the same argument with β and
G and get that the superstring BRST operator is zero, as long as the total central charge vanishes. This was
much cleaner than the OPE way.
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3. First a lemma: An abelian p-form field A has
`

D´2
p

˘

on shell DOF. To prove this, note that we have a gauge

symmetry of AÑ A`BΛ which has
`

D
p´1

˘

parameters. Next, the Euler-Lagrange equations give us that the

components A0i1...ip´1 are non-propagating. We thus get
`

D´1
p

˘

massless propagating off-shell d.o.f. which

have
`

D´2
p´1

˘

gauge symmetries left over. These can be used to enforce Coulomb gauge conditions which allow

for there to be no polarizations along one of the spatial directions. We thus get
`

D´1
p

˘

´
`

D´2
p´1

˘

“
`

D´2
p

˘

massless on-shell degrees of freedom. For Aµ this is D ´ 2 and for Bµν this is pD ´ 2qpD ´ 3q{2.

The metric has 1
2DpD ´ 3q on-shell degrees of freedom. There are two ways to see this, first, that the

dynamically allowed variation δg may on-shell be described by a symmetric traceless tensor in dimension
D ´ 2 which gives

pD ´ 1qpD ´ 2q

2
´ 1 “

1

2
DpD ´ 3q

or by noting that since we are gauging translation symmetry locally, each translation makes 2 polarizations
unphysical and so we get:

DpD ` 1q

2
´ 2D “

1

2
DpD ´ 3q

as required.

We now consider the R-R, R-NS, NS-R, NS-NS sectors together. For NS-NS we have the scalar “ 1 both on-
shell and off-shell, the antisymmetric two-form, which has only transverse degrees of freedom “ 8 ˚ 7{2 “ 28
and the gravity, “ 10 ˚ 7{2 “ 35 altogether we get 64 on-shell degrees of freedom.

In both the R-NS and NS-R sector, we have a Weyl representation of dimension 25´1 “ 16. There are
however only 8 on-shell degrees of freedom. Similarly, we only consider the on-shell ψµ

´1{2 acting on the NS

part of the vacuum which gives another factor of 8. This gives 64 fermionic variables in each sector for a
grand total of 128.

In R-R for IIA we have a 0, 2, and self-dual 4-form. This gives:

1`

ˆ

8

2

˙

`
1

2

ˆ

8

4

˙

“ 64

For IIB we have a 1 and 3-form. This gives
ˆ

8

1

˙

`

ˆ

8

3

˙

“ 64

so in either case we have 64 on-shell degrees of freedom here. This is consistent with each |Sy state having 8
on-shell degrees of freedom giving 8ˆ 8 “ 64. All together, we have the same number of on-shell fermionic
and bosonic degrees of freedom.

Now for the massive case. In the NS sector you might expect the next excitations come from the bosons α´1,
but this gets projected out by GSO, so in fact the next states come from ψi

´3{2, Cijkψ
i
´1{2ψ

j
´1{2ψ

k
´1{2 and

Cijψ
i
´1{2α

j
´1. These have dimensions 8 ` 56 ` 64 “ 128, which decomposes as the traceless symmetric 44

and three-index antisymmetric 84 representation of SOp9q. In the R sector, we must look at αi´1 |Sαy and
ψi´1 |Cαy for Sα, Cα suitably chosen so that the state satisfies G0 “ 0. This constraint gives a factor of two
reduction for the dimension of the space of candidate Sα. Consequently, we get 8v b 8s‘ 8v b 8s1 which has
dimension 128. This indeed turns out to be a spinor representation of SOp9q, and it comes from looking at
the tensor product of the fundamental spinor representation with the vector representation 16s b 9v. This
turns must decompose as a sum of two spinor representations 16s ‘ 128s. One is again the fundamental,
while the other is the required 128.

For the massive states in the type IIA and type IIB, we must tensor we wish to look at the lowest-level
masses. Note we must match massive states with massive states. In this case, we match 2{α on both sides
to get massive states of mass 4{α. Since the particles already organize into representations of SOp9q on each
side, the closed string massive spectrum will again clearly organize intro representations of SOp9q. Also since
fermionic and bosonic degrees of freedom already were equal on each side, they will be equal in the closed
string as well. We will have 2ˆ 1282 “ 32768 bosonic and fermionic degrees of freedom.
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4. In terms of theta functions:

χO “
1

2

˜

4
ź

i“1

θ3pνiq

η
´

4
ź

i“1

θ4pνiq

η

¸

χV “
1

2

˜

4
ź

i“1

θ3pνiq

η
`

4
ź

i“1

θ4pνiq

η

¸

χS “
1

2

˜

4
ź

i“1

θ2pνiq

η
´

4
ź

i“1

θ1pνiq

η

¸

χC “
1

2

˜

4
ź

i“1

θ2pνiq

η
`

4
ź

i“1

θ1pνiq

η

¸

We’ll take νi “ 0 here (I assume this is what I’m supposed to do) and so θ1 “ 0 ñ χS “ χC .

For IIB we look at

|χV ´ χC |
2

p
?
τ2ηη̄q

8
“

1

p
?
τ2ηη̄q

8

1

2

1
ÿ

a,b“0

p´1qa`b
θ4
“

a
b

‰

η4
ˆ

1

2

1
ÿ

ā,b̄“0

p´1qā`b̄
θ̄4
“

ā
b̄

‰

η̄4

Under modular transformations τ Ñ τ ` 1 θ4
“

0
1

‰

Ø θ4
“

0
0

‰

, θ4
“

1
0

‰

Ñ ´θ4
“

1
0

‰

while η12 Ñ ´η12. In the
holomorphic and anti-holomorphic parts separately, each term in the sum picks up a minus sign that is
cancelled by the minus sign in the η4.

Under τ Ñ ´1{τ , the 1
p
?
τ2ηη̄q8

out front is invariant. On the other hand, the θ functions transform as

θ4
“

0
0

‰

Ñ p´iτq2θ4
“

0
0

‰

, θ4
“

0
1

‰

Ñ p´iτq2θ4
“

1
0

‰

, θ4
“

1
0

‰

Ñ p´iτq2θ4
“

0
1

‰

. These are exactly compensated by the η
transformations in the denominator, and no overall sign is picked up

For IIA we have similarly

pχV ´ χCqpχ̄V ´ χ̄Sq

p
?
τ2ηη̄q

8
“

1

p
?
τ2ηη̄q

8

1

2

1
ÿ

a,b“0

p´1qa`b
θ4
“

a
b

‰

η4
ˆ

1

2

1
ÿ

ā,b̄“0

p´1qā`b̄`āb̄
θ̄4
“

ā
b̄

‰

η̄4

Again, the holomorphic part transforms as before and as we have set the νi to zero, we have the same
partition function. Using D.18, we see that each of the four above sums are zero since they are equal to a
product of θ1 “ 0.

5. Again, these are identical if I set the νi “ 0 (am I not supposed to be doing this? What do the νi represent
physically?). They are equal to

1

p
?
τ2ηη̄q84η4η̄4

p�
��|θ4
1|

2 ` |θ4
2|

2 ` |θ4
3|

3 ` |θ4
4|

2q

We have θ3 and θ4 swapping under τ Ñ τ ` 1, generating no signs in this case, while the denominator looks
like |η|24 and also doesn’t generate a sign. Then, under τ Ñ ´1{τ we have θ2 and θ4 swapping generating a
|τ |4, identical to what is generated by the pηη̄q4.

6. The partition function is

Zhet
SOp16qˆSOp16q “

1

2

ÿ

h,g

Z̄E8

“

h
g

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1qa`b`ab`ag`bh`gh
θ4
“

a
b

‰

η4
, Z̄E8

„

h

g



“
1

2

ÿ

γ,δ

p´1qγg`δh
θ̄8
“

γ
δ

‰

η̄8

First look at Z̄E8 . Under modular transformations τ Ñ ´1{τ we get Z̄E8

“

h
g

‰

Ñ Z̄E8

“

g
h

‰

. Under τ Ñ τ ` 1,

we get Z̄E8

“

h
g

‰

Ñ p´1qh´2{3Z̄E8

“

h
g`h

‰

. With this, we can look at Zhet
SOp16qˆSOp16q under τ Ñ ´1{τ

1

2

ÿ

h,g

Z̄E8

“

g
h

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1qa`b`ab`ag`bh`gh
θ4
“

b
a

‰

η4
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Under relabeling of aØ b, g Ø h, this is the same. Next, under τ Ñ τ ` 1:

1

2

ÿ

h,g

p´1q´4{3Z̄E8

“

h
g`h

‰2

p´1q4{3p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1qa`b`ab`ag`bh`gh
p´1qaθ4

“

a
a`b´1

‰

p´1q1{3η4

“
1

2

ÿ

h,g

´
Z̄E8

“

h
g`h

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1qb`ab`ag`bh`gh
θ4
“

a
a`b´1

‰

η4

“
1

2

ÿ

h,g1

Z̄E8

“

h
g1

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1q1`b`ab`ag
1`pa`bqh`g1h`h

θ4
“

a
a`b´1

‰

η4

“
1

2

ÿ

h,g1

Z̄E8

“

h
g1

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1q�1`pb
1`a`�1q`pab

1`�a´�aq`ag
1`pb1h`�hq`g

1h`�h
θ4
“

a
b1

‰

η4

“
1

2

ÿ

h,g1

Z̄E8

“

h
g1

‰2

p
?
τ2ηη̄q8

1

2

ÿ

a,b

p´1qa`b
1`ab1`ag1`b1h`g1h θ

4
“

a
b1

‰

η4

Keep in mind that x2 “ xmod 2.

Before we do the next part, let’s elaborate on why ZE8 “
1
2

ř

a,b θ
8
“

a
b

‰

is the partition function of the E8

lattice. From the sixteen fermion picture, this is just the p´1qF “ 1 in the NS sector (corresponding to the
χO “

1
2pθ

8
“

0
0

‰

` θ8
“

0
1

‰

q character) together with the R sector χS “
1
2θ

8
“

1
0

‰

giving the spinor representation.

Indeed, the roots of E8 consist of the roots of Op16q as well as the spinor weights of Op16q. Note that the
spinor representation comes from the half-integral points, corresponding to θ

“

1
0

‰

in the sum, while the adjoint

representation comes from θ
“

0
1

‰

and θ
“

0
0

‰

. Consequently the action of Si that fixes the adjoint vectors but
flips the sign of the spinor acts on our partition function as SiZE8 “

1
2

ř

a,bp´1qa θ8
“

a
b

‰

. It of course also

gives rise to a twisted sector, so altogether we get the four twisted blocks Z̄E8

“

h
g

‰

as required.

Since we have projected out the spinor representation, the current algebra only contains the NS currents J̄ ij

corresponding to the adjoint of SOp16q, and we have two copies of this for each group of 16 fermions.

From the factor of p
?
τ2ηη̄q

´8 we see that we have 8 on-shell noncompact massless bosonic excitations as
well as all of their descendants (on both left and right moving sides). We also see on the left-moving side we
get a theta-function corresponding to N “ 8 fermions transforming under a spacetime SOp8q, forming the
superpartners of the bosons. On the right side instead of the superpartner fermions, we have the 16 internal
fermions that transform in the adjoint representations.

Let’s see what massless states we can build. In the NS sector of the left-movers, we have L0 “ 1{2, L̄0 “ 1
and so we get ψi

´1{2α
j
´1 |py which gives us our usual graviton, two-form field, and dilaton. We also have

ψi
´1{2J̄

a
´1 |py for the Op16q ˆOp16q currents. This gives us vectors corresponding to gauge bosons valued in

the adjoint of Op16q ˆOp16q as required.

In the R sector we have G0 “ 0, L̄0 “ 1 we’ll get a gravitino, fermion, and gaugino as before, but again this
time valued in Op16q ˆOp16q.

7. Because we have seen that T-duality flips the antichiral Up1q B̄X Ñ ´B̄X, and we want to preserve the
(1,1) supersymmetry G in the type II string (and so must keep it as a periodic variable Why is this
absolutely necessary. Can we not work with double covers in some clever way when defining
supercurrents? ), we must consequently flip ψ̄. This corresponds to inserting p´1qFR . For the right-moving
R sector, this changes the chirality of the R spinor, taking Sα Ñ Γ9Γ11Sα (there can be no phase, by reality
conditions of Γ). We thus flip IIA to IIB and vice versa.

From this we get that

Fαβ “ SαpΓ
0qβγS̃γ Ñ SαpΓ

0Γ9Γ11qβγS̃γ “ ´ξ SαpΓ
9Γ0qβγS̃γ “ ´ξFΓ9
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Expanding in terms of the Fµ1...µk gives the action:

Fαβ Ñ ´ξ
10
ÿ

k“0

p´1qk

k!
Fµ1...µkΓµ1...µkΓ9

This gives that
F̃µ1...µk,9 “ ´ξFµ1...µk , F̃µ1...µk “ Fµ1...µk,9

Then
Bµ1C̃µ2...µk9 “ ´ξBµ1Cµ2...µk , Bµ1C̃µ2...µk “ Bµ1C̃µ2...µk9

so that (up to a closed term)

C̃
ppq
µ1...µp´19 “ ´ξC

p´1
µ1...µp´1

, C̃ppqµ1...µp “ C
pp`1q
µ1...µp9

Get rid of the ξ factor

8. We have that Ω |SαS̃βy “ εR |SβS̃αy. Further, it acts trivially on Γ0 (you sure?). Now, in the operator
language we will have ΩSαΩ´1 “ ε1S̃α and ΩS̃βΩ´1 “ ε2Sβ. In any case, we must have for the bi-spinor
that ΩSαS̃βΩ´1 “ εRSβS̃α, which gives that ε1ε2 “ ´εR Thus, we have:

ΩFαβΩ´1 “ ΩSαΓ0
βγS̃γΩ´1 “ ´εRΓ0

βγSγS̃α “ ´εRΓ0
βγFγδΓ

0
δα “ ´εRpΓ

0FΓ0qβα “ ´εRpΓ
0F TΓ0qβα

I think 7.3.3 of Kiritsis has the derivation wrong. Ask Nathan/Xi.

9. When we take εR “ ´1 the scalar and four-index self-dual tensor survive. In this case, we will not have
consistent interactions. Since the graviton survives, there must be an equal number of massless bosonic
and fermionic excitations. The fermions come just from the NS-R sector (there is no R-NS now), giving 64
on-shell fermionic excitations. From the NS-NS sector, the dilaton and gravity will give 1` 35 “ 36 on-shell
bosonic degrees of freedom. We are missing 28 bosonic degrees of freedom.

The scalar and four-index self dual tensor contribute 1` 1
2

8ˆ7ˆ6ˆ5
4! “ 36 on-shell bosonic degrees of freedom.

This is too much. The two-form, on the other hand, contributes the requisite 8ˆ 7{2 “ 28. Consistency of
interaction thus demands we keep only the 2-form and drop the 0 and self-dual 4-form. This necessitates
εR “ 1.

10. We are just looking at the open superstrings here. Any open string that consistently couples to type I or
type II string theory must have a GSO projection as well. We have already seen how the oriented open
strings look like in exercise 7.3. In the NS sector we have at ´p2 “ m2 “ 2{`2s

ψi´3{2λab |p; abyNS

Cijkψ
i
´1{2ψ

j
´1{2ψ

k
´1{2λab |p; abyNS

Cijψ
i
´1{2α

j
´1λab |p; abyNS

(68)

In the R sector we have (for Sα suitably chosen so that the state satisfies G0 “ 0):

αi´1λab |Sα; abyR

ψi´1λab |Cα; abyR
(69)

I will assume NN boundary conditions. In this case

Ωα´1Ω´1 “ ´α´1

Ωψ´1Ω´1 “ ´ψ´1

Ωψ´ 1
2
Ω´1 “ ´iψ´ 1

2

Ωψ´ 3
2
Ω´1 “ iψ´ 3

2
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So all of the terms in (68) are terms of the form Aλab |p; abyNS with the operator A transforming as AÑ iA
under parity. Doing parity twice therefore will generate a ´ε2NSApγγT

´1
qii1 |p; a

1b1y pγTγ´1qj1j . This is
exactly the same as in 7.3.10. Demanding that Ω act on the state with eigenvalue `1 will make it so
that λ “ iεNSγλ

Tγ´1. We already have εNS “ ´i so λ “ γλTγ´1 here. Imposing the tadpole cancelation
condition ζ “ 1 and we get gauge group SOp32q. So we get that states at this level will transform in the the
traceless symmetric tensor + singlet representation of SOp32q.

All of the terms in (69) will transform under parity twice as as ε2RApγγT
´1
qii1 |Sα; a1b1y pγTγ´1qj1j . We will

have the same γ matrix as in the NS sector, as required for consistency of interactions. Here, though, we
will get εR “ ´1 ñ ε2R “ 1 and we will get λ “ ´γλTγ´1 (this is what we got from the massless sector with
an extra minus sign since ψ´1, α´1 now transform with minus signs). Again we will have that these states
will transform in the symmetric representation of SOp32q.

Again we get 128 bosonic states that will transform as the 44‘84 representation of SOp9q. We will also get
fermions transforming in the 128 spinor representation as in exercise 3. All of these states will transform in
the traceless symmetric representation of SOp32q. Confirm

11. Certainly in the untwisted sector, the theory we get corresponds to tracing over the projection operator
1
2p1 ` gq where g is orientation-reversal. Now in the twisted sector, we still have Xµ satisfies the Laplace
equation B`B´X “ 0 so we can write

Xpσ, τq “ xµ ` τ`2s
pµ ` p̄µ

2
` σ`2s

pµ ´ p̄µ

2
`
i`s
?

2

ÿ

n

ˆ

αn
n
e´inpτ`σq `

α̃n
n
e´inpτ`σq

˙

The condition that Xpσ ` 2πq “ Xp2π ´ σq give that pµ “ p̄µ and the σ term vanishes. We must have n
is a half integer. For integer modding we have e´inpτ˘σq Ñ e´inpτ¯σq. For half-integer modding we have
e´inpτ˘σq “ p´1qne´inpτ¯σq. We should thus have αn “ α̃n for n integral and αn “ ´α̃n We thus get

Xpσ, τq “ xµ ` 2`2sp
µτ ` σi

?
2`s

ÿ

nPZzt0u

αn
n

cospnσqe´inτ ´
?

2`s
ÿ

nPZ` 1
2

αn
n

sinpnσqe´inτ

This is the twisted sector. The last sum picks up a minus sign under orientation reversal, and so will be
projected out. We are left with the equations of motion for the open string.

12. In NS we have (up to an overall irrelevant factor of i´1{2)

ψpσ, τq “
ÿ

nPZ
ψn`1{2e

pn`1{2qpτ`iσq, ψ̄pσ, τq “
ÿ

nPZ
ψ̄n`1{2e

pn`1{2qpτ´iσq

In the closed string case have that Ωψn`1{2Ω´1 “ ψ̄n`1{2. Given that Ωψpσ, τqΩ´1 “ ψ̄pπ´σ, τq, we directly
get Ωψn`1{2Ω´1 “ ip´1qnψ̄n`1{2. For DD boundary conditions we get an extra minus sign to this, since
there Ωψpσ, τqΩ´1 “ ´ψ̄pπ ´ σ, τq.

In the R sector we have
ψpσ, τq “

ÿ

nPZ
bne

npτ`iσq, ψ̄pσ, τq “
ÿ

nPZ
b̄ne

npτ´iσq

Following the same logic we get that ΩψnΩ´1 “ p´1qnψn for NN and ΩψnΩ´1 “ ´p´1qnψn for DD.

All of these cases can be summarized by

NN: ΩψrΩ
´1 “ p´1qrψr

DD: ΩψrΩ
´1 “ ´p´1qrψr.

13. Let’s clarify a bit of terminology before we begin. We are looking at just the fermions of the left moving and
right moving sides of the heterotic string theory. On the left-hand (supersymmetric) side, in the light-cone

gauge these form an zOp8q current algebra at level 1. On the right-hand side the form a {Op32q current algebra
at level 1 again (why must we always have level 1? Ask Xi.).
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The characters of {OpNq1 for N even correspond to the integrable representations labeled by O, V, S,C
corresponding to the trivial, vector, spinor, and conjugate spinor. For our purposes (ie the heterotic string),
we do not need to distinguish between S and C, which will have the same character. The characters can be
written in terms of θ functions as

χO “
1

2

«

ˆ

θ3

η

˙N{2

`

ˆ

θ4

η

˙N{2
ff

, χV “
1

2

«

ˆ

θ3

η

˙N{2

´

ˆ

θ4

η

˙N{2
ff

, χS “
1

2

ˆ

θ2

η

˙N{2

(a) Now let us first look at Op32q. The zOp8q1 characters transform under τ Ñ τ ` 1 as

χ8
O Ñ p´1q´1{6χO, χ8

V Ñ ´p´1q´1{6χV , χ8
S Ñ ´p´1q´1{6χS

And under τ Ñ ´1{τ they transform as

χ8
O Ñ

1

2
pχ8
O ` χ

8
V q ` χ

8
S , χ8

V Ñ
1

2
pχ8
O ` χ

8
V q ´ χ

8
S , χ8

S Ñ
1

2
pχ8
O ´ χ

8
V q

The {Op32q1 characters depending on q̄ transform the same way under τ Ñ ´1{τ but under τ Ñ τ ` 1
transform as

χ32
O Ñ p´1q2{3χ32

O , χ32
V Ñ ´p´1q2{3χ32

V , χ32
S Ñ p´1q2{3χ32

S

Our partition functions in question can be constructed from a linear combination of products of exactly

one zOp8q1 and one {Op32q1 character. This gives 9 possible terms χ8
iχ

32
j
˚
. I label these in the table

below. I cancel all terms that are not invariant under τ Ñ τ ` 1.

���O O O V ��
�O S

V O ���V V V S
S O ��S V S S

But we are not done. It is easy to see that while that χ8
V , χ

8
S blocks have Taylor series Opq1{3q, the χO

block contains a singular term going as q´1{6. Similarly, χ32
O contains a singular term going as Opq´2{3q

while χ32
V “ Opq̄´1{6q and χ32

S “ Opq̄4{3q. The tachyon can come exactly (and only!) from combining
χ8
Oχ

32
V
˚

to get 1{|q|1{6 that will be singular and satisfy level-matching. Thus we must drop OV above
as well. We are left with four possible terms that can work.

Modular invariance under τ Ñ 1{τ further constrains this to take a form proportional to

pχ8
V ´ χ

8
Sqpχ

32
1 ` χ32

S q

The normalization of the identity to 1 fixes this entirely. Note that we get spin statistics for free, as the
only character combinations appearing with a minus sign are precisely those containing χ8

S , associated
with the spacetime fermions.

(b) Having {Op32q1 out of the way, let’s move on to Op16q ˆE8. xE81 has only one integrable representation
and thus one corresponding character, χE8 . As pointed out in the text, it is related to the characters of
{Op16q1 by χE8 “ χ16

O `χ
16
S . Thus we have trilinear combinations χ8

i pqqχ
16
j pq̄qχ

E8pq̄q. Upon noting that

the characters of {Op16q1 multiplied by χE8 transform the same way under modular transformations as
{Op32q1 and the same combination χ8

1χ
16
V χ

E8 uniquely gives the tachyon, we see that again the argument
goes as before and the only viable character we can have is

pχ8
V ´ χ

8
Sqpχ

32
1 ` χ32

S qχ
E8 “ pχ8

V ´ χ
8
Sqχ

E8ˆE8 .

This is exactly the heterotic E string theory.

(c) Finally we get to the hard one: Op16q ˆ Op16q. Here we have 27 trilinear terms that can contribute.
I will write them out, and again cross out the ones that are not invariant under τ Ñ τ ` 1 as well as
double crossing out the tachyons. Here, though, the notation OO,OV, SV etc will represent just the
right-moving characters χ16

O pq̄qχ
16
O pq̄q, χ

16
O pq̄qχ

16
V pq̄q, χ

16
S pq̄qχ

16
V pq̄q respectively.
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χ8
O ˆ

���O O ���XXXO V �
��O S

���XXXV O ���V V V S

��
�S O SV ��S S

, χ8
V ˆ

O O ���O V O S
���V O V V ��V S
S O ��S V S S

, χ8
S ˆ

O O ���O V O S
���V O V V ��V S
S O ��S V S S

It may look that 12 independent terms remain. The fact that the characters are symmetric under
exchange of the last two labels mean that there are in fact only 12.

Let us look at two cases. First, assume χ8
Oχ

16
V
˚
χ16
S
˚

does not contribute (ie its coefficient vanishes).
Then the first 9 terms are all zero. The remaining constraint of modular invariance under τ Ñ τ ` 1
constrains the partition function to take the form

pχV ´ χSq
“

χ16
O χ

16
O ` 2αχ16

O χ
16
S ` p1´ αqχ

16
V χ

16
V ` p2´ αqχ

16
S χ

16
S

‰

for any value of α. Spin statistics requires all these contributions to come in with positive coefficient, so
0 ď α ď 1. Moreover, if α is non-integral we will have coefficients that are not integers in the character
expansion, which would lack a Hilbert space interpretation Think more about the integrality
condition. Thus we can have only α “ 0 and α “ 1 corresponding exactly to the Op32q and E8 ˆ E8

superstrings.

So our remaining possibility is that χ8
Oχ

16
V
˚
χ16
S
˚

does not have vanishing coefficient. WLOG set this
coefficient to 1. Invariance under τ Ñ ´1{τ constrains us to:

2χ8
Oχ

16
V χ

16
S ` χ

8
V

“

αχ16
O χ

16
O ` 2βχ16

O χ
16
S ` p´1` α´ βqχ16

V χ
16
V ` p´1` 2α´ βqχ16

S χ
16
S

‰

` χ8
S

“

p1´ αqχ16
O χ

16
O ´ 2p1` βqαχ16

O χ
16
S ` p´α` βqχ

16
V χ

16
V ` p1´ 2α` βqχ16

S χ
16
S

‰

Again, spin-statistics requires the coefficient of all the characters involving χV to have positive sign and
all the characters involving χS to have negative sign. This makes 1 ď α, 0 ď β ď α´1. Integrality then
forces α “ 1, β “ 0. More general solution? We need to impose that χ8

iχ
16
O χ

16
O has coefficient

1 or 0

Of all these theories, the first two theories have vanishing partition function - an indicator of spacetime
supersymmetry, but not necessarily an identifier. Of course, we can identify them as the heterotic string
theories, which indeed have space time SUSY. The last theory has nonvanishing partition function and thus
cannot have spacetime SUSY as the fermions and bosons do not cancel at one loop.

14. I think this problem is backwards. For 32 fermions all with the same boundary conditions, its immediate to
see that they will reproduce the partition function for the Spinp32q{Z2 string:

1

2

ÿ

a,b

θ16

„

a

b



Just by considering the OpNq fermion at N “ 32. On the other hand, if we split the fermions into 16` 16,
and consider separately boundary conditions for each of those, then our partition function is the square of
the 16-fermion system. We then get the E8 ˆ E8 lattice theta-function, as required

»

–

1

2

ÿ

a,b

θ8

„

a

b



fi

fl

2

15. Note this was a Lorentzian lattice of signature pn, nq. The norm was thus P 2
L ´ P 2

R “ 2mn P 2Z. It is also
self dual, since it is already integral, and there is no integral sublattice.

16. We have

γGghost “ ´cγBβ ´
3

2
Bcγβ ´ 2γ2b, cTghost “ 2bcBc´

1

2
cγBβ ´

3

2
cBγβ
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Here Kitisis’ conventions are different than Polchinski. Recall upon bosonization βpzq “ e´φpzqBξpzq, γ “
eφpzqηpzq. Although we can solve this problem very quickly since we already know what the stress tensor looks
like in the bosonized variables, I think it’s way more instructive to explicitly compute OPEs to Opz ´ wq.
First let’s look at the η, ξ theory, which is a fermoinic bc theory of weights 1, 0. We get

ξpzqηpwq “
1

z ´ w
` : ξη : pwq `Opz ´ wq

We can bosonize this theory in terms of hermitian χ field so that η “ e´χ, ξ “ e´χ. Using these coordinates

ξpzqηpwq “ eχpzqe´χpwq “
1

z ´ w

„

1` pz ´ wqBχ`
1

2
pz ´ wq2pB2χ` pBχq2q ` . . .



ñ Bξpzqηpwq “ ´
1

pz ´ wq2
`

1

2
pB2χ` pBχq2q

Using this we can write

βpzqγpwq “ e´φpzqBξpzq eφpwqηpwq

“ pz ´ wq

„

1´ pz ´ wqBφpwq `
1

2
pz ´ wq2ppBφq2 ´ B2φq

 „

´
1

pz ´ wq2
`

1

2
pB2χ` pBχq2q



The constant term gives :βγ:“ Bφ ñ:Bpβγq :“ B2φ. The pz ´ wq term gives exactly the stress tensor of the
βγ theory at λ “ 0, which makes sense since this is exactly Bβγ

:Bβγ : “ ´
1

2
pBφq2 `

1

2
B2φ`

1

2
pBχq2 `

1

2
B2χ

ñ Tβγ “ Bβγ ´ λBpβγq “ ´
1

2
pBφq2 `

ˆ

1

2
´ λ

˙

B2φ`
1

2
pBχq2 `

1

2
B2χ.

In our case we have λ “ 3{2.

γGghost “ ´c

ˆ

´
1

2
pBφq2 `

1

2
B2φ`

1

2
pBχq2 `

1

2
B2χ

˙

´
3

2
Bφ Bc´ 2γ2b

cTghost “ 2bcBc` c

ˆ

´
1

2
pBφq2 ´ B2φ`

1

2
pBχq2 `

1

2
B2χ

˙

Altogether this gives a BRST current:

jB “ cTX ` γGX `
1

2
pcTgh ` γGghq

“ cTX ` γGX ` bcBc´
3

4
BφBc´

3

4
cB2φ´ γ2b

17. We are looking at rQB, ξe
´φ{2Sαe

ipXs. Therefore we should look at the 1{pz ´ wq pole in the OPE of jB
with ξe´φ{2Sαe

ipX . The terms that contribute to this pole must involve pairing ξ with its conjugate η. η
appears in jB wherever γ “ eφη appears. From the previous exercise, we see that we need only look at the
terms γGX and ´γ2b.

These two terms contribute poles:

´

«

:eφGX ::e´φ{2Sαe
ipX :

z ´ w
´

: e3φ{2ηbSαe
ipX :

z ´ w

ff

The overall minus sign comes from commuting across an odd number of fermions for the Wick-contraction.
We will need to recall two things:

ψµpzq ¨ Sαpwq „
`s

?
2
?
z ´ w

˜

ΓµαβS
βpwq `

1

`2sp
D
2 ´ 1q

ΓναβSβψνψ
µ pz ´ wq

¸

, eφpzqe´φpwq{2 „
?
z ´ weφpwq{2
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The subleading term in the first expansion is taken from Blumenhagen 13.81. That means that first term is:

eφpzqi

?
2

`2s
ψµpzqBXµpzq ¨ e

´φpwq{2Sαpwqe
ipXpzq

„ i

?
2

`2s

?
z ´ w eφpwq{2

`s
?

2

˜

ΓµαβS
βBXµe

ip¨X

?
z ´ w

`
´i`2spµe

ip¨X

2pz ´ wq

1

4`2s
ΓναβS

βψνψ
µ
?
z ´ w

¸

“ ´
eφ{2

`s

´

ΓµαβS
βBXµ ´ iΓ

ν
αβS

βψνp ¨ ψ
¯

eip¨X

Note this OPE has no singularity, so we exactly got the normal ordered term we required: : eφ{2GXSαe
ip¨X :.

Altogether this gives us:

V
p1{2q

fermionpu, pq “ uαppq

«

eφ{2

`s
ΓµαβS

βBXµ ´
i

8

eφ{2

`s
ΓναβS

βψνp ¨ ψ ` e
3φ{2ηbSα

ff

eipX .

I believe this is right, and moreover that the inclusion of the `´1
s factor is necessary for the dimensional

analysis to make sense.

18. Here, I followed the discussion of Polchinski 12.5. The picture changing operator is:

Xpzq :“ QB ¨ ξpzq

Over the sphere, the βγ path integral is equivalent to the φ, η, ξ path integral plus an additional insertion of
ξ to make up for the fact that it pics up a zero mode due to to the vacuum degeneracy it produces. Because
the expectation value is just proportional to the zero-mode of ξ, which depends on global information rather
than the specific local insertion point, xχpzqy is independent of position and we can normalize ξ so that this
is 1.

Say we have a null state. This means it is BRST exact. This means that we can rewrite its pointlike insertion
as a local operator surrounded by a BRST contour (direct, from the definition of exact). For that null state
to decouple, we need to be able to contract the BRST contour off the sphere (i.e. by pulling it off to the
north pole). The fact that ξ is inserted will seem to obstruct this. What happens now as we pull the BRST
charge to infinity is that it will circle ξ, creating the PCO Xpzq. However, when the ξ insertion is replaced
by X, the path integral will vanish since there is now no ξ insertion to avoid the zero-mode.

Now consider a path integral with a PCO insertion as well as additional BRST-invariant operators (mean-
ing. the contour integral around them of jB is zero). Then we can write Xpz1qξpz2q “ QBξpz1qξpz2q “

p´q2ξpz1qQ
Bξpz2q “ ξpz1qXpz2q where I have pulled the QB contour around the sphere (there two minus

signs, one from commuting QB across a fermionic variable and one from reversing the orientation of the
contour.)

This is interesting: although X is null, it does not vanish in the path integral, since pulling QB off of it will
make QB encircle ξpz2q but leave behind Xpz1q’s ξpz1q, so the ξ zero-mode will remain saturated and we
won’t get zero.

The X can be brought near any of the local BRST closed operators to change their picture (the OPE
is nonsingular). Ie note that the main term we look at is γGX “ eφηGX in jB so that XOp´1qpzq “
zGXpzqOp0q Ñ G´1{2Op0q. We can move X to any other point on the sphere - since the exact position of X
does not matter any more than the position of ξ.

19. It is enough to look at the 1{pz ´ wq term in the OPE

: e´φpzq{2Sαpzq : V
p´1{2q

fermionpwq “ e´φpzq{2Sαpzqu
βppqe´φpwq{2Sβpwqe

ip¨Xpwq

We will use the fact of 4.12.42:

SαpzqSβpwq “
Cαβ

pz ´ wqN{8
`

Γµαβψµpwq
?

2`spz ´ wqN{8´1{2
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where Cαβ is the charge conjugation matrix and here N “ 10. We also have e´φ{2e´φ{2 “ pz ´ wq´1{4e´φ.
This leaves the pz ´ wq´1 term to be the requisite

e´φuβppq
Γµαβ
?

2`s
ψµe

ip¨X “ V
p´1q

bosonpε “
Γµαβu

β

?
2`s

, p, zq

For the second example, we will look at the pz ´ wq´1 term in the OPE

e´φpzq{2Sαpzqεµ

ˆ

BXµ ´
i

2
pµψ

µ ψν
˙

eip¨X .

The first term in parentheses will not contribute to the singular term. Also the e´φ{2 and eip¨X contract with
nothing. Here, we use 4.12.41 to evaluate

Sαpzq ¨ ψ
µψν

loomoon

´iJµν

pwq „ ´
`2spΓµνq

β
αSβpwq

2pz ´ wq

The ´ sign comes from the fact that the fermion current is coming from the right this time so z and w are
swapped. This gives a variation

e´φ{2ipµεν
`2s
4
ενpΓµνq

β
αSβe

ip¨X “ V
p´1{2q

fermionpu
β “

ipµεν`2spΓµνq
β
α

4
, p, zq

20. We are in type I. We have

1

`4sg
2
o

x: cV p´1qpw1q : : cV ´1pw2q : : cV 0pw3q :y ` 1 Ø 2, x1 ą x2 ą x3

That constant out front is not obvious from Kiritsis, c.f. the discussion in Polchinski 12.4 and
allow for another factor of `2s since the fermions are dimensionful

The relevant expectation values are

xcpw1qcpw2qcpw3qy “ |w12w13w23|, xe´φpw1qe´φpw2qy “ w´1
12 ,

xψµpw1qψ
νpw2qy “ `2sη

µνw´1
12 , x 9Xµpw1qe

ik1Xpw2qy “ ´2i`2sk
µ
1 e
ik1Xw´1

12

In the matter CFT we get (here ki ¨ kj “ 0 so the pure eikX terms contract to 1):

xψµpw1qe
ik1¨Xpw1q ψνpw2qe

ik2¨Xpw2q pi 9Xρ ` 2k3 ¨ ψψ
ρqeik3¨Xpw3qy

“ 2`4s�δ
10pΣkq

ˆ

ηµνkρ1
w12w13

`
ηµνkρ2
w12w23

`
ηµρkν3 ´ η

νρkµ3
w13w23

˙

So altogether we get an amplitude of (taking x1 Ñ 0, x2 Ñ 1, x3 Ñ8)

i

g2
open`

4
s

ˆ
2i`4sg

3
open

?
2`s

�δ
10pΣkq

ˆ

ηµνkρ1x23

x12
`
ηµνkρ2x13

x12
` ηµρkν3 ´ η

νρkµ3

˙

pr123s ´ r132sq

“
igopen
?

2`s
�δ

10pΣkq pηµνkρ12 ` η
µρkν31 ` η

νρkµ23q pr123s ´ r132sq

Note unlike the Bosonic string this is exactly the same as the ordinary Yang-Mills amplitude, there is no k3

correction term (what would correspond to at TrF 3 term in the Lagrangian).
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21. This is also in type I. We should put the gaugini in the ´1{2 picture and the boson in the ´1 picture.

We have
1

`4sg
2
o

x: cV p´1qpw1q : : cV ´1{2pw2q : : cV ´1{2pw3q :y ` 1 Ø 2, x1 ą x2 ą x3

The relevant expectation values are

xcpw1qcpw2qcpw3qy “ |w12w13w23|, xe´φpw1q{2e´φpw2q{2e´φpw3qy “ w
´1{4
12 w

´1{2
13 w

´1{2
23 ,

xSαpw1qSβpw2qy “ Cαβw
´5{4
12 ñ xSαpw1qSβpw2qψ

µpw3qy “
`2s?

2
pCΓqµαβw

´3{4
12 w

´1{2
13 w

´1{2
23

So altogether this gives

i

`4sg
2
open

ˆ pgopen
a

`sq
2gopen

`2s?
2
�δ

10pΣkqCΓµαβ ˆ pr123s ´ r132sq “
igopen
?

2`s
�δ

10pΣkqCΓµαβpr123s ´ r132sq

This is k-independent so is an even simpler amplitude that the last in some sense.

22. We are now in type II. Gravitons are NS-NS states. We take two of them in the p´1,´1q picture and the
remaining one in the p0, 0q picture. Again now, the constant demanded from unitarity now gets modified to
8pii
g2
c `

6
s

We look at

8πi

g2
c `

6
s

2g3
c

`2s

〈
“

cc̃e´φ´φ̄ψµψ̃σeik1X
‰

pz1q
“

cc̃e´φ´φ̄ψνψ̃ωeik2X
‰

pz2q
“

cc̃pBXρ ´
i

2
k ¨ ψψρqpBXλ ´

i

2
k ¨ ψψλqeik3X

‰

pz3q

〉
Let’s just look at the holomorphic part of the matter CFT, and the calculation goes almost exactly as in the
last problem

xψµpz1qe
ik1¨Xpz1q ψνpz2qe

ik2¨Xpz2q pi 9Xρ `
1

2
k3 ¨ ψψ

ρqeik3¨Xpz3qy

“
1

2
`4s

ˆ

ηµνkρ1
z12z13

`
ηµνkρ2
z12z23

`
ηµρkν3 ´ η

νρkµ3
z13z23

˙

Ñ
`4s
4
pηµνkρ12 ` η

µρkν31 ` η
νρkµ23q

loooooooooooooooomoooooooooooooooon

“:V µνρ

So the total amplitude becomes
πigc�δ

10pΣkqV µνρV σωλ

consistent with Polchinski.

23. We can put all our gaugini in the ´1{2 picture thankfully.
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Our vertex operators are gopen
?
`sλ

αe´φ{2Sαe
ikX . The relevant two-point correlator is

SαpzqSβpwq „
`spCΓµqαβψµ
?

2pz ´ wq

From considerations of the singularity structure, we get that the four-point correlator is:

`2spCΓµqαβpCΓµqγδ
2z12z34z23z34

`
`2spCΓµqαγpCΓµqαδ

2z13z24z32z42
`
`2spCΓµqαδpCΓµqβγ

2z14z23z42z43

Take z1 “ 0, z2 “ w, z3 “ 1, z4 “ 8. In order for the term going as 1{z to cancel so that the integral over
the line is well-defined, we need the (physical on-shell condition):

ΓµαβΓµγδ ` ΓµαγΓµβδ ` ΓµαδΓ
µ
βγ “ 0

and defining ´pk1 ` k2q
2 “ s etc. gives

i

`4sg
2
open

ˆ pgopen
a

`sq
4
�δ

10pΣkq ˆ
`2s
2

ż 1

0
x´`

2
ss´1p1´ xq´`

2
su´1pΓµαβΓµγδ ` xΓµαγΓµβδqr1234s

“ ´
ig2
open`

2
s

2
�δ

10pΣkq 2ˆ

ˆ

Γp´`2ssqΓp´`
2
suq

Γp1´ `2ss´ `
2
suq
puΓµαβΓµγδ ´ sΓ

µ
αδΓ

µ
βγqr1234s ` 2 perms.

˙

The minus sign comes from pulling an s or u out of the Γ functions. The factor of 2 comes from summing
over both orientations. Altogether we can write this as

´ 8ig2
open`

2
s�δ

10pΣkqKpu1, u2, u3, u4q

ˆ

Γp´`2ssqΓp´`
2
suq

Γp1´ `2ss´ `
2
suq
r1234s ` 2 perms.

˙

Kpu1, u2, u3, u4q “
1

8
pu ū1Γµu2ū3Γµu4 ´ s ū1Γµu4ū3Γµu2q

24. The bosonic action in 11D is:

1

2κ2

ż

d11x

b

´det Ĝ

„

R´
1

2 ¨ 4!
G2

4 `
1

p144q2
εM1...M11GM1...M4GM4...M8ĈM9M10M11



where G4 is the field strength of the 3-form Ĉ. From Appendix F, we have that the dilaton Φ “ 0 in 11D.
So the field σ will just be σ “ ´2φ “ 1

2 logG11 11, and A here is as it is in appendix F. Directly using the
bosonic equation F.3 gives the terms

1

2κ2

ż

d8x
?
´geσ

„

R´
1

4
e2σF 2

2



(Here the 1
4BµG11 11B

µpG11 11q
´1) will exactly cancel the 4Bµφd

µφ.

Now let’s look at the 3-form potential contribution. Because F is antisymmetric in all four indices, and we
only are compactifying along one dimension, only the first two terms of F.28 can contribute. They give

“
1

2κ2

ż

d10x
?
´geσ

„

´
1

2 ¨ 4!
F 2

4 ´
1

2 ¨ 3!
e´2σH2

3



and pH3qµνρ “ BrµpB2qνρs “ BCµν 11 so that H2
3 “ GµσGνλGρκHµνρHσλκ and Cµνρ “ Ĉµνρ ´ pĈνρ 11Aµ `

2 perms.q consistent with F.30.

Finally, let’s look at that last εM1...M11 term. At first it looks quite scary. Note we can write this last term
as 1

6dĈ3 ^ dĈ3 ^ Ĉ3. I have 11 indices to pick to be index 11. If I pick any of the indices of the last Ĉ I get
the term

1

12κ2
dC3 ^ dC3 ^B2

If I pick either of the dC terms, then after an integration by parts I get the same term. So the same term
contributes three times Revisit this logic. We thus get the requisite action contribution:

1

4κ2

ż

d10xB2 ^ dC3 ^ dC3
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25. Under A1 Ñ A1 ` dε and C3 Ñ C3 ` εH3 we see that obviously R, F2, B2, and H3 will stay the same. Now
dC3 Ñ dC3 ` dε^H3 while A^H3 Ñ A^H3 ´ dε^H3. Thus, F4 will stay the same.

It remains to look at the variation of B2 ^ dC3 ^ dC3. This is

B2 ^ dε^H3 ^ dC3 `B2 ^ dC3 ^ dε^H3.

These two terms cancel by antisymmetry of the indices.

26. Defining C 13 “ C3 ` A ^ B2 give the above transformation as A1 Ñ A1 ` dε, C 13 Ñ C 13 ` εH3 ` dε ^ B2 so
that dC 13 Ñ dC 13 ` dε^H3 ´ dε^H3 “ dC 13.

Now G4 “ dC 13´dA^B2 (Kiritsis wrote a small A, which I believe is a typo). Under the same transformation
we get that G4 is invariant as required.

Further, the transformation of C3 Ñ C3 ` dΛ2 implies that C 13 Ñ C 1 ` dΛ2 ñ dC 13 Ñ dC 13 ñ G4 Ñ G4 as
required. So C 13 now transforms trivially under the A transformation.

27. Take S “ S0 ` ie
´φ. The SL2pRq transformation acts on IIB supergravity as:

S Ñ
aS ` b

cS ` d
,

ˆ

B2

C2

˙

Ñ

ˆ

d ´c
´b a

˙ˆ

B2

C2

˙

The latter is also how H3, F3 will transform together. Now think of S as the modular parameter τ , e´φ “
S2 “ τ2 is the imaginary part. Think of H3, F3 as periods ω1, ω2 The IIB action in the Einstein frame can
be written as

SIIB “
1

2κ2

ż

d10x
?
´g

„

R´
1

2

BS BS̄

S2
2

´
1

2 ¨ 3!

|G3|
2

S2
´

1

4 ¨ 5!
F 2

5



`
1

8iκ2

ż

C4 ^
G3 ^ Ḡ3

S2

Now R,C4, and F5 do not change. The term BS BS̄
S2 transforms under SLp2,Rq exactly like the invariant

measure dτdτ̄
τ2
2

.

Finally, any term consisting of a pair G3, Ḡ3 in the numerator (either wedged or wedged with a hodge star)
divided by S2 will also remain modular invariant, as a quick Mathematica check confirms for us:

28. Again for some reason Kiritsis writes a small a, which again I think is a typo. We need to find which gauge
transformations need to be modified for C0, B2, C2, C4. There is a Chern-Simons term only in the definition
of F5 “ dC4 ´ C2 ^H3 so we see that the C0 Ñ C0 ` c (for c a constant, the only closed 0-form) keeps the
action invariant.

Taking B2 Ñ B2 ` dΛ1 will keep H3 and therefore F5 invariant, so this transform is legitimate.

Also, taking C4 Ñ C4 ` dΛ3 will keep F5 invariant as well and will modify the Chern-Simons term in the
full action C4 ^H4 ^ F3 by closed form, which will give no contribution.
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Finally, taking C2 Ñ C2 ` dΛ1 will change F5 Ñ F5 ´ dΛ1 ^H3. This must be compensated by changing
C4 Ñ C4 `

1
2Λ1 ^ H3 `

1
2dΛ1 ^ B2. Then F5 will be invariant. Moreover, the Chern Simons term in the

action C4 ^H3 ^ F3 have a variation

1

2
Λ1 ^H3 ^H3 ^ F3 `

1

2
dΛ1 ^B2 ^H3 ^ F3

After integration by parts this variation will contribute nothing, as required.

29. Clearly dimOp32q “ 32 ˆ 31{2 “ 496, which is necessary. For N “ 32 we also get from 7.9.29 that
TrpF 6q “ 15 trpF 4qtrpF 2q where tr is the trace of the curvature form in (an associated bundle for) the
fundamental representation Also using 7.9.30 we get TrpF 4q “ 24trpF 4q`3ptrpF 2qq2 and TrpF 2q “ 30trpF 2q.
Then, both sides of equation 7.9.26 become

15trpF 4qtrpF 2q “ ´
15

8
trpF 2q3 `

15

8
trpF 2q3 ` 15trpF 4qtrpF 2q

and we have agreement!

30. For an individual E8, we have exactly

TrpF 6q “
1

7200
TrF 2 “

1

48
TrF 2 ¨

1

100
pTrF 2q2 ´

1

14400
pTrF 2q3

Now for E8 ˆE8 we have the property that TrpFnq “ Tr1pF
nq `Tr2pF

nq where Tri means tracing over the
direct summands in the associated bundle that are acted on by the ith E8. Then we will have the relations

TrpF 6q “
1

7200
pTr1pF

2q ` Tr2pF
2qq3, TrpF 4q “

1

100
pTr1pF

2q ` Tr2pF
2qq2

So replacing TrpF 2q with Tr1pF
2q ` Tr2pF

2q in the prior derivation gives us again exact matching and thus
anomaly cancelation.

On the other hand Up1q has no Casimirs so TrpFmq “ 0 for all m. In particular this allows us to take
E8 ˆ Up1q248 or Up1q496 as a gauge group and remain anomaly-free. Check with Nick. Reconcile this
with

31. Now let us turn to the SOp16q ˆ SOp16q theory. To check anomalies, we look at the chiral terms. In this
case we have massless content consisting of spin 1{2 Majorana-Weyl fermions transforming in the p16, 16q
(positive chirality), and p1, 128q‘p128, 1q (negative chirality) representations. We also have massive fermion
fields in the p128, 128q representation that do not contribute to the anomaly. Note that we do not have a
gravitino, as there is no spacetime SUSY in this theory.

The positive chirality p16, 16q MW fermions have field strength F` “ F1 b 1 ` 1 b F2 valued in the vector
representation.

The negative chirality p1, 128q‘ p128, 1q MW fermions have field strength F̂´ “ F̂1‘ F̂2 valued in the spinor
representation.

Our anomaly polynomial is thus
1

2
pI1{2pR,F`q ´ I1{2pR,F´qq

Both representations have dimension 256, so the n
64p. . . q term in 7.9.22 cancels (note we did not need to

use that the dimension of the gauge group was 496 here!). We are left with (using tr for the trace in the
fundamental representation and trs for the spinor rep’n)

´
trrF 6

`s

720
`

trrF 4
`sTrrR2s

24 ¨ 48
´

trrF 2
`s

256

ˆ

TrrR4s

45
`
pTrrR2sq2

36

˙

´

˜

´
trSrF̂

6
´s

720
`

trSrF̂
4
´sTrrR2s

24 ¨ 48
´

trSrF̂
2
´s

256

ˆ

TrrR4s

45
`
pTrrR2sq2

36

˙

¸ (70)
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From explicitly expanding out pF1 b 1` 1b F2q
2,4,6 we get:

trF 2
` “ 16ptrF 2

1 ` trF 2
2 q

trF 4
` “ 16ptrF 4

1 ` trF 4
2 q ` 6trF 2

1 trF 2
2

trF 6
` “ 16ptrF 6

1 ` trF 6
2 q ` 15trF 2

1 trF 4
2 ` 15trF 4

1 trF 2
2

Together with the results 7.4E, 7.5E relating trS to tr we get

trSF
2
´ “ 16ptrF 2

1 ` trF 2
2 q

trSF
4
´ “ ´8ptrF 4

1 ` trF 4
2 q ` 6ptrF 2

1 ` trF 2
2 q

2

trSF
6
´ “ 16ptrF 6

1 ` trF 6
2 q ´ 15ptrF 2

1 trF 4
1 ` trF 2

2 trF 4
2 q `

15

4

`

ptrF 2
1 q

3 ` ptrF 2
2 q

3
˘

Altogether we get

We thus get a Green-Schwarz term

9

ż

d10xB

„

Tr1pF
4q ` Tr2pF

4q ´
1

4
pTr1pF

2q2 ` Tr2pF
2q2 ´ TrpF 2

1 qTrpF 2
2 q



We have exhausted the set of supersymmetric chiral anomaly-free theories, so the question remains whether
there are any non-supersymmetric theories that are chiral and anomaly-free in 10D. We will have only MW
fermions and perhaps self-dual 5-form fields contributing. It does not seem possible to cancel the IApRq with
just the I1{2pR,F q, so I expect any such 10 D non-SUSY theory will in fact contain only MW fermions.
They must come in pairs of opposite parities with equal particle number to cancel the gravitational anomaly.
Exhaustively showing this seems really difficult. Xi didn’t know the full answer

I know for a fact there is at least one other anomaly free theory in 10D, namely the USpp32q open string
Sugimoto theory (c.f. question 7.36).

32. We are orbifolding by a Z2. In the sector of the left-moving worldsheet fermions, only p´1qF acts nontrivially.
The twisted blocks are

Zfermions

„

h

g



“
1

2

1
ÿ

a,b“0

p´1qa`b`ab`ag`bh`gh
θ4
“

a
b

‰

η4

On the E8ˆE8s the untwisted block is just p1
2

ř

ab θ̄
8
“

a
b

‰

{η̄8q2. Performing the projection g requires that a, b
match for both factors, giving:

ZE2
8

„

0

1



“
1

4

1
ÿ

a,b“0

p´1qbθ̄8
“

a
b

‰

p2τq

η̄8p2τq
“

1

4

θ̄8
“

0
0

‰

` θ̄8
“

0
1

‰

η̄4pτqθ̄4
“

1
0

‰

pτq

Taking τ Ñ ´1{τ gives

ZE2
8

„

1

0



“
1

4

θ̄8
“

0
0

‰

` θ̄8
“

1
0

‰

η̄4pτqθ̄4
“

0
1

‰

pτq
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Finally taking τ Ñ τ ` 1 gives

ZE2
8

„

1

1



“
1

4

θ̄8
“

0
1

‰

` θ̄8
“

1
0

‰

η̄4pτqθ̄4
“

0
0

‰

pτq

The full partition function is thus

Z “
1

2

1
ÿ

h,g“0

ZE2
8

„

h

g



Zfermions

„

h

g



We see that this is modular invariant, as individually both Zfermions and ZE2
8

are invariant under τ Ñ ´1{τ .

Their anomalous changes under τ Ñ τ ` 1 from the η4 powers in the denominator are cancelled in pairs.

The gauge group corresponds to the invariant (diagonal) E8 sublattice of E8 ˆ E8 (Confirm). At the
massless level, we still have the gravity supermultiplet (G,B,Φ), as well as gauge bosons with gauge group
E8 from the untwisted sector. What about the twisted sector?

The gravitino has been projected out, so this theory no longer has spacetime supersymmetry. The theory is
still chiral, and since the partition function is modular invariant, we are also guaranteed that it is anomaly
free. However, it has a tachyon.

Unfinished

33. Let’s assume we do not have self-dual 2-form gauge fields that give self-dual 3-form field strengths and we
do not consider an IA contribution. Recall we can write

I1{2 “

D{2
ź

i“1

xi{2

sinhpxi{2q

where xi are the off-diagonal entries in the 2ˆ 2 block decomposition of R0 “ dω. All of this is easy to do
in Mathematica.

For n spin 1/2 fermions and a gravitino we thus get the forms

I1{2pR,F q “
n

576

ˆ

TrpR4q

10
`
pTrR2q2

8

˙

´
TrF 2

96
TrR2 `

TrF 4

24

I3{2pRq “
49

576ˆ 2
TrpR4q ´

43

576ˆ 8
TrpR2q2

The Anomalies.nb also has the 10D cancelation if anyone is interested.
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34. In the absence of a linear dilaton background, the RR fields simply satisfy the equations of motion d‹Fp`2 “ 0,
as well as the Bianchi identities dFp`2 “ 0. We want to show that, the tree level effective action of type
II SUGRA in the string frame will have no coupling at tree level between the RR field strengths and the
dilaton.

In a linear dilaton background Φ “ Q
?

2`s
X9, the supercurrent G will be modified to

G “ i

?
2

`2s
ψ ¨ BX ´ i

?
2 Φ,µBψ

µ ñ G09
1
?

2
ψ0ppµ ` iΦ,µq

I’m not sure about a possible constant factor multiplying the second term in the definition of G, but it is as
in Polchsinki 12.1.18. Acting on the RR ground states, ψ0 gives an additional Γ matrix, but the Φµ term
will modify the Bianchi and free massless equations as:

pBµ ´ Φ,µq ^ F “ pBµ ´ Φ,µq ^ ‹F “ 0 ñ eΦde´ΦF “ eΦd ‹ pe´ΦF q “ 0.

This implies that we should view F̂ “ e´ΦF as the field strength, and so the RR states correspond to eΦF
(ie they already incorporate a factor of eΦ). The RR charges are surface integrals of F̂ “ dC. Thus the
dilaton coupling to the RR field strength F̂ 2m is e2mΦe2pk´1qΦF 2m. In particular, at tree level the F 2 term
does not couple to the dilaton.

35. The (minimal) supergravity multiplet contains the left-handed 3{2 gravitino as well as a right-handed self-dual
3-form field. The tensor multiplet contains a left-handed anti-self-dual 3-form field and the right-handed 1{2
dilatino. Combining one of the NT tensor multiplets with the gravity multiplet gives an anomaly contribution
of:

I3{2 ´ I1{2

The vector multiplet contains the left-handed gaugino. The hypermultiplet (which BTW Kiritsis has not
yet defined this) apparently contains a right-handed hyperino (wow fancy).

So far this gives
I3{2 ` pNV ´NH ´ 1qI1{2pRq

But we have NT ´ 1 addition tensor multiplets which will then contribute

I3{2 ` pNV ´NH ´NT qI1{2pRq ` pNT ´ 1qIApRq

A quick calculation for an anti-self-dual tensor gives

IASD “ ´

ˆ

7TrR4

1440
´
pTrR2q2

144ˆ 4

˙

the minus sign out front is from being anti -self dual.

As before, in order to have factorization of the anomaly polynomial for the GS mechanism to work, we need
the TrR4 terms to cancel. This gives our desired constraint

49

144ˆ 8
`
pNV ´NH ´NT q

144ˆ 40
´

7

144ˆ 10
pNT ´ 1q “ 0 ñ NH ´NV ` 29NT “ 273

I think Kiritsis has a typo in this equation and it should be `29NT rather than ´29. This is consistent with
BBS exercise 5.9.

36. Another 10D nonsupersymmetric string theory without tachyon! This one is open+closed. The Op16qˆOp16q
is the only closed non-SUSY string theory in 10D without tachyon. Is this the only open one? The
relevant reference is arXiv:hep-th/9905159

This is a theory of strings stretching D9´D9̄ branes.

We have λ, λ̃ are positive chirality spinors belonging to the adjoint of Sppnq (equivalent to the symmetric

representation and traceless antisymmetric representation of Sppmq respectively, while ψ, ψ̄ are
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negative chirality spinors belonging to the bi-fundamental representation of SOpnq ˆ SOpmq. We take n “
0,m “ 32.

As in the SOp16q ˆ SOp16q example, the lack of spacetime SUSY means there is no gravitino contribution,
and we look only at the massless fermion content:

Iλ ` Iλ̄ ´ 2Iψ

The gravitational anomaly cancels for free since we have the same number of left and right chirality fermions.
λ̄ does not contribute to the gauge or mixed anomaly, since it transforms trivially under USpp32q.

Finish
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Chapter 8: D-Branes

1. First, a simple magnetic monopole for a 1-form gauge field in D spacetime dimensions has a radial magnetic

field Br “
Q̃1

ΩD´2rD´2 where ΩD´2 “ 2πd{2Γpd{2q is the volume of a unit D ´ 2 sphere. This way, the flux of

the solution over any D ´ 2 sphere surrounding the (point) monopole will be Q̃1.

Upon taking the Hodge star we get the solution is F “ Q̃1 sin θdθ ^ dφ. We can write this as A “

Q̃1pc´ cos θqdφ. Taking c “ 1 we get A vanishes at θ “ 0 (which we need since the φ coordinate degnerates
there) while taking c “ ´1 we get A vanishes at θ “ π, which we also need.

We cannot have both solutions, and so we realize we are dealing with two As, corresponding to local sections
of a line bundle over S2 on different hemispheres. Let A` be well-defined on all points on S2 except θ “ π.
Then A` is a section of a line bundle on the punctured sphere. The punctured sphere is contractible so any
fiber bundle over it is trivial, so A` is just a function on the punctured sphere S2ztθ “ πu. So let’s define
A` “ Q̃1p1´ cos θqdφ. Similarly, we define A´ to be the nonsingular A on the sphere with θ “ 0 removed,
namely A´ “ Q̃1p´1´ cos θqdφ.

On the overlap, A` ´A´ differ by an integer, which labels the degree of “twisting” of this line bundle over
S2.

For a p form, our monopole will now be spatially extended in p ´ 1 directions. Label these (locally),
by x1 . . . xp´1. Time is x0. Locally transverse to these coordinates will be r, ϕ1 . . . , ϕD´1´p, where ϕi

parameterize a D ´ 1´ p sphere enclosing the monopole. The field strength looks like:

F “ Q̃p ΩD´p´1

where Ω is the canonical D ´ p´ 1-sphere area form:

Ω “ sinD´p´2pϕ1q sinD´p´3pϕ2q . . . sinpϕD´p´2qdϕ1 ^ . . . dϕD´p´1

This can be written (unfortunately unavoidably) in terms of a hypergeometric function:

A “ 2F1

ˆ

1

2
,
D ´ p´ 1

2
,
D ´ p` 1

2
, sin2pϕ1q

˙

sinD´p´1pϕ1q

D ´ p´ 1
dϕ2 ^ ¨ ¨ ¨ ^ dϕD´p´1

there is no need for an overall constant, as the function above vanishes at both ϕ1 “ 0 and π, however this
is compensated by the hypergeometric function having a branch cut at ϕ1 “ π{2. Across this cut, it will
have a discontinuity set by an integer depending on the convention of the arcsin function, and again we will
have A` ´A´ differing by an integer. The same quantization condition follows.

Again A` will be defined on the SD´p´1 sphere minus the south-pole (this is homeomorphic to the D´p´1
ball, and hence contractible, so again the line bundle trivializes and A` is a bona-fide function for any D, p)
and A´ is similarly defined on the sphere with the excision of the north pole.

2. Our simply charged point particle with a Wilson line A9 “ χ{2πR turned on will have an action

S “

ż

dτ

ˆ

1

2
9xM 9xM ´

m2

2
` qA9 9x9

˙

looooooooooooooooomooooooooooooooooon

L

The canonical momentum will be pi “ 9xµ for µ “ 0 . . . 8 and p9 “ 9x9 `
qχ

2πR . Consequently, our hamiltonian
is

H “ pM 9xM ´ L “ 1

2
pµp

µ ` p9pp9 ´
qχ

2πR
q ´

„

1

2
pp9 ´

qχ

2πR
q2 ´

m2

2
` pp9 ´

qχ

2πR
q
qχ

2πR



“
1

2

´

pµp
µ ` pp9 ´

qχ

2πR
q2 `m2

¯

“
1

2

˜

pµp
µ `

ˆ

2πn´ qχ

2πR

˙2

`m2

¸
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3. For a string satisfying Dirichlet boundary conditions, the total momentum is not conserved (along the
directions associated with the D boundary conditions). This is easily interpretable as momentum transfer
to the brane that it is attached to.

4. For an open string of state |ijy, A9 will act as
χi´χj

2πi . Since this is an open string with no winding, we can
only have momentum contribution, and so we will get a mass formula

m2
ij “

N̂ ´ 1
2

`2s
`

ˆ

n

R
´
χi ´ χj

2πR

˙2

In particular at the lowest (massless) level for a string without momentum we will get the desired spectrum

m2
ij “

ˆ

χi ´ χj
2πR

˙2

5. For completeness, we will do both the gauge boson and scalar scattering. These come from the NS sector,
and are given by:

V a,µ
´1 “ gpλ

aψµe´φceipX , V a,µ
0 “

gp
?

2`s
λapi 9X ` 2p ¨ ψ ψµqceipX

We can explicitly scatter four such gauge bosons - two in the ´1 picture and two in the 0 picture.

iCD2�δ
10pΣkq ˆ g4

p xcV´1py1qcV´1py2qcV0py3qcV0py4qy ` 5 perms.

“
i�δp`1

g2
p`

4
s

ˆ
g4
p

2`2s
xrψµ1eik1Xsy1 rψ

µ2eik2Xsy2 rpi
9Xµ3 ` 2k3 ¨ ψψ

µ3qeik3Xsy3 rpi
9Xµ4 ` 2k4 ¨ ψψ

µ4qeik43Xsy4 y

ˆ xcpy1qcpy2qcpy3qy xe
´φpy1qe´φpy2qy

Take y1 “ 0, y2 “ 1, y3 “ 8 and integrate y4 “ y from 0 to 1 (then we’ll have 5 more terms coming from
permuatations). There are five contributions.

• Contracting the ψµ1p0qψµ2 together and allowing the remaining 4 terms at y3, y4 to contract either
amongst themselves or with various vertex operators.

• Not contracting the first two ψ and Contracting the i 9Xpy3q with any of the vertex operators while
contracting the last ψ with the first two

• Not contracting the first two ψ and contracting the i 9Xpy4q with any of the vertex operators while
contracting the third ψ with the first two

• Forgetting the i 9X, and contracting the ψ at y1 with the various ψ at y3 (consequently the ψ at y2 with
the ψ at y4)

• Swapping 3 with 4 in the above (this gives an overall minus sign by fermionic statistics)

Integrating this will give two types of terms: ηabηcd and ηabkckd. Our shorthand replaces the superscript µi
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by just i. Below, I underline the terms that contribute to the first type:

ig2
p�δ
p`1

`4s

ż 1

0
dy
y2`2sk1¨k4y2`2sk2¨k4

2`2s

#

´ `2sη
12

„

2`2sη
34 ` p2`2sq

2p´η34k3 ¨ k4 ` k
3
4k

4
3q ` p2`

2
sq

2pk3
2 ` k

3
4q

´k4
1

y
`

k4
2

y ´ 1

¯



` `2sp2`
2
sq

2
“

pk3
2 ` yk

3
4qp´k

1
4η

24 ` k2
4η

14q
‰

` `2sp2`
2
sq

2
”´k4

1

y
`

k4
2

y ´ 1

¯

p´k1
3η

23 ` k2
3η

13q

ı

` `2s
p2`2sq

2

y ´ 1

“

η13η24k3 ¨ k4 ` η
34k1

3k
2
4 ´ η

13k2
4k

4
3 ´ η

24k3
4k

1
3

‰

´ `2s
p2`2sq

2

y

“

η14η23k3 ¨ k4 ` η
34k2

3k
1
4 ´ η

13k2
4k

4
3 ´ η

24k3
4k

1
3

‰

+

(71)
Using s “ ´2`2sk1 ¨ k2 etc we see the underlined terms contribute

ig2
p�δ
p`1

`2s

„

Γp1´ uqΓp1´ tq

Γp2` sq
p´p1` sqη12η34q `

Γp1´ uqΓp´tq

Γp1` sq
η14η23s`

Γp´uqΓp1´ tq

Γp1` sq
η14η23s



r1423s

“
ig2
p�δ
p`1

`2s

Γp´uqΓp´tq

Γp1` sq
p´tuη12η34 ´ suη13η24 ´ stη14η23qr1423s

The non-underlined terms are more involved but end up contributing twelve terms that yield:

ig2
p�δ
p`1

`2s

„

Γp´uqΓp1´ tq

Γp1` sq
2`2sη

12k3
2k

4
1 ` . . .



r1423s “
ig2
p�δ
p`1

`2s
2`2s

Γp´uqΓp´tq

Γp1` sq

“

tη12k3
2k

4
1 ` 11 perms.

‰

r1423s

Here my Mandelstam variables are dimensionless. The result with dimensionful Mandelstam variables is:

ig2
p�δ
p`1`2s

ˆ

Γp´`2ssqΓp´`
2
suq

Γp1` `2stq
K4pki, eiqpr1234s ` r4321sq ` 2 perms.

˙

(72)

with K4pki, eiq “ ´tue1 ¨ e2e3 ¨ e4 ` 2spe1 ¨ e3 e2 ¨ k4e4 ¨ k2 ` 3 perms.q ` 2 perms.

Now for the four transverse scalar amplitude, our vertex operators look like:

V a,µ
´1 “ gpλ

aψµe´φceipX , V a,µ
0 “

gp
?

2`s
λapX 1 ` 2p ¨ ψ ψµqceipX

here X 1 “ BσX “ 2iBX. Moreover, we have Dirichlet boundary conditions on both the Xs and the fermions
ψ. The ψ are still in the NS sector since we’re looking at the (bosonic) scalar field scattering.

Crucially, the correlators for the ψ field are the same for DD boundary conditions. We had x 9Xµpzq 9Xνpwqy “

´
`2s
2 η

µνpz ´ wq´2 while the correlators for X 1 pick up a minus sign xX 1ipzqX 1jpwqy “ `2s
2 η

ijpz ´ wq´2. This
ends up giving the exact same result however, since the vertex operators contain X 1pzq while the prior ones
contain i 9Xpzq.

Finally, contracting X 1i with any of the eikX will give zero, since the open strings only have momenta parallel
to the Dp brane while the X 1i is transverse. This gives a simpler amplitude than (72):

ig2
p�δ
p`1`2s K

1
4

ˆ

Γp´`2ssqΓp´`
2
suq

Γp1` `2stq
pr1234s ` r4321sq ` 2 perms.

˙

(73)

with K 1
4 “ ´ptuδ12δ34` suδ13δ24` stδ14δ23q. In the case where there are no CP indices we expand the ΓΓ{Γ

functions:

ig2
p�δ
p`1`2sK

1
4 ˆ

ˆ

2

`4ssu
`

2

`4sst
`

2

`4stu

˙

“ ig2
p�δ
p`1`2sK

1
4 ˆ

ˆ

2ps` t` uq

`4sstu

˙

“ 0

So to leading order in the string length this is zero. This is consistent with the Up1q DBI action, as the
scalars do not directly interact with the Up1q gauge field Aµ (in general a real scalar cannot be charged
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under a Up1q gauge field). That is, at leading order the action is free in the X fields. Taking ξµ “ Xµ for
µ “ 0 . . . p and Xi independent functions, we get:

ż

dp`1ξ
b

detGMNBαXMBβXN “

ż

dp`1ξ
b

det δαβ ` δijBαXiBβXj Ñ

ż

dp`1ξ
δαβδij

2
BαX

iBβX
j

This is just a free theory. Its also quick to see that the 3-point function of the transverse scalars vanishes at
tree level in string perturbation theory.

6. I have done the previous problem in full generality, including CP indices. So now let’s again look at the s
channel. As sÑ 0 so that t “ ´u we get from the δ12δ34 term a pole in s going as:

´ig2
p�δ
p`1`2stuˆ

ˆ

1

`4ssu
pr1234s ` r4321sq `

1

`4sst
pr1243s ` r3421sq

˙

“ ´i�δ
p`1

g2
p

`2s

t

s
pr1234s`r4321s´r1243s´r3421sq

We can rewrite this as:

´i�δ
p`1

g2
p

`2s

t

s
pTrp12r34sq ´ Trpr34s21q “ ´i�δ

p`1
g2
p

`2s

t

s
Trpr12sr34sq

The pole at s “ 0 corresponds to an exchange of a gluon from the 1
2pDµX

Iq2 term in 8.6.1.

We also have a further term that does not involve a pole in s. Let’s still take 1 and 2 equal. Expanding to
this order we find:

´i�δ
p`1

g2
p

`2s

´

Trpr12sr34sq ` Trpr13sr24sq ` Trpr14sr23sq
¯

This comes from exactly the potential term 1
4 rX

I , XJ s2 in the effective action 8.6.1. Come back to that
last term

7. Momentum conservation will imply p‖ “ 0 for the NSNS states. Our vertex operator will take the form

ζµνcc̃e
´φe´φ̃ψµψ̃νeikKX . We can use the doubling trick to get ζµνcpzqcpz

˚qe´φpzqe´φpz
˚qψµψ̃νeikKX and we

are automatically in the ´2 picture.

The states from in the p` 1 parallel directions give just the correlator xψµpiqψνp´iqy “ ´ηµν

2i (importantly
NN fermions in NSNS have 2-point function ´1{pz ´ w̄q c.f. 4.16.22). We also get a �δp`1 from momentum
conservation.

The states in the transverse (Dirichlet) directions give δij

2i correlator. Defining the diagonal matrix Dµν “

pηαβ, δijq we get a correlator proportional to

´
gc

2`2sg
2
p
�δ
p`1pk‖qD

µν “ ´
p2π`sq

2Tp
2

Vp`1D
µν

Check with Victor. Confirm the tension relation. This diagonal tensor Dµν allows for a nonvanishing
dilaton and graviton tadpole, but will not couple to the antisymmetric Kalb-Ramond B-field.

8. Our RR fields have picture pr, sq for r, s half-integers. In order to have total picture ´2 on the disk, we need
to pick this to be the (asymmetric) p´3{2,´1{2q picture. The construction of this operator is complicated.
I expect that the p´1{2,´1{2q operator that we are familiar with is basically e´φG0 times the p´3{2,´1{2q
operator. This means that the p´3{2,´1{2q will be one less power of momentum and one less gamma
matrix than the p´1{2,´1{2q operator. Picking out the p ` 2 form part of the p´1{2,´1{2q operator (in
Blumenhagen’s convention 16.21) gives

1

4

`s
?

2
FαβSαpzqS̃βpz̄qe

´φ{2´φ̄{2 Ñ
1

4

`s
?

2

Fµ1...µp`2

pp` 2q!
pΓµ1...µp`2qαβSαS̃βe

´φ{2´φ̄{2

Here Sα “ S:αΓ0 as is standard in a spinor product. BRST will require that F and ‹F be closed.
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Changing picture means removing one power of momentum and one gamma matrix. This anti-differentiates
F , which must be proportional to the potential C since prµ1

Cµ2...µp`2s “ Fµ1...µp`2. It is then reasonable to
expect the corresponding p´3{2,´1{2q operator to be proportional to

e´3φ{2´φ̄{2 Cµ1...µp

pp` 1q!
pΓµ0...µpqαβSαS̃β

Note both e´3φ{3Sα and e´φ̃{2Sβ remain primary operators, having dimensions 3{8 ` 5{8, so this is indeed
a reasonable guess. Now, for the D-brane boundary conditions we have

pδKS̃qβpz̄q “ Sβpz
˚q, δK “

9
ź

i“p`1

δi, δi “ ΓiΓ11

This reflects the Sβ spinor along all the Dirichlet directions and keeps it the same across the Neumann
directions.

From 5.12.42 of Kiritsis I expect the leading-order of the SαS̃β correlator to be Cαβ{pz ´ z̄q10{8 and the
e´3φ{2ẽ´φ{2 will contribute pz ´ z̄q´3{4 to make this a primary correlator transforming as Cαβpz ´ z̄q

´2. For
Neumann boundary conditions, Cαβ is the charge conjugation matrix. For the D-brane, it will be δKC.

Only in the IIB case will Cαβ will be nonzero between Sα and S̃β since Sα and S̃β transform in the same
representations. Each βi changes the chirality. So the amplitude in IIB will vanish if we have an even number
of βi, equivalently 9 ´ p is odd, so we will have only odd dimensional branes in IIB as required and even
dimensional branes in IIA as required.

We thus get an amplitude proportional to:

A “ i
gc�δ

p`1

g2
p`

2
s

Cµ0...µp

pp` 1q!
TrpΓµ1...µpΓp`1 . . .Γ9Γ11q “ i

gc�δ
p`1

g2
o`

2
s

Cµ0...µpε
µ0...µp
pp`1q

pp` 1q!

Comparing with the 8.4.4, which should factorize as App‖q2G9´pppKqδ
p`1pp‖q we see that the normalization

of our on-shell amplitude is in fact:

A “ iVp`1

?
2πp2π`sq

3´p
Cµ0...µpε

µ0...µp
pp`1q

pp` 1q!

This is consistent with other results c.f. Di Veccia, Liccardo Gauge Theories from D-Branes, arXiv:0307104
but I think they’re not incorporating 1{αp “ 2κ2

10 in the propagator. Taking this factor into account and
dividing by it followed by taking a square root gives us an on-shell amplitude of:

A “ iVp`1
1

p2π`sqp`sgs

Cµ0...µpε
µ0...µp
pp`1q

pp` 1q!
“ iVp`1TpCp`1 ^ εpp`1q.

This is exactly what would come from a minimal coupling term of the form iTp
ş

Cp`1.

9. We take one vertex operator to be in the p´1,´1q picture and gauge fix it to lie at z “ i, and take the
other in the p0, 0q picture lying at iy, fixing y to range from 0 to 1. In doing the doubling trick, we take
X̃µ “ Dµ

νXν , ψ̃µ “ Dµ
νψν and φ̃ “ φ, c̃ “ c.

We wish to calculate the correlator:

´
g2
c

g2
o`

4
s

2

`2s
xrψµψ̃µ̄eik1Xs0 rpiBX

µ `
1

2
k2 ¨ ψψ

νqpiB̄X ν̄ `
1

2
k2 ¨ ψ̄ψ̄

ν̄qeik2Xsyy

The simplest way to do this problem is to recognize that after the doubling trick has been applied, we are
calculating the a correlator of four fields at collinear insertions on the Riemann sphere.

ε1
µµ̄ε

2
νn̄uD

µ̄
µ1D

ν̄
ν1 xV

µ
´1pp1q, V

µ1

´1pDp1q, V
ν

0 pp2q, V
ν1

0 pDp2qy

83



We can map these four points to 0, 1, y,8 and take the integral to be from y “ 0 to y “ 1, with appropriate
jacobian.

This is nothing more than the 4-gluon amplitude calculated previously, which gave

2i
g2
o

g2
p
�δ
p`1`2s

Γp´`2ssqΓp´`
2
suqΓp´`

2
ssq

Γp1` 2`2stq
Ñ K4pki, eiq

Here we do not have three terms for y in different regions - we only have one. Our momenta are p1, p2, Dp1, Dp2

giving: The only caveat is that in that case, we had boundary normal ordering. We can view this as
`heres “ `theres {2. This is reflected by halving the momenta of the open strings.

pthere1 Ñ phere1 {2, pthere2 Ñ phere2 {2

pthere3 Ñ D ¨ phere1 {2, pthere4 Ñ D ¨ phere2 {2

This gives us (here we do not have three terms for y in different regions - we only have one)

2i
g2
o

g2
p
�δ
p`1`2s

Γp´`2ssqΓp´`
2
suq

Γp1` 2`2stq
Ñ K4pki, eiq Ñ 2i

g2
o

g2
p
�δ
p`1`2s

Γp`2sp1 ¨ p2{2qΓp`
2
sp1 ¨Dp1{2q

Γp1` `2sp1 ¨ p2{2` `2sp1 ¨Dp1{2q

Following Myers, we can write t “ ´2p1 ¨ p2 as the momentum transfer to the brane, and q2 “ p1 ¨Dp1{2 as
the momentum flowing parallel to the brane. The Gamma ratio then looks like:

Γp´`2st{4qΓp`
2
sq

2q

Γp1` `2st{4` `
2
sq

2q

If we held t fixed and took the large q limit we would get a series of open string poles. This corresponds to
a closed string splitting in two, with its ends on the D-brane as an intermediate state.

Now let’s hold q2 fixed and take the large t limit. This is the limit of large energy transfer - the Regge limit.
From the ratio of ΓΓ{Γ we see that there are closed string poles. This can be interpreted as the closed strings
interacting with the long-range background fields generated by the presence of the Dp brane.

Comment about pole structure

10. In the D9 brane case, we have seen that the open string boundary only preserves the sum of Q ` Q̃. If
we T-dualize in the 9 direction, we act on the right-moving sector by spacetime parity, so that necessarily
B̄X9 Ñ ´B̄X9, ψ̃9 Ñ ´ψ̃9, S̃α Ñ δ9S̃α (up to a phase in that last one). Here δ9 “ Γ9Γ11. Our spacetime
supersymmetry generator Q̃α “

1
2πi

ş

dz̄ e´φ{2Sα therefore will be mapped to δ9Q̃. Thus, in the T-dual

picture we preserve the supercharge Q1 ` δ9Q̃1.

Iterating this procedure in other directions we get that in general we preserve Q ` δKQ̃, with δK “
ś

i δ
i,

where i runs perpendicular to the brane. Note that T-dualities along different directions do not commute!
They commute up to a p´1qFR , and so the order that we do them matters. In this case the δi act by
left-action.
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11. (As in Polchinski section 13.4) From the previous problem, we see that the first D-brane preserves the

supercharges Q ` δKQ̃ while the second preserves the supercharges Q ` δK
1
Q̃ “ Q ` δKpδK

´1
δK
1
Q̃q so the

supersymmetries that will be preserved must be of both forms. This is in one-to-one correspondence with

spinors invariant under δK
´1
δK
1
. This operator is a reflection in the direction of the ND boundary conditions

(the directions orthogonal to the Dp1 brane in the Dp brane). Since in either IIA or IIB p and p1 must differ
by an even integer, the number of mixed boundary conditions–call it ν–must be even. Then we can write

δK
´1
δK
1

as a product of rotations by π along each of the ν{2 planes δK
´1
δK
1
“ eiπpJ1`¨¨¨`Jν{2q. Each j acts

in a spinor representation, so that eiπJi has eigenvalues ˘i. If ν{2 is odd, this makes δK
´1
δK
1
“ ´1 so this

will not preserve supersymmetry. We thus need ν{2 even, or ν “ 0 mod 4.

From this I posit that the static force between two branes vanishes precisely when ν “ 0 mod 4.

12. Now let’s confirm this guess with an amplitude calculation. Take p1 ď p. We work in lightcone gauge. We
do a trace over an open string with p1 NN boundary conditions, p ´ p1 “ ν DN boundary conditions, and
8´ p DD boundary conditions.

We begin from the open string point of view in calculating the cylinder amplitude. Chapter 4 has done the
NN, DD, and DN boson amplitudes for us. The difficulty lies almost entirely in the fermions. Recall the
following:

η “ q1{24
8
ź

n“1

p1´ qnq

d

θr00s

η
“ q´1{48

8
ź

n“0

p1` qn`1{2q

d

θr10s

η
“
?

2 q1{24
8
ź

n“0

p1` qnq

d

θr01s

η
“ q´1{48

8
ź

n“0

p1´ qn`1{2q

Further from 4.16.2 recall that for modes bn`1{2, bn corresponding to NS and R sectors the NN and DD
boundary conditions give:

• NN: b̄n`1{2 “ ´bn`1{2, b̄n “ bn

• DD: b̄n`1{2 “ bn`1{2, b̄n “ ´bn

For DN we have the same result as for DD but now the R sector is half-integrally modded and the NS
sector in integrally modded. Now lets compute partition functions. Our final answer will be a sum over spin
structures NS+, NS-, R+, R-. Taking q “ e´2πt we see TrrqL0´c{24s “

• NS+:

– NN: q´1{48
ś

np1` q
n`1{2q “

a

θr00s{η

– DD: q´1{48
ś

np1` q
n`1{2q “

a

θr00s{η

– DN:
?

2q´1{48q1{16
ś

np1` q
nq “

a

θr10s{η (
?

2 when raised to a power counts ground state degen-
eracy)

• NS-:

– NN: q´1{48
ś

np1´ q
n`1{2q “

a

θr01s{η

– DD: q´1{48
ś

np1´ q
n`1{2q “

a

θr01s{η

– DN: 0

• R+

– NN:
?

2q1{24
ś

np1` q
nq “

a

θr10s{η

– DD:
?

2q1{24
ś

np1` q
nq “

a

θr10s{η

– DN: q´1{48
ś

np1` q
n`1{2q “

a

θr00s{η

• R-

– NN: 0

– DD: 0

– DN: q´1{48
ś

np1´ q
n`1{2q “

a

θr01s{η
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Notice NN vs DD boundary conditions have no effect on fermion contribution to partition function. This
is because, although the left moving and right-moving modes are identified differently, the mode excitations
look exactly the same.

On the other hand for NN and DD the bosons will contribute 1{η and will contribute
a

η{θr01s for DN.
Thus we have the following contributions to the partition function (here N is the number of NN boundary
conditions):

NS` “
VN

p2π`sqN

ż

dt

2t

e
´2πt

´

∆x
2π`s

¯2

p
?

2tqNη8´ν
`

θr01s{η
˘ν{2

˜

θ
“

0
0

‰

η

¸p8´νq{2 ˜

θ
“

1
0

‰

η

¸ν{2

NS´ “ ´
VN

p2π`sqN

ż

dt

2t

e
´2πt

´

∆x
2π`s

¯2

p
?

2tqNη8

˜

θ
“

0
1

‰

η

¸8

δν“0

R` “ ´
VN

p2π`sqN

ż

dt

2t

e
´2πt

´

∆x
2π`s

¯2

p
?

2tqNη8´ν
`

θr01s{η
˘ν{2

˜

θ
“

1
0

‰

η

¸p8´νq{2 ˜

θ
“

0
0

‰

η

¸ν{2

R´ “
VN

p2π`sqN

ż

dt

2t

e
´2πt

´

∆x
2π`s

¯2

p
?

2tqN
δν“8

All theta and eta functions are evaluated at it. The circumference of the cylinder is 2πt. The relative
signs in front of the different contributions come from a combination of defining the NS vacuum to have
negative fermion and modular invariance (equivalently spacetime spin-statistics). Note when ν “ 4 we only
get contributions from NS+ and R+, which exactly cancel. Similarly when ν “ 4 or 8, by the abstruse
identity of Jacobi we will get cancelation again.

We can interpret our result as a one-loop free energy. Differentiating this w.r.t. ∆x would then give us
our force. For ν “ 0, 4, 8 we do not get a force, consistent with the D-brane configuration preserving
supersymmetry.

For the sake of completeness, and to clear my own confusion once and for all, I will also do this from the
POV of the boundary state formalism (not developed in Kiritsis). For a good reference see the last chapter
of Blumenhagen’s text on conformal field theory.

For a single free boson, after the flip pσ, τqopen Ñ pτ, σqclosed the boundary states |Ny , |Dy must satisfy

pαn ` α̃´nq |Ny “ 0, pαn ´ α̃´nq |Dxy “ 0,

This gives boundary states:

|Ny “
1

p2π`s
?

2q1{2

ź

n

e´
1
n
α´nα̃´n |0, 0; 0y “

ÿ

~m“tmiu

|~m,Θ~m; 0y

|Dxy “ p2π`s{
?

2q1{2
ż

dk

2π
eipx

ź

n

e´
1
n
α´nα̃´n |0, 0; ky

The overall normalization came from comparing with cylinder amplitudes. Θ here is CPT reversal. Similarly
for a fermion

pψn ` ψ̃´nq |Ny “ 0, pψn ´ ψ̃´nq |Dxy “ 0,

So with GSO projection we get:

|N,NSNSy “ PLPR
ź

r

eψ´rψ̃´r |0y , |N,RRy “ PLPR
ź

n

eψ´nψ̃´n |0y

|D,NSNSy “ PLPR
ź

r

e´ψ´rψ̃´r |0y , |D,RRy “ PLPR
ź

n

e´ψ´nψ̃´n |0y

Here r runs over half-integers in the NSNS sector and n runs over integers in the RR sector. PL “
1
2p1 `

p´1qF q, PR “
1
2p1 ` p´1qF̃ q are our GSO projections, defined to project out the tachyon in the NS sector

and project out one of the spinors in the R sector.
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For the boson, it is quick to see that (` “ 1{t)

xN | e´π`pL0`L̃0´c{12q |Ny “
V

2π`s
?

2ηpi`q
“

V

p2π`sq
?

2tηpitq

xD| e´π`pL0`L̃0´c{12q |Dy “
2π`s

?
2tηpitq

ż

dk

2π
eik∆xe´π`

2
sp

2{2t “
e
´2πt

´

∆x
2π`s

¯2

ηpitq

xD| e´π`pL0`L̃0´c{12q |Ny “
1
?

2

1
ś

np1` q
2nq

“

d

ηpi`q

θ
“

1
0

‰

pi`q
“

d

ηpitq

θ
“

0
1

‰

pitq

These are exactly what we’ve already gotten many times before from our trace over the open string bosonic
states. The states |Ny , |Dy must be a sum of both the RR and NSNS sector fermion states. We do not know
the relative coefficients.

Let’s look at the NSNS contributions. For the NN boundary conditions, the NSNS sector with projection
consists of two terms:

xN,NSNSunproj | e
´π`pL0`L̃0´c{12q |N,NSNSunprojy “

˜

θ
“

0
0

‰

pi`q

ηpi`q

¸#NN{2

“

˜

θ
“

0
0

‰

pitq

ηpitq

¸#NN{2

xN,NSNSunproj | p´1qFL“FRe´π`pL0`L̃0´c{12q |N,NSNSunprojy “

˜

θ
“

0
1

‰

pi`q

ηpi`q

¸#NN{2

“

˜

θ
“

1
0

‰

pitq

ηpitq

¸#NN{2

Replacing N with D would give the exact same factor in both cases WHY? (explain: bc we need to match
on both sides and so both minuses cancel in the exponent). For DN boundary conditions the NSNS sector
give the two terms:

xD,NSNSunproj | e
´π`pL0`L̃0´c{12q |N,NSNSunprojy “

˜

θ
“

0
1

‰

pi`q

ηpi`q

¸ν{2

“

˜

θ
“

1
0

‰

pitq

ηpitq

¸ν{2

xD,NSNSunproj | p´1qFL“FRe´π`pL0`L̃0´c{12q |N,NSNSunprojy “

˜

θ
“

0
0

‰

pi`q

ηpi`q

¸ν{2

“

˜

θ
“

0
0

‰

pitq

ηpitq

¸ν{2

Now let’s look at the RR sector. For NN boundary conditions, it contributes:

xN,RRunproj | e
´π`pL0`L̃0´c{12q |N,RRunprojy “

˜

θ
“

1
0

‰

pi`q

ηpi`q

¸#NN{2

“

˜

θ
“

0
1

‰

pitq

ηpitq

¸#NN{2

xN,RRunproj | p´1qFL“FRe´π`pL0`L̃0´c{12q |N,RRunprojy “ 0

By the argument before, we get the same for DD boundary conditions. Finally, with DN boundary conditions
we get

xD,RRunproj | e
´π`pL0`L̃0´c{12q |N,RRunprojy “ 0

xD,RRunproj | p´1qFL“FRe´π`pL0`L̃0´c{12q |N,RRunprojy “

˜

θ
“

1
0

‰

pi`q

ηpi`q

¸ν{2

“

˜

θ
“

0
1

‰

pitq

ηpitq

¸ν{2

Together this is exactly consistent with what we get from tracing over the open string. We can work back
to get relative normalizations.
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This shows that the massless RR and NSNS fields mediate the force. Moreover the NSNS fields without and
with projection correspond respectively to the unprojected NS and R open string states while the RR fields
without and with projection correspond to the projected NS and R open string states.

13. First recall that for a constant vector potential A9 “
χ9

2πR corresponds to a T -dual picture of a D-brane

at position ´χR̃ “ ´2π`2sA9. Now consider a magnetic flux F12 we can write a (nonconstant now) vector
potential that gives this flux as A2 “ F12X

1. We T -dualize along X2 and get X2 “ ´2π`2sF12X
1. Then

tan θ “ ´2π`2sF12.

Although we were working with D1 and D2 branes, we could have done the exact same calculation for F01

on a D1 brane and recovered a D0 brane tilted in the X0 ´X1 plane (ie boosted). Such a D0 brane has the
usual point-particle action:

SD0 “ ´T0

ż

dX0
b

1` pB0X 1
1q2

Because the D0 brane and the D1 brane describe the same physics, this action should be identical to the D1
action. Note that B0X

11 is infinitesimally exactly tan θ calculated above. We get the action

SD1 “ ´T1

ż

dX1dX2
a

1` p2π`2sF12q
2

Of course, because the branes couple to strings, the only gauge invariant combination under transformations
of the Kalb-Ramond B field is F “ B ` 2π`2sF . We thus get:

SD1 “ ´T1

ż

dX1dX2
a

´detpG` Fq

We can tilt this brane and T -dualize to pick up EM field strengths in arbitrary dimension up to 9.

14. Let’s T -dualize. This describes two D4 branes that are tilted only along the x1-x5 plane, and are otherwise
parallel in the x2, x3, x4 directions. T-dualizing x2, x3, x4 makes these into D1 branes tilted in the x1 ´ x5

plane. See the solution (74) to the next problem. Now setting ν2,3,4 “ 0 will give poles from the theta
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function in the denominator. This is to be expected, from the NN boundary conditions that always come
with a volume divergence factor in that direction. We regulate this divergence by replacing:

θ

„

1

1



piνt, itq´1 Ñ i
L

ηpitq´32π`s
?

2t

Thus we get a potential:

´i
L3

p2π`sq4

ż 8

0

dt

t

e
´2πt

´

∆x
2π`s

¯2

p2tq4{2ηpitq9
θ
“

1
1

‰

piνt{2, itq4

θ
“

1
1

‰

piνt, itq

Let’s take the distance to be large. The small t contributions are then most important. The θ-function ratio
contributes a factor of e´3π{4tt´3{2 while the η´9 contributes e3π{4tt9{2 Finish the details here

We get a potential that decays as ´ L3`s
p∆xq5

sin4pθ{2q
sinpθq giving another attractive force going as 1{p∆xq6.

15. Following Polchinski, we define variables Zi “ Xi ` iXi`4, i “ 1, . . . , 4. Let the σ “ 0 endpoint be on the
untilted string. Then at σ “ 0 we have B1<Za “ =Za “ 0 and at σ “ π on the tilted string we have
B1<peiθaZaq “ =peiθaZaq.
We see that the field that satisfies this is given by Zapw, w̄q “ Zapwq ` Z̄ap´w̄q for w “ σ1 ` iσ2. Using
the doubling trick we have Zapw ` 2πq “ e2iθaZapwq (and similarly for the conjugate). This gives a mode
expansion with νa “ θa{π

Zapwq “ i
`s
?

2

ÿ

rPZ`νa

αar
r
eirw.

The a: modes are then linearly independent. Taking q “ e´2πt as usual for open string partition functions,
and restricting 0 ă φa ă π we get:

q
1
24
´ 1

2
pνa´

1
2
q2

ś8
m“0p1´ q

m`νaqp1´ qm`1´νaq
“ ´i

q´ν
2
a{2ηpitq

θ
“

1
1

‰

piνat, itq

Where we have used

θ

„

1

1



piνt, itq “ iq
1
8 pqν{2´q´ν{2q

8
ź

m“1

p1´qmqp1´qm`νqp1´qm´νq “ iηpitqq
1
8
´ 1

24
` ν

2

8
ź

m“0

p1´qm`νqp1´qm`1´νq

So the angles act like chemical potentials to make the theta functions nonzero. Now its time for the fermions
(oh boy!). In each NS and R sector (projected and unprojected) the boundary conditions shift by νa. We
thus get e.g. for NS unprojected:

Z

„

0

0



“ q´
1
24
`ν2

a{2
8
ź

m“1

p1´ qm`1{2`νaqp1´ qm`1{2´νaq “ qν
2
a{2
θ
“

0
0

‰

piνat, itq

ηpitq

In total, then we will see that the fermion part gives us

ś

a q
ν2
a{2

2ηpitq4

«

4
ź

a“1

θ

„

0

0



piνat, itq ´
4
ź

a“1

θ

„

1

0



piνat, itq ´
4
ź

a“1

θ

„

0

1



piνat, itq ´
4
ź

a“1

θ

„

1

1



piνat, itq

ff

“

4
ź

a“1

eν
2
a{2θ

“

1
1

‰

piν 1at, itq

ηpitq
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This last equality follows from the full abstruse identity of Jacobi, where φ11 “
1
2pφ1 ` φ2 ` φ3 ` φ4q,

φ12 “
1
2pφ1 ` φ2 ´ φ3 ´ φ4q, φ

1
3 “

1
2pφ1 ´ φ2 ` φ3 ´ φ4q, φ

1
4 “

1
2pφ1 ´ φ2 ´ φ3 ` φ4q and the ν 1a are defined

identically. Inserting the DD conditions along the 9 direction that denotes separation, we get the full potential
as a function of the separation ∆x

V “ ´2ˆ

ż 8

0

dt

2t

e
´2πt

´

∆x
2π`s

¯2

2π`s
?

2t

4
ź

a“1

θ
“

1
1

‰

piν 1at, itq

θ
“

1
1

‰

piνat, itq
(74)

The initial overall factor of two comes from two orientations of the open string. At long enough distances,
the exponential factor forces small t to contribute primarily. The complicated ratio of θ-functions becomes
a ratio of sines. Then we get

4
ź

a“1

sinpπν1aq

sinpπνaq

ż 8

0

dt

2π`s
?

2tt
e
´
p∆xq2

2π`2s
t

Taking the integral and analytically continuing, we get a potential that looks like ´ |∆x|
2π`2s

ś4
a“1

sinpπν1aq
sinpπνaq

, giving

an attractive, constant force, of ´ 1
2π`2s

ś4
a“1

sinpπν1aq
sinpπνaq

.

16. Let the first brane at σ “ 0 have no electric field and put an electric field F01 on the second brane at σ “ π.
The endpoints of the string are charged. We have the following action (take e, the charge of the string
endpoint to be 1)

´
1

4π`2s

ż

dσdτ rpBσXq
2 ` pBτXq

2s `

ż

σ“π
dτAµBτX

µ

Upon variation, we get a boundary term:

´
1

2π`2s

ż

dτBσX
µδXµ `

ż

dτδpAνBτX
νq

“ ´
1

2π`2s

ż

dτBσX
µδXµ `

ż

dτBµAνδX
µBτX

ν ´ BτAν

“ ´
1

2π`2s

ż

dτBσXµδX
µ `

ż

dτFµνδX
µBτX

ν

ñ BσXµ ´ 2π`2sFµνBτX
ν “ 0

This gives mixed boundary conditions on the X0 and X1 which can be written as
ˆ

BσX
0

BσX
1

˙

“ 2π`2sE

ˆ

0 1
1 0

˙ˆ

BτX
0

BτX
1

˙

with E “ F10. Note that we have been careful in raising the µ index. I will define Z˘ “ X0 ˘X1 and have
BσZ

` “ BσZ
´ “ 0 at σ “ 0 and pBσ ´ 2π`2sEBτ qZ

` “ pBσ ` 2π`2sEBτ qZ
´ “ 0 at σ “ π. The modes thus

satisfy Neumann-Mixed boundary conditions. Following a modification of exercise 2.14 and solving these
boundary conditions we get that the modes must be labeled by ν “ ´iu{π ` Z. Here u “ atanhv is the
rapidity. Now let’s compute a cylinder diagram. Let’s assume for now that we are scattering D1 branes (the
problem does not explicitly give p, p1). It will look like the wick-rotation of the integral considered in the
previous two questions. We have an amplitude

´iVp ˆ 2ˆ

ż 8

0

dt

2t

e
´t p∆xq

2

2π`2s

p2π`sqpp2tqp{2
θ
“

1
1

‰

put{2π, itq4

ηpitq9θ
“

1
1

‰

put{π, itq

Note however that since the first argument of the θ functions is real, we have poles at t “ πn{u, ν “ u{π for
n an integer. Upon deforming the integration contour, we can use the identity 1

x´iε “ πδpxq ` Ppxq to pick
up poles at t “ n{ν, at odd integers n (so that the four-order zero in the numerator doesn’t cancel them),
giving:

πVp
ÿ

nPZodd

e
´n p∆xq

2

2π`2sν

p2π`sqpp2n{νqpp`2q{2

θ
“

1
1

‰

pn2 , itq
4

2ηpin{νq12
(75)
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The imaginary part of the amplitude can be interpreted (after T -duality) as resonances (ie bound states) of
the D-branes.

17. From the last problem we can write: In terms of B`, B´, we have:

ˆ

B`X
0

B`X
1

˙

“

˜

1`E2

1´E2
2E

1´E2

2E
1´E2

1`E2

1´E2

¸

ˆ

B´X
0

B´X
1

˙

(76)

Here E “ 2π`2sE. Taking E close to zero recovers NN boundary conditions on X0, X1.

(It’s worth noting that that the speed of light here will translate to a maximum electric field |E| ă T on the
brane. This provides one motivation for the necessity of a nonlinear electrodynamics, namely DBI). taking
E “ 0 give N boundary conditions on X0, X1. T-dualizing X1 gives D boundary conditions on X̃1. Now,
boosting the brane along X0 and

ˆ

B`X
0

B`X̃
1

˙

“

ˆ

γ vγ
vγ γ

˙ˆ

1 0
0 ´1

˙ˆ

γ ´vγ
´vγ γ

˙ˆ

B´X
0

B´X̃
1

˙

ñ

ˆ

B`X
0

B`X
1

˙

“

ˆ

γ vγ
vγ γ

˙ˆ

1 0
0 ´1

˙ˆ

γ ´vγ
´vγ γ

˙ˆ

1 0
0 ´1

˙ˆ

B´X
0

B´X̃
1

˙

“

˜

1`v2

1´v2
2v

1´v2

2v
1´v2

1`v2

1´v2

¸

ˆ

B´X
0

B´X̃
1

˙

This exactly what we had before, with v “ 2π`sE.

This argument is quite simple from the abstract picture: taking A1 “ EX0, T -dualizing in the direction of
X1 gives a D-brane lying at X1 “ 2π`2sEX

0 giving a velocity 2π`2sE. This can also be obtained by analytic
continuation of question 8.13.

18. Using the fact that this scattering problem is exactly T-dual to the electric field problem mentioned before,
we return to (75) and consider b “ ∆x to be small. In this case the large t regime dominates (corresponding
to a loop of light open strings). First we perform a modular transformation to get

A “ Vp

p8π2`2sq
p{2

ż 8

0

dt

t
tp6´pq{2e

´ tb2

2π`2s
θ
“

1
1

‰

piν{2, i{tq4

ηpi{tq9θ
“

1
1

‰

piν, i{tq

Now we follow Polchinski and rewrite A in terms of an integral over the particle’s path rpτq2 “ b2 ` v2τ2,
A “ ´i

ş

dτV prpτq, vq. Then we get V from reversing a Gaussian integral to be

V pr, vq “ i
2Vp

p8π2`2sq
pp`1q{2

ż 8

0
dttp5´pq{2e

´ tr2

2π`2s
tanhπν θ

“

1
1

‰

piν{2, i{tq4

ηpi{tq9θ
“

1
1

‰

piν, i{tq

The large-t limit is now direct:

V pr, vq “ ´
2Vp`1

p8π2`2sq
pp`1q{2

ż 8

0

dt

tp1`pq{2
e
´ tr2

2π`2s
tanhu sin4put{2q

sinputq

Using steepest descent at zeroth order, the t that dominates is of order 2π`2s{r
2 so that ut « 2π`2sv{r

2 is
the leading contribution. Justify why ut is Op1q. This then gives that r „ `s

?
v. If we go at very small

velocities we can probe below the string scale.
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On the other hand, a slower velocity means that the time it takes to probe this distance is longer δt “ r{v “
`s{
?
v. This implies that δxδt ě `2s. This looks like a type of noncommutative geometry with α1 playing the

role of Planck’s constant now.

Combining this with the usual position-momentum uncertainty relation

1 ď δxmδv “ g`sδxδv ñ ∆x “
g`s
δv
,

we can minimize simultaneously `s
?
v, g`s{v by having v „ g2{3 giving δx “ `sg

1{3. At weak coupling this is
smaller than the string scale.

19. The action is a factor of two off from Polchinski’s. The momenta are pi “
2

gs`s
p 9Xi` rAt, X

isq. Then we get:

H “

ż

dtTr
”gs`s

4
pip

i `
1

2gs`sp2π`2sq
2
rXi, Xjs2

ı

Defining g1{3`sY
i “ Xi, pi “ pYi{g

1{3
s `s, this sets the length scale, which coincides with what we got in the

previous question by less rigorous arguments. Now we have Y i is dimensionless and get a hamiltonian

H “
g

1{3
s

`s

ż

dtTr
”1

4
pYipYi `

1

2p2πq2
rY i, Y js2

ı

So the only dimensionful content of this hamiltonian comes from g, `s appearing in the overall normalization.

This gives an energy scale of g
1{3
s {`s. For strong coupling gs ą 1 this probes deeper than the string scale.

20. This is pretty direct. Since the metric Gµν does not depend on Xi for i “ p ` 1 . . . 9, we have that each
Xi is killing, in particular the metric takes a block-diagonal form where only the first pp ` 1q2 Gµν entries
have nontrivial coordinate dependence and the remaining metric is just the identity matrix δij along the Xi

directions (we didn’t even have to do this since 8.5.1 has ηµν the flat metric. Is my logic here even right?).

Take the ansatz AÑ pAµ,Φiq. We thus get Fµν in the first pp`1q2 entries and BµΦi in the off-block-diagonal
piece. We can rewrite this as a determinant of just the pp` 1q piece Justify this step

b

´detpGµν ` 2πFµν ` BµΦiBνΦiq

21. The bosonic part of this is immediate. Write the fields Ai in the dimensionally reduced dimensions as XI

and we immediately get TrF 2
10 Ñ TrrF 2

d`1 ` 2rDµ, X
Is2 `

ř

I,J rX
I , XJ s2s. The fermionic part will reduce

to:
pTrχ̄ΓµDµχq10D Ñ Trrχ̄ΓµDµχ` λ̄aΓ

irXi, λ
bss

Where now the χi are fermions that break the 16 representation of SOp9, 1q into a representation of SOpd´
1, 1q ˆ SOp10 ´ dq. For d “ 3 we get N “ 4 SYM and this is p2, 4q ` p2̄, 4̄q, corresponding to four Weyl
spinors.
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22. At the minimum of the potential, all XI lie in a cartan and mutually commute. The Aij correspond to
open strings moving between the D-branes at positions XI . The ground states of these open strings have a
mass squared of pXI ´XJq

2{2π`2s, so indeed the mass is linear in the separation. Confirm. Understand
Lie-Theoretic perspective.

23. The worldvolume coupling to the RR 2-form looks like iT2

ş

C2. For the brane tilted in the x1, x2 plane we
can write this explicitly as:

i

ż

dx0dx1pC01 ` C02 tanpθqq

Now T-dualizing in the x2 direction changes the C01 form to the RR 3-form C3, giving the standard i
ş

C3

term. On the other hand, the second term gets reduced to ´2π`2s
ş

dx0dx1dx2C0F12, where I have used
exercise 8.13 to write tan θ “ ´2π`2sF12. So we get a leading coupling to the three-form and a sub-leading
coupling (in `2s) to the one-form. This is a hint of the Meyers effect.

24. For the D2 brane the CP odd terms are C3, C1^F and ´C1^
p2π`sq4

48 rp1pT q´p1pN qs. In the frame described
by exercise 7.26, C3 transforms trivially under A transformations, and under its own gauge transformations
it only adds an exact term which does not modify the CS action.

F transforms trivially under A transformations and under B transformations only modifies the action by a
closed term again.

Equation I.14 is not in any standard frame. The Dilaton plays no role here. The

I feel I am missing something.

25. Gauge transformations of the axion C0 are just shifts C0 Ñ C0 ` a. C0 couples to F2 through the Chern-
Simons term:

ż

C0 ^ TreF ^ G

Because of the Bianchi identity, dF “ 0, and the same holds for any trace of any polynomial of F . Similarly
G is also a closed form. Therefore shifting C0 gives an integrand term TreF ^ G which is closed.

26. For trivial flat-space background ηµν , we have gab “ BaXµBbX
µ. Take Mab “ BaXµBbX

µ ` 2π`2sFab and
M “ detMab. Taking the DBI variation w.r.t. Xa

µ and Aa respectively gives:

T

2
Ba

´?
´MM´1

ab BbX
µ
¯

“ 0

2π`2sT

2
Ba

´?
´MM´1

ab

¯

“ 0

Its rather nasty to evaluate that inverse matrix. On the other hand, taking X9 to be the only nontrivial
function of the ξ, and depending only on the radial distance r from a central point, and setting all Ai “ 0
with A0 a function of r alone, we get M “ 1 ` δa“r,b“rpBrX

9q2 ` 2π`2spδa“r,b“0 ´ δa“0,b“rqE. We take
E “ BrX

9. The determinant is then p∇X9q2p1` 2π`2sq.

Note that if the second equation of motion holds, the first equation of motion implies that we would want for
BrBrX

9 “ 0, namely that X9 is a harmonic function of r. On a p brane this is X9 “
Cp
rp´2 . In this case, the

determinant, as well as M´1 will vanish when covariantly differentiated by Br, giving us our desired second
equation of motion.

This solution is known as a BI-on (BI for Born-Infeld). It represents an infinitely long open string ending
on our p-brane.

27. Let’s have G,B,Φ, C2 trivial. We get

S “
1

2π`2sg

ż

d2ξ
a

1´ p2π`2sF01q
2 `

1

2π`2s

ż

d2ξ C0p2π`
2
sqF01
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Pick the gauge A0 “ 0. Our variable is then A1. From this, we get a canonical momentum conjugate to A1

equal to:

´
1

2π`2sg

p2π`2sq
2F01

a

1´ p2π`2sF01q
2
` C0F01

Consider putting the D1 brane in a circle. Now since C0 acts as a θ term, consider putting an integer m for
C0. The momentum is quantized, and in particular there is a gap between the zero momentum ground state
and the next state up. We get:

2π`2sF01
a

1´ p2π`2sF01q
2
“ gmñ 2π`2sF01 “

gm
a

1`m2g2

We have a Hamiltonian

H “ 1

2π`2sg

1
a

1´ p2π`2sF01q
2

And from the quantization condition on the electric field we obtain from the Hamiltonian a set of quantized
tensions

T “
1

2π`2sg

a

1`m2g2.

28. The D3-D´1 system has #ND“ 4 and so preserves 1{4 supersymmetry (1{2 the SUSY of the D3 brane
itself). Similarly, the instanton configurations satisfying ‹F2 “ ˘F2. The supersymmetric variation of the
gaugino is δλ9FµνΓµν . The Γµν are generators of SOp4q “ SUp2q ˆ SUp2q, and the (A)SD conditions on
F2 will ensure that only half the generators (the first or second SUp2q) will appear in the variation. Thus
instanton configurations are also 1/2 BPS on the worldvolume.

To confirm that these instantons really are D´1 branes, note that the CS term contains 1
2p2π`

2
sq

2T3

ş

C0F2^

F2. For a nontrivial instanton configuration we get
ş

F2 ^ F2 “ 8π2. Thus the instanton coupling to C0 is
p2π`sq

4T3 “ T´1, exactly the charge of the D´1 brane. Does this exclude the possibility of objects
with the same charge and BPS properties as D´1 branes, but that don’t have interpretations
as endpoints of open strings?

I expect the moduli space to have dimension 4n, corresponding to the space (technically Hilbert scheme) of
n points on R4.

29. This configuration is invariant under x1 translations as well as under time x0. The exact same BPS properties
discussed in the previous question apply here. The state is half-BPS on the worldvolume both from the POV
of string theory and from the POV of the low energy SYM theory having half the gaugino variations vanish.

The same instanton action argument in the previous question gives us that 1
2p2π`

2
sq

2T4

ş

C1F2 ^ F2 yields a
coupling p2π`sq

4T4 “ T0 to the C1 form.

For N D5 branes the low-energy effective theory is SUpNq SYM, and we obtain the moduli space of SUpNq
instantons. The dimension now becomes 4Nk justify . I expect that the moduli spaces of D1-D5 bound
states are identical to the moduli space in the previous problem.
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30. First, the pair of 5-branes in the 12345 and 12367 dimensions are parallel in the 123 directions and 900
rotated in two directions. This gives 2 sets of ND and 2 sets of DN boundary conditions, on the strings

which gives us ν “ 4. In this case, following Polchinski the spinor β “ βK
´1
βK

1
has an equal number of

eigenvalues ´1 and 1. So half of the original 16 spinors preserved by the first D-brane will be preserved by
the combination of both.

Now take a third D-brane in the 12389 direction, perpendicular to both the first two. The same argument
shows that we brane another half of the supersymmetry, giving 4 supersymmetries left in this configuration.
In other words it is 1

8 BPS. Confirm

31. Adding a D1 string gives 4 ND boundary conditions with each of the other D-branes. This breaks the
supersymmetry in half again, preserving 2 supersymmetries now. It is 1

16 BPS.

If I were to add it along direction 4 it would have 5 ND boundary conditions with the second two branes,
which preserves no SUSY, so the latter configuration has nothing preserved.

32. Note this is Op2q and not SOp2q, so instead of getting one D-brane at θR̃ and the other at ´θR̃, we get one
“half” D8 brane at x9 “ 0 (the location of one orientifold plane) and its image at πR̃ (the location of the
other).

33. We work with the compact real form USpp2Nq “ Spp2Nq XUp2Nq. In this case any symplectic matrix can
again be diagonalized to be of the form peiθ1 , e´iθ1 , . . . q. Again we interpret this as D-branes on both sides
˘θiR̃ of the orientifold plane. The generic gauge group is Up1q2N . If m branes lie at either orientifold plane
we get an enhancement Spp2mq. When all N branes and their images lie on one of the orientifold planes, we
recover the full symmetry.

34. Due to the negative tension, an excitation on it has even lower energy, corresponding to a negative norma
state which is forbidden in a unitary theory by positivity. What more can I say?

35. There is a mistake in Kiritsis’ equation G.8. We should have A “ ´H´1pρq not ´Hpρq. The way to see
that is by noting that ´H´1pρq “ ´ ρ

ρ`Q “ ´
r´Q
r “ 1 ` Q

r . The constant 1 is gauge and hence irrelevant,

while the second term is the proper electric potential that will give rise to a Ftr “
Q
r2 .

Also, this problem asks us to work in N “ 2, D “ 4 SUGRA, so the appropriate equations should be that
the variation of each dilatino by a Killing spinor is zero. In this SUGRA, there are two Majorana gravitinos
ψµ,A, A “ 1, 2 with four components each, for a total of 8 SUSYs. Consequently, the variations involve two
Majorana spinor parameters εA, A “ 1, 2. We will use lower indices to indicate chiral and upper indices to
indicate anti-chiral fermions. The gravitino variation is then (c.f. Freedman Supergravity Section 22.4)

δψµ,A “ ∇µεA ´
1

4
Fνργ

νργµεABε
B (77)

Here we have ∇µ “ Bµ ` 1
4ωµabΓ

ab with ω spin connection 3

Because of the chirality we can replace F with F´ in the above equation. Now, if we use spatial coordinates
~x, |x| “ ρ, the metric takes the form

ds2 “ ´H´2dt`H2d~x2

Take e2A “ H´2, then we have the frame fields e0̂ “ eAdt, eî “ e´Adxi. We will use hats to denote frame
indices a, b. Our spin connection is then:

ω0̂̂i “ ´e
2ABiAdt, ωîĵ “ ´BjAdx

i ` BiAdx
j

First let’s look at the µ “ 0 constraint of equation (77)

BtεA `
1

4
ω0 abΓ

abεA ´
1

4
Fνργ

νργ0εABε
B

3This corresponds to setting κ “
?

2 in Friedman’s Supergravity 22.69.
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Now because the solution is static, Bt is killing and we expect that BtεA “ 0. Further, the only contribution
to ω0 ab is ω0 0̂̂i since only this has a dt (NB the double sum gives a factor of 2). Similarly for the second
term, since there is only an electric field, we only care about ν, ρ P t0, iu (NB the double gives a factor of 2).
Finally, we have only an electric field F0i “ ´BiAt (At is the vector potential, not to be confused with A).
This yields:

´
1

2
e2A BiA γ0̂γ îεA ´

1

2
p´BiAtqγ

0γiγ0εABε
B “ 0

ñ ´
1

2
eA Bie

A γ îγ0̂εA `
1

2
p´BiAtqγ

iεABε
B “ 0

ñ eA Bie
A γ îγ0̂εA ´ BiAt e

Aγ îεABε
B “ 0

ñ Bie
A γ0̂εA “ BiA0 εABε

B

Here, the hatted γ-matrices are the familiar ones from flat space. We thus need (up to an irrelevant gauge
constant) A0 “ ˘H

´1 and

εA “ ¯γ
0̂εABε

B (78)

Since we require ´H´1 to match the electromagnetic potential A, and so that it is asymptotically unity, we
have H “ p1´ Q

r q
´1 “

ρ`Q
ρ “ 1` Q

ρ . This verifies the extremal RN solution.

We have not yet derived the spatial dependence of ε. Taking µ “ i we get

BiεA `
1

4
ωi abΓ

abεA ´
1

4
Fνργ

νργiεABε
B

Now we must use that ωi ĵk̂ “ ´BnApδijδ
n
k ´ δikδ

n
j q. Using the µ “ 0 constraint we get:

BiεA ´
1

2
BkA γi k̂εA ´

1

2
F0iγ

0
�
��γiγiεABε

B “ 0

BiεA `
1

2
BkA e´A γi k̂εA ¯

1

2
Bie

AHγ0̂εABε
B “ 0

BiεA `
1

2
BkAγ

î k̂εA ´
1

2
Bie

Ae´AεA “ 0

Now the γ îk̂ is nothing more than a generator of rotations acting on εA. Since we are assuming spherical

symmetry, γ îk̂εA “ 0 and we are left with the differential equation:

BiεA “
1

2
BiAεA ñ εA “ e1{2Aε0

where ε0 is a constant spinor satisfying (78).

Because the constraint εA “ ¯γ
0̂εABε

B applies to half the space of spinors at any given point, we have that
the extremal RN solution is half-BPS.

36. Again take coordinates xi so that

ds2 “ ´
dt2

H2pρq
`H2pρqpdx2

i q

Upon the choice εA “ ´¯ γ
0̂εABε

B, we had the relation BiH
´1 “ BiA0 “ Fi0. The field equation B ‹ F “ 0

Bi
?
´gg00giiFi0 “ BiH

2BiH
´1 “ B2

iHpxiq

Thus we have that H is a harmonic function of the flat Laplacian in transverse space.

We see that H from the previous problem takes the simple form 1` Q
|x| , which is obviously harmonic in 3+1

dimensions.

A more general solution allowing for for multiple charged extremal black holes amounts to nothing more than
replacing H with 1`

ř

i
Qi

|x´xi|
, which remains harmonic, and thus preserves half supersymmetry. This looks

like a bunch of extremal black holes whose pairwise electric repulsions cancel their gravitational attractions.
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37. Again we are working in N “ 2 SUGRA. The metric takes the form

ds2 “ Q2

„

´dt2 ` dρ2

ρ2
` dΩ2

2



This corresponds to 2D AdS times a sphere of constant radius. Both spaces have radius Q. The spinor
equation is as before, now with Tµν “ ´

1
Lgµν . Consider just AdS2. Define the operator

D̂µεA “ ∇µεA ´
1

2Q
γµεABε

B

Consider now

rD̂µ, D̂νsεA “ p
1

4
Rµνabγ

ab `
1

2Q2
qε

And since AdS2 is a maximally symmetric space Rµνab “ ´peaµebν ´ eaνebµq{L
2 and so the commutator

vanishes identically. This is the integrability condition we need. At each point, the spinor bundle is dimension
N ˆ 2rD{2s - for N “ 2 AdS2 this is 4. We see that any spinor can be transported by the connection D̂µ to
define a spinor field on all of AdS2, and thus we get that the space is maximally supersymmetric.

The exact same arguments (with QÑ ´Q) apply for the positively curved 2-sphere of the same radius.

The product of two maximally supersymmetric spaces is maximally supersymmetric Confirm. We get
8 Killing spinors. We now see that the Bertotti-Robertson universe preserves full supersymmetry, and
thus the extremal RN black hole plays the role of a half-BPS soliton that interpolates between two fully
supersymmetric backgrounds (flat space and AdS2 ˆ S

2).

38. The variation of 1
2pp`2q!F

2
p`2 “ Fp`2 ^ ‹Fp`2 directly gives ‹Fp`2 “ 0.

Varying the dilaton gives

0 “ ´2e´2ΦrR` 4p∇Φq2s ´∇pe´2Φ8∇Φq “ ´2e´2ΦrR` 4p∇Φq2s ` 16e´2Φp∇Φq2 ´ 8e´2ΦlΦ

ñ R “ 4p∇Φq2 ´ 4lΦ

Finally, writing the metric explicitly in the action

?
´ge´2ΦrgµνRµν ` 4gµνBµΦBνΦs ´

1

2pp` 2q!

?
´gF 2

p`2

Let’s look how each term changes when we vary 1?
´g

δ
δgµν .

•
?
´ge´2ΦR

Ñ pRµν ` gµνl´∇µ∇νqe´2Φ ´
1

2
gµνe

´2ΦR

“ e´2Φ
´

Rµν ´
1

2
gµνR` gµνp´2lΦ` 4pBΦq2q ´ p´2∇µ∇νΦ` 4BµΦBνΦq

¯

•
?
´ge´2Φ4gµνBµΦBνΦ Ñ 4e´2ΦBµΦBνΦ´ 2e´2ΦpBΦq2

• ´ 1
2pp`2q!

?
´ggµ1ν1 . . . gµp`2νp`2Fµ1...µp`2Fν1...νp`2 Ñ ´ 1

2pp`1q!F
2
µν `

1
4pp`2q!gµνF

2. Here F 2
µν “ Fµ...F

ν...

Combining these all together and using the dilaton equations of motion gives

e´2ΦRµν ` 2∇µ∇νΦ´
1

2pp` 1q!
F 2
µν `

1

4pp` 2q!
gµνF

2 “ 0 ñ Rµν ` 2∇µ∇νΦ “
e2Φ

2pp` 1q!

´

F 2
µν ´

gµν
2p` 2

F 2
¯

exactly as required.
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39. This problem was very time-consuming to do out explicitly. The only resource that was of any help for
cross-checking was Ort́in’s “Gravity and Strings”.

First consider the possibility of Φ “ 0, F “ 0. In this case we have no stress tensor and are left with static
vacuum Einstein equations, spherically symmetric in 10 ´ p dimensions and translationally invariant in p
dimensions. In that case we know that our solution is nothing more than the Schwarzschild solution in 10´p
dimensions times a transverse p-dimensional space:

ds2 “ ´fprqdt2 ` dx2
i `

1

fprq
dr2 ` r2dΩ2

8´p

Reproducing the arguments from black holes in 4D, we see that

d

dr
pr8´pfprq

d

dr
logpfqq “

d

dr
pr8´pf 1prqq “ 0

ie fprq must be harmonic in the transverse dimension. After rescaling coordinates to have appropriate
asymptotic behavior, we get:

fprq “ 1´
r7´p

0

r7´p

for some constant r0 related to the ADM mass of the solution. So we see that Hprq “ 1 when the dilaton
and p` 2-form field strength are turned off. The curvature is R “ 0. Now let’s turn on Φ. We expect small
Φ will correspond to small H.

To do this, let’s look at the simplest case, p “ 0. Take the Ansatz (which you can convince yourself to be
completely general given the symmetry of the problem)

ds2 “ ´λprqdt2 `
dr2

µprq
`Rprq2dΩ2

d´2

We will later set d “ 10, λ “ µ “ fprq{
?
H. Let’s explicitly calculate the Christoffel symbols. There are

three categories: Γs involving just r, t Γs involving mixed r,Ω, and Γs involving just the Ω variables. I will
use a, b, c to index the angular variables ψa, whose metric is R2dΩ2

ab “ qaδab, and I use 1 to denote ordinary
partial differentiation w.r.t. r.

Γrtt “
1
2µλ

1 Γttr “
1
2λ
´1λ1 Γrrr “ ´

1
2µ
´1µ1

Γarb “ δab
R1

R Γrab “ δabµpR
2q1

qa
R2

Γabc “ θbącδ
a
b cotψb ` δcąbθac cotψc ´ θbąaδbc cotψa

qb
qa

That last Christoffel symbol looks particularly nasty. Thankfully, by using the fact that the sphere is a
symmetric space, we will not need to use it explicitly.

Now let’s directly compute the Ricci tensor.

Rµν “ BρΓ
ρ
µν ´ BµΓρρν ` ΓρρσΓσµν ´ ΓσµρΓ

ρ
σν

In what follows, it is useful to recall the identity Γµµν “ Bν log
?
´g. The nonzero terms will be Rtt, Rrr, Rab.

Respectively they are:
Rtt “ BrΓ

r
tt ´��

�BtΓ
ρ
ρt ` ΓρρrΓ

r
tt ´ ΓσtρΓ

ρ
σt

“
1

2
pµλ1q1 ` Br log

?
g pµλ1q ´ 2

1

2

λ1

λ

1

2
µλ1

“
1

2

λ
?
g
Br

´?
´gµ

λ1

λ

¯

“
1

2
λ∇2 log λ

It’s important for this next one to note that qa{R
2 is independent of r. It’s equally important to appreciate

that the final combination of Γ symbols is the only thing that would appear in the absence of r dependence
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in R. In this case, because the d ´ 2 sphere is a symmetric space, we’d have Rab “
d´3
R2 gab. Indeed, this is

exactly what the final term gives. We thus get

Rab “ BrΓ
r
ab ´��

�BaΓ
ρ
ρb ` ΓρρrΓ

r
ab ´ ΓσaρΓ

ρ
σb

“ ´
1

2
δabBr

´

µpR2q1
qa
R2

¯

` Br log
?
´g δabµpR

2q1
qa
R2
`
d´ 3

R2
qaδab

“ gabp´∇2 logR`
d´ 3

R2
q

The next one is a bit different. Less cancelation. The last term will sum over pσ, ρq “ pr, rq, pt, tq, pa, aq. Also
note

?
´g “

a

λ{µRd´2.

Rrr “ BrΓ
r
rr ´ BrΓ

ρ
ρr ` ΓρρσΓσrr ´ ΓσrρΓ

ρ
σr

“���
���´

1

2
pµ´1µ1q1 ´ B2

r logp
a

λ{�µR
d´2q ´

1

2
Br logp

a

λ{µRd´2q pµ´1µ1q ´
1

4

pλ1q2

λ2
´

1

4
µ2pµ1q2 ´ pd´ 2q

pR1q2

R2

“ ´
1

2
B2
r logpλq ´

d´ 2

R
R2 ´

1

2
pd´ 2q

R1

R
Br log

a

λ{µ

“ ´
1

2
µ´1∇2 log λ´

d´ 2

R

d

λ

µ

ˆ

R1
c

µ

λ

˙1

Altogether we get a Ricci scalar:

R “ ´∇2 logpλRd´2q `
pd´ 2qpd´ 3q

R2
´
d´ 2

R

a

λµ

ˆ

R1
c

µ

λ

˙1

Now let’s take λ “ µ “ fprq{
?
H and R “ H1{4,

?
´g “ Hpd´2q{4.

´∇2 logpfprqrd´2H
d´4

4 q `
pd´ 2qpd´ 3q

r2H1{2
´ pd´ 2q

fprq

rH3{4
prH1{4q2

The Laplacian takes the form BrrHpd´4q{4r8fprqBrs

rd´2Hpd´2q{2 which simplifies the above to:

´
B2
r pfprqr

d´2Hpd´4q{4q

rd´2Hpd´2q{2
`
pd´ 2qpd´ 3q

rd´2H1{2

The dilaton equation of motion is
R “ 4p∇Φq2 ´ 4∇2Φ

Since a nonzero Φ is what gives an H away from 1, we might hypothesize a relationship logH9Φ, meaning
we should replace Φ with logpHαq in the dilaton equation. Let’s also take fprq to be not different from the

Schwarzschild solution: fprq “ 1 ´
rd´3
0

rd´3 . So far we will not be so bold as to assume anything about H.
We also at this point need to specialize to d “ 10, otherwise no nice simplification occurs. Straightforward
algebra then gives:
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To get rid of the term quadratic in H 1prq we need 3` 8p1´ 2αqα “ 0 ñ α “ 3{4.

After that, these will only be equal if

8H 1 ´ rH2 “ 0 ñ H “ 1´
L7

r7

The above solution is the most general given that H Ñ 1 as r Ñ8.

Now let us generalize this to higher dimensions. We add p xi in the parallel dimensions of the solution.

ds2 “ ´λprqdt2 ` νprqd~x2
i `

dr2

µprq
`Rprq2dΩ2

d´2

This gives two new Christoffels. Here is a complete list

Γrtt “
1
2µλ

1 Γttr “
1
2λ
´1λ1 Γrrr “ ´

1
2µ
´1µ1

Γarb “ δab
R1

R Γrab “ δabµpR
2q1

qa
R2

Γabc “ θbącδ
a
b cotψb ` δcąbθac cotψc ´ θbąaδbc cotψa

qb
qa

Γrij “ ´
1
2δijµν

1 Γirj “
1
2δ
i
jν
´1ν 1

Our nonzero Ricci components are now Rtt, Rrr, Rab, Rij . The primary way that the new dimensions will
contribute is by modifying

?
´g We get:

Rtt “ R
p10´pq
tt ´

1

4
pµλ1plog νq1

Rab “ R
p10´pq
ab ´

1

2
pgabµplog νq1plogRq1

Rrr “ Rp10´pq
rr `

1

2
ppµνq´1{2ppµνq1{2plog νq1q1

Rij “
1

2
δijν∇2ν

This gives a Ricci curvature of:

R “ Rp10´pq `
1

2
pp´∇2

10´p log ν ´ ν´1∇2ν `
1

2
µpplog νq1q2q

Making the necessary replacements we get

´
B2
r pfprqr

d´2Hpd´4q{4q

rd´2Hpd´2q{2
`
pd´ 2qpd´ 3q

rd´2H1{2

`
1

2
p

˜

´
Brrfr

8´pHp6´pq{4Br logH´1{2s

r8´pHp8´pq{4
´

?
H

r8´pHp8´2pq{4
Brrfr

8´pHp6´2pq{4BrH
´1{2s `

1

2

f

H1{2
pBr logH´1{2q2

¸

It makes sense to take the ansatz fprq “ 1 ´
r7´p
0
r7´p and H “ 1 ` L7´p

r7´p . Further, the relationship between H

and Φ can be guessed from reasoning in the p “ 0 case to go as Φ9Hp3´pq{4, or alternatively we can establish
this from first principles by algebra
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This immediately gives that the dilaton term will equal the scalar curvature only when α “ p3´ pq{4.

We have thus proved the form of f,H,Φ. Let’s finally look at the RR field.

For now let us ignore the issues with self-duality at p “ 3. Take the the p ` 1 form has flux in the radial
but not angular directions in transverse space. The only nonzero component of Fp`2 is given by Fr0...p. The
equation of motion gives:

Br
`?
´ggµ0ν0g...Fµ0...

˘

“ 0

Now we already have
?
g “ r8´pHp4´pq{2, while we will have raising for each index 0 . . . p as well as r, giving

a factor of fprqHpp`1q{2H´1{2{fprq “ Hp{2. Altogether the differential equation becomes:

Brr
8´pH2Hr

Immediately we must have F “ κ{r8´p

H2 . This means that F is proportional to H 1prq{Hprq2.

I don’t know how to easily get this constant of proportionality without knowing the decay properties of Rµν
as r Ñ8 Return to this. I know it must scale roughly as a positive power of L. It turns out to be:

Fr0...p “ ´

d

1´
r7´p

0

L7´p

H 1pprq

H2
p prq

101



Can I do this all by somehow “boosting” Schwarzschild?

40. From the expression 8.8.9 of the electric field in terms of H we have (assuming p ă 7)

Er “ p7´ pqL
p7´pq{2

b

L7´p ` r7´p
0

r6`p

pr7 ` Lrpq2
Ñ p7´ pqLp7´pq{2

b

L7´p ` r7´p
0 rp´8

Integrating this over the 8´ p sphere will give

TpN “
Ω8´pp7´ pq

2κ2
10

Lp7´pq{2
b

L7´p ` r7´p
0 .

41. Using the standard ADM formula (cf, eg Carrol)

M “
1

2κ2
10

ż

S8´p
gµνpgµα,ν ´ gµν,αqn

αdS

Then for a metric that looks like gµν “ ηµν ` hµν with hµν “
cµν
r7´p .

M “ T00Vp “
Ω8´p

2κ2
10

pp7´ pqc00 ´ η00η
abcabq

“
Ω8´pVp

2κ2
10

pp7´ pqpr7´p
0 `

1

2
L7´pq ` r7´p

0 `
1

2
Lp7´pq{4q

“
Ω8´pVp

2κ2
10

pp8´ pqr7´p
0 ` p7´ pqL7´pq

Revisit- something seems off

42. Note that

f´pρq “ 1´
L7´p

r7´p ` L7´p
“

1

1` L7´pr7´p
“

1

Hprq

Similarly

f`pρq “ 1´
r7´p

0 ` L7´p

r7´p ` L7´p
“
r7´p ` r7´p

0

r7´p ` L7´p
“

fprq

Hprq
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This confirms that the dt and d~x terms are indeed consistent, and that the f
´1{2
´ pρq in front of the transverse

part is our desired
?
H. Next note that:

f´pρq
1

7´p “

„

ρ7´p ´ L7´p

ρ7´p

1{p7´pq

“
r

ρ
ñ ρ2f´pρq

1´ 5´p
7´p “ ρ2 r

2

ρ2
“ r2

So the angular part is consistent. Lastly, f`{f´ “ fprq which is the required coefficient for dr2. It remains
to cancel the jacobian:

dr “
ρ6´p

r6´p
dρ “ f

´
6´p
7´p

´ dρñ dr2 “ f
´

12´2p
7´p

´ dρ2 “ f
´1´ 5´p

7´p

´ dρ2

So
a

Hprq

fprq
dr2 “ f

´1{2
´

f´
f`
f
´1´ 5´p

7´p

´ dρ2 “ f
´ 1

2
´

5´p
7´p

´

dρ2

f`pρq

43. Before doing any supersymmetric manipulations, we should know the spin connection.

Take the extremal p-brane metric to be of the form

ds2 “ e2Aprqdxµdxνηµν ` e
2Bprqdxidxjδij

In this case we have A “ ´B “ 1
4 logHprq. Take the frame fields

eµ̂ “ eAdxµ, eî “ eBdxi

Then

deµ̂ “ BrAe
Adr ^ dxµ “

ÿ

i

BiAe
Adxi ^ dxµ “ eî ^ ωµ̂

î
ñ ωµ̂ν̂ “ 0, ωµ̂î “ p´q

µ“0BiA eA´Bdxµ

deî “ BrBe
Bdr ^ dxi “

ÿ

j

BiBe
Bdxj ^ dxi “ eĵ ^ ωî

ĵ
ñ ωîĵ “ BjBdxi ´ BiBdxj

Using our extremal form of the solution, I can further write

eΦ “ g2
sH

p3´pq{4 “ g2
se
pp´3qA, Fr01...p “ ¯

H 1

H2
“ ˘4A1e4A

The ˘ corresponds to brane/anti-brane solutions.

In 10D N “ 2 SUGRA coupled to matter, represent the Killing spinor as ε “
`

ε1

ε2

˘

. We have the gravitino
and dilatino variations:

0 “ δψµ,A “ pBµ `
1

4
ωabµ Γabqε`

eΦ

8
{FΓµPp`2ε

0 “ δλ “ {BΦε`
eΦ

4
p´1qpp3´ pq {FPp`2ε

Here we are took what was written the democratic formulation of Kiritsis Appendix I.4, setting all fields
equal to zero except for the dilaton and relevant RR p` 2 field strength. The extra factor of two in the last
terms on both lines comes from counting F̂n ¨ F̂n and F̂10´n ¨ F̂10´n on equal footing.

As written there, for IIA we have Pn “ pΓ11q
n{2σ1 and for IIB we have Pn “ σ1 for 1`n

2 even and iσ2 for
1`n

2 odd.

Let’s first look at the dilatino variation. We get 4

pp´ 3qA1 Γrε˘ eAp3´pqp´1qppp´ 3qA1 e4AΓr0...pPp`2ε “ 0

ñ p1˘ p´1qpeAp1`pqΓ01...pPp`2qε “ 0

ñ p1˘ p´1qpΓ0̂1̂...p̂Pp`2qε “ 0

4I have set gs “ 1 for all of this. I don’t understand how any of this could work without being modified for arbitrary gs.
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Here the Γ matrices with hatted (vielbein) indices are the familiar 10D Dirac matrices, as in Freedman and
Van Proyen Supergravity. We need our constant of proportionality κ “ 2 in order for the above combination
of matrices to have a nontrivial null space. Note we could inversely have taken this as a way to take the
profile of Φ “ epp´3qA and get the profile of F to be ˘4A1e4A.

Locally, then, this is a linear algebraic constraint on the space of spinors at a given point, which half of the
spinors will satisfy.

Now let’s look at longitudinal the gravitino variation. Similar to the case of the RN black hole, we expect
Bµε “ 0 since Bµ in the longitudinal direction is Killing.

Bµε`
1

4
ωabµ Γabε¯

epp´3qA

8
4A1e4AΓr0...pΓµPp`2ε “ 0

ñ´
1

2
eA´BA1 Γr̂µ̂ε¯

1

2
epp`1qAA1Γr0...pΓµPp`2ε “ 0

ñ´
1

2
A1 Γr̂µ̂ε¯

1

2
A1Γr̂0̂...p̂Γµ̂Pp`2ε “ 0

ñΓµ̂ε˘ Γ0̂...p̂Γµ̂Pp`2ε “ 0

ñp1˘ p´1qpΓ0̂...p̂Pp`2qε “ 0

This is exactly the same constraint as the one that the dilatino gave us. This also directly confirms our
assumption: Bµε “ 0 longitudinally, since we can subtract the dilatino variation from the above gravitino
one.

Meanwhile in the transverse directions we no longer expect Biε “ 0. It is important to note that the
components of the spin connection ω ab

i Γab will only be nonvanishing for a, b “ tj, ku being transverse
coordinates, in which case Γjk is proportional to the infinitesimal rotation generator. By assumption of
spherical symmetry (just as in the RN case of problem 35), this must vanish Γjkε “ 0.

0 “ Brε`
��

�
��1

4
ωabr Γabε˘

eApp´3q

8
4A1e4AΓr0...pΓrPp`2ε

“ Brε˘
1

2
A1 Γr̂0̂...p̂ΓrPp`2ε

“ Brε˘ p´1qp`1 1

2
A1 Γ0̂...p̂Pp`2ε

“ Brε´
1

2
A1εñ ε “ eA{2ε0

where ε0 is a constant spinor satisfying the linear algebraic constraints previously given.

We thus have that indeed our configuration is half-BPS.

44. We write again the spin connection found in the last problem:

eµ̂ “ eAdxµ, eî “ eBdxi

Hatted indices always denote the vielbein indices.

Then

deµ̂ “ BrAe
Adr ^ dxµ “

ÿ

i

BiAe
Adxi ^ dxµ “ eî ^ ωµ̂

î
ñ ωµ̂ν̂ “ 0, ωµ̂î “ p´q

µ“0BiA eA´Bdxµ

deî “ BrBe
Bdr ^ dxi “

ÿ

j

BiBe
Bdxj ^ dxi “ eĵ ^ ωî

ĵ
ñ ωîĵ “ BjBdxi ´ BiBdxj

From this, we can get the Riemann curvature using Rα̂β̂ “ dωαβ ` ωαγ ^ ω
γ
β. First Rµ̂ν̂ is the easiest:

Rµ̂ν̂ “��
�dωµ̂ν̂ ` ωµ̂î ^ ω

î
ν̂ “ e2pA´BqpBAq2dxµ ^ dxν “ R ν

µ
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Note that last expression is unhatted.

Next is Rµ̂î

Rµ̂î “ dωµ̂î `ωµ̂ĵ ^ ω
ĵ
ν̂

“ rBjBiAe
A´B ` BiApBjA´ BjBqsdx

j ^ dxµ ´BiAe
A´BBjBdx

µ ^ dxi ` BjAe
A´BBiBdx

µ ^ dxj

“ eA´BrpBiBjA` BiABjA´ BiBBjA´ BjBBiAqsdx
j ^ dxµ ´ eA´BBjABjBdx

µ ^ dxi

We can get R;i
µ (note unhatted) by multiplying this by eA´B and R µ

i by multiplying this by ´eB´A.

Finally Rîĵ :

Rîĵ “ dωîĵ `
��

�
��

ωîµ̂ ^ ω
µ̂

ĵ
`ωîk̂ ^ ω

k̂
;ĵ

“ BkBjBdx
k ^ dxi ´ BkBiBdx

k ^ dxj `BkBBjBdx
i ^ dxk ´ BkBBiBdx

j ^ dxk ´ pBBq2dxi ^ dxj

“ ´pBBq2dxi ^ dxj ` pBkBiB ´ BkBBiBqdx
j ^ dxk ´ pBkBjB ´ BkBBjBqdx

i ^ dxk “ R;j
i

To evaluate RµνρσR
µνρσ amounts to summing the squares of all the entries in the curvature two form when

expressed in only vielbein indices. We can do this in Mathematica:

I can’t get c`, c´ exactly right. The best attempt is in ”exact p brane solutions.nb”. The
general L and r dependence in both cases matches though, and I’m not getting any p ´ 3
factors, so I can believe this result.

To get the Ricci tensor, we must to the appropriate contractions. Importantly, if a longitudinal index must
be summed over this gives an extra factor of p ` 1 while if a transverse index must be summed over this
gives an extra factor of 9´ p.

Rµν “ R ρ
µρν `R

i
µiν “ ´ηµνe

2pA´Bq
´

pp` 1qpA1q2 `A2 `
8´ p

r
A1 `A1B1p9´ p´ 2q

¯

Here A1 “ BrA is differentiation with respect to the radial coordinate. The Ricci tensor has no components
mixing transverse and longitudinal directions:

Rµi “��
�R ρ

µρi `�
��R j
µji “ 0

Finally the annoying one, for which I looked at Stelle’s Lectures on p-Branes 9701088 :

Rij “ R µ
iµj `R k

ikj “´δij

´

B2 ` pp` 1qA1B1 ` p7´ pqpB1q2 ` 2p7´pq`1
r B1 ` d

rA
1
¯

` xixj

r2 pp7´pqB2´ 7´p
r
B1`pp`1qA2´ p`1

r
A1´2pp`1qA1B1`pp`1qpA1q2´p7´pqpB1q2q

In this last part I rewrote Bi “
xi

r Br.

We can evaluate this directly in Mathematica. For RµνR
µν and R we get:
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The last line is in agreement with the expression for R in Kiritsis 8.8.31

45. Exercise 7.7 shows that, upon T -dualizing along the x9 direction we get

C̃
pp`1q
µ1...µp9 “ Cppqµ1...µp , C̃ppqµ1...µp “ C̃

pp`1q
µ1...µp9

In transverse space, our pp ` 1q-form C has components only along the longitudinal directions. Upon T-
dualizing, we pick up the 9 index in the C form, and thus get that our brane has a pp` 2q form charge. We
thus expect this to be a p ` 1 brane wrapping that additional x9 direction. I’m unsure if this wants us to
explicitly give the form of that solution, since doing it in a compact space seems a bit harder.

46. Let’s assume p ă 7. When λ " 1 the perturbative stringy description is no longer valid. For an extremal
p-brane, we know from problem 40 that:

L7´p “
2κ2

10TpN

p7´ pqΩ8´p
ñ

ˆ

L

2π`s

˙7´p

“
gsN

7´ p

Γp9´p
2 q

2π
9´p

2

So λ “ 2πgsN " 1 gives that L " `s, meaning that the throat size is macroscopic. We can thus probe it
without having to see distances smaller than the string scale.

When p ą 3 we see from our calculation of R in problem 44 that R blows up as L2p7´pq

rpp´3q{2 as r Ñ 0. This will

become order `´2
s at

r «

ˆ

`2s
Lp7´pq{2

˙2{pp´3q

When p ă 3 the formula for R indeed is seen to go to zero. On the other hand the string coupling grows as

eΦ “ gsH
p3´pq{4 “ gs

ˆ

1`
L7´p

r7´p

˙p3´pq{4

So if gs is the string coupling “at infinity” which we can take to initially be small, then it will become
appreciable at

r “ Lp´1` g´4{p3´pq
s q1{pp´7q
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so for gs sufficiently small, the quantity in parentheses will be quite large and be raised to a negative power,
so that this is a small fraction of the throat size.

47. This is only a slight variant of exercises 8.38-9, and in fact is a bit easier. Our action is

S “
1

2κ2
10

ż

d10x
?
´ge´2Φ

„

R` 4p∇Φq2 ´
1

2 ¨ 3!
pdBq2



Let’s first vary Φ. We get

0 “ ´2e´2Φ

„

R` 4p∇Φq2 ´
1

2 ¨ 3!
pdBq2



´∇pe´Φ8∇Φq

“ ´2e´2ΦR´ 8e´2Φp∇Φq2 `
e´2Φ

3!
pdBq2 ´ 8e´2ΦlΦ` 16p∇Φq2e´2Φ

ñR “ 4p∇Φq2 ´ 4lΦ`
pdBq2

2 ¨ 3!

Next for the B-field we will just have
d ‹ e´2ΦdB “ 0

Finally, varying g is the hardest, but we’ve done most of the work already in the other problem:

•
?
´ge´2ΦR

Ñ pRµν ` gµνl´∇µ∇νqe´2Φ ´
1

2
gµνe

´2ΦR

“ e´2Φ
´

Rµν ´
1

2
gµνR` gµνp´2lΦ` 4pBΦq2q ´ p´2∇µ∇νΦ` 4BµΦBνΦq

¯

•
?
´ge´2Φ4gµνBµΦBνΦ Ñ 4e´2ΦBµΦBνΦ´ 2e´2ΦpBΦq2

• ´ e´2Φ

2pp`2q!

?
´ggµ1ν1 . . . gµp`2νp`2Fµ1...µp`2Fν1...νp`2 Ñ ´ e´2Φ

2pp`1q!F
2
µν `

e´2Φ

4pp`2q!gµνF
2. Here F 2

µν “ Fµ...F
ν...

Combining these all together, dividing through by e´2Φ and using the dilaton equations of motion gives

Rµν ` 2∇µ∇νΦ “
1

2 ¨ 2!
H2
µν

Here Hµν “ HµρσH
ρσ
ν as we’ve had before (i.e. in chapter 6).

Ok next let’s take the ansatz as in Kiritsis:

ds2 “ ´fpRqdt2 ` dx2
i `Hprq

ˆ

dr2

fprq
` r2dΩ2

3

˙

.

With dilaton
e2Φ “ g2

sHprq

The field strength written is wrong (as you can see by noting that as r Ñ 8 the magnetic flux integral
goes to zero). We can find the correct expression by noting that d ‹ dB “ 0 trivially since ‹dB has a dr
component. The only nontrivial equation is the Bianchi identity, giving (by spherical symmetry)

dB “ 0 ñ B “ cω

for ω “ dψ ^ sinψdθ ^ sinψ sin θdφ the unit volume form on the sphere. Let’s see what this constant c
should be from the dilaton equations. We get
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So when c “ ´2L
a

1` r2
0{L

2 we get our dilaton.

By Hodge-dualizing, this also gives credibility for the
a

1´ r2
0{L

2 constant in the p-brane solu-
tion, which would have required the more complicated Rµν equation.

Finally the least trivial equation of motion is also straightforward:

48. Let’s review the extremal near horizon limit first. There, when r ! L we can just write

ds2 “ ´dt2 ` d~x ¨ d~x` L2dr
2

r2
` L2dΩ2

3

Defining γ “
?
N`s log r

gs`s
?
N

gives dγ2 “ L2{r2 giving

ds2 “ ´dt2 ` d~x ¨ d~x` dγ2 `N`2sdΩ2
3

This looks like flat space times a constant-radius sphere with a linear dilaton background going as Φ “

γ{
?
N`s.
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Next let’s look at the near-extremal case. We take r “ r0 coshσ so that fprq “ 1 ´ r2
0{r

2 “ tanh2 σ.
Meanwhile

Hprq

fprq
dr2 “ p1`

L2

r2
0 coshσ

q
r2

0 sinh2 σdσ2

tanh2 σ
“ L2 ` r2

0 coshσ2 “ Hprqr2

So we get a metric
´ tanh2 σdt2 ` d~x ¨ d~x` pN`2s ` r

2
0 cosh2 σqpdσ2 ` dΩ2

3q

At large N , rescaling t this looks like

´ tanh2 σN`2sdt
2 ` d~x ¨ d~x`N`2spdσ

2 ` dΩ2
3q,

which looks like a 2D black hole solution in σ, t space, after rescaling

49. Let’s write the spin connection. Take e2A “ Hprq so that φ´ φ0 “ A. Our frame fields look like:

eµ̂ “ dxµ, eAprqdxi

for µ parallel and i transverse. It looks like ωµν “ ωµi “ 0 while

ωîĵ “ ´BjAdx
i ` BiAdx

j

similar to what we had before.

We again write the gravitino and dilatino variation in 10D type II SUGRA, neglecting this time the RR
forms but incorporating the N 2-form contribution:

0 “ δψµ,A “ pBµ `
1

4
ωabµ Γabqε`

1

4
{HµPε

0 “ δλ “ {BΦε`
1

2
{HPε

Here P “ Γ11 b 12 in type IIA and ´132 b σ
3 in type IIB.

The dilatino variation gives

BrφΓrε˘
1

2
p´2L2q sin2 ψ sin θΓψθφPε

“
H 1

2H
Γrε¯

L2

H3{2r3
Γψ̂θ̂φ̂Pε

“
H 1

2H3{2
Γr̂ε¯

L2

H3{2r3
Γψ̂θ̂φ̂Pε

ñ ´L2p1˘ Γr̂ψ̂θ̂φ̂Pqε “ 0

109



This is an algebraic constraint that is satisfied by half the space of spinors at any given point. This makes
the solution half-BPS, so long as the profile of ε can be chosen so that the gravitino vanishes.

The δψµ variation longitudinal to the solution is trivial. The transverse variation is

pBi `
1

4
ωijkΓ

jkqεi `
1

4
HijkΓ

jkPε

Crucially, though, Γjk is the generator of rotations. By rotational symmetry we thus reduce this to Biε “ 0,
implying that εprq “ ε0 is a constant spinor.

It is also worth noting that transverse to the NS5 brane is precisely the extremal BH solution in 5D, which
preserves half SUSY by the same arguments as before. Parallel to it is flat space (which preserves all SUSY).
The product spacetime therefore preserves half.

50. We have the same equations as when we were solving the for the NS5 brane. This time, the de´2Φ ‹ dB
constraint is nontrivial, and we must have a field strength. Because the field is electrically charged under
the field, I expect

B „ H´1prq

For H “ 1` L6

r6 the relevant harmonic form in transverse space. I don’t have much justification for this other
than the fact that - in every problem I’ve seen this seems to hold true. Now let’s take the ansatz that the
metric and dilaton look like

ds2 “ Hαp´dt2 ` dx2
1q `H

βdKx
2, eΦ “ Hγ

Then
?
´g “ Hα`4β and we get

e´2Φ ‹ dB “ H´α`3β´2γ´2r7H 1prq

We want de´2Φ ‹ dB “ 0 so we must have

´α` 3β ´ 2γ ´ 2 “ 0

The simplest guess would be α “ ´1, γ “ ´1{2. This turns out to work. First look at the dilaton EOM:

Next, look at the metric’s EOM
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Perhaps the easier thing to do was look for a BPS solution. In either case we are done. My (reasonable)
guess for the non-extremal version of this would be to keep the dilaton and NS field the same and modify
the metric to be

H´1prqp´fprqdt2 ` dx2
1q `

dr2

fprq
` r2dΩ2

7

where fprq “ 1´
r6
0
r6 . I have not checked this, but it seems right based on experience at this point. s

51. Let’s start with IIB. The untwisted sector will contain closed string states that are invariant under the
I4p´1qFL combination. The twisted sector will localize to the 5-plane left invariant by the inversion. Let’s
say that this is labeled by x0 . . . x5 and x6 . . . x9 are the coordinates reflected under the orbifold. The
supersymmetries QL “ Q,QR “ Q̃ both transform in the 8s representation. On the 5-plane, this decomposes
under SOp4q‖ ˆ SOp4qK as

8s Ñ r2‖ ˆ 2Ks ` r2̄‖ ˆ 2̄Ks

Here I4 acts with ´ on the 2b 2̄ vector representation of SOp4qK, leaving the 2b 2̄ SOp4q‖ alone. We take

I4 to flip the sign of only the 2K spinor. p´1qFL acts with a ´ sign on only Q. Together, this leaves

Q P 2‖ ˆ 2K, Q̃ P 2̄‖ ˆ 2̄K

invariant. These preserved generators give p1, 1q6 supersymmetry. The exact same argument would give that
the IIA twisted sector has p2, 0q6 SUSY. These rigid supersymmetries have a unique massless representation,
namely the vector and tensor multiplets respectively, so this is what we would expect to get.

Let’s check this explicitly for the twisted sector of the IIB orbifold. The parallel αµ do not get twisted
boundary conditions, but the transverse αi get acted on by a ´ from the I, so will get half-integrally
modded. For the fermions, the ψµ are affected by the p´1qFL and so will become integrally modded in the
NS sector and half-integrally modded in the R sector. The ψi are additionally affected the I and so remain
half-integrally modded in the NS sector and integrally modded in the R sector.

In both R and NS sectors, we have the same number of periodic and anti-periodic bosons and fermions, so
the ground state energy vanishes in both sectors. Massless excitations are described purely in terms of the
ground states of the system. The bosonic ground state is unambiguous. In the NS sector there are four ψi0
transforming in the SOp4qK vector representation while in the R sector there are four ψµ0 transforming in the
SOp4q‖ vector representation. These lead to ground states transforming as 2` 2̄.

The effect of the p´1qFL is to change the left-moving GSO projection in the twisted sector (c.f. exercise
11.29). Thus in both NS-NS and R-R we get GSO projections:

1

4
p1´ p´qFLqp1` p´qFRq
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For NS-NS this means:
p2LK ` 2̄LKq b p2

R
K ` 2̄RKq Ñ 2̄LK b 2RK

This transforms in the vector representation of SOp4qK and can thus be interpreted as 4 scalars with SOp4q
R-symmetry.

For R-R we get the same:
p2L‖ ` 2̄L‖ q b p2

R
‖ ` 2̄R‖ q Ñ 2̄L‖ b 2R‖

This is a vector with little group SOp4q.

So the NS-NS states give 4 scalars and the RR states give the vector. These are consistent with the spectrum
of a single NS5 brane in type IIB, and the same logic holds for IIA. Understand how this connects with
Sen’s articles on non-BPS particles
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Chapter 9: Compactification and Supersymmetry Breaking

In collaboration with Alek Bedroya

1. We compactify the heterotic string along just one dimension, making it a compact circle of radius R with
all 16 Wilson lines turned on.

Each noncompact boson contributes
1

?
τ2ηη̄

The fermions on the supersymmetric side contribute

1
ÿ

a,b“0

p´1qa`b`ab
θ
“

a
b

‰4

η4

The pp, pq compact bosons and 16 complex right-moving fermions that can be written as the pair ψIpz̄q, ψ̄Ipz̄q
have the action as in E.1 (setting `s “ 1)

1

4π

ż

d2σ
a

det ggabGαβBaX
αBbX

β `
1

4π

ż

d2σεabBαβBaX
αBbX

β `
1

4π

ż

d2σ
a

´det g
ÿ

I

ψIr∇̄` Y I
α B̄X

αsψ̄I

Here α, β are the toral coordinates for the compact spacetime and Y I
α is the Wilson line along torus cycle α.

To evaluate the path integral, as we did in the purely bosonic case, we have a factor of

?
detG

τ
p{2
2 pηη̄qp

coming from evaluating the determinant pdet∇2q´1{2 of the bosons. This multiplies a sum over instanton
contributions labelled by mα, nα taking values in a pp, pq-signature lattice with classical action

ÿ

mα,nα
e´

π
τ
pG`Bqαβpm`τnq

αpm`τ̄nqβ ˆ fermions.

The fermion contribution depends via the Wilson lines on the configuration of the Xα. In each such instanton
sector, the fermion path integral with a constant background Wilson line is equivalent to a free fermion with
twisted boundary conditions. For simplicity, let’s compactify just on S1, and denote θI “ Y In, φI “ ´Y Im.
We get boundary conditions:

ψIpσ ` 1, σ2q “ ´p´1qae2πiθI

ψIpσ, σ2 ` 1q “ ´p´1qbe´2πiφI

where a, b “ 0, 1 denotes anti-periodic/periodic boundary conditions respectively. We know that (in the
absence of Wilson lines) the determinant of B acting on complex fermions is:

deta,b B “
θ
“

a
b

‰

η

Let us now investigate the twisted boundary conditions. For simplicity its enough to take a “ b “ 0 (all
antiperiodic). We have two different ways to write the partition function. As a product over modes, we have
ψm, ψ̄m modes, with respective weights m´ 1

2 ´ θ,m´
1
2 ` θ Check against Polch 16.1.16 and respective

fermion numbers ˘1 relative to the ground state. The fermion number of the ground state has no canonical
value (as far as I can see). On the other hand, the ground state energy is given by the standard mneumonic
to be ´ 1

24 `
1
2θ

2. This gives:

Trθre
2iπφF qHs “ q

θ2

2
´ 1

24

8
ź

m“1

p1` qm´1{2`θe2πiφqp1` qm´1{2´θe´2πiφq “ qθ
2{2 θ

“

0
0

‰

pφ` θτ |τq

η
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For other boundary conditions, we can apply the same logic to get

qθ
2{2 θ

“

a
b

‰

pφ` θτ |τq

η

The overall phase is still a mystery. Writing θ
“

a
b

‰“

θ
φ

‰

as a new theta function, we can fix the phase by requiring
modular invariance

θ

«

0

0

ff«

θ

φ

ff

pτ ` 1q “ θ

«

0

0

ff«

θ

φ` θ

ff

pτq θ

«

0

1

ff«

θ

φ

ff

pτ ` 1q “ θ

«

0

0

ff«

θ

φ` θ

ff

pτq

θ

«

1

0

ff«

θ

φ

ff

pτ ` 1q “ eiπ{4θ

«

1

1

ff«

θ

φ` θ

ff

pτq θ

«

1

1

ff«

θ

φ

ff

pτ ` 1q “ eiπ{4θ

«

1

0

ff«

θ

φ` θ

ff

pτq

(79)

Even from the first of these conditions, we see that we need a term going as eiθφ out front. After adding
this in, all other transformations will hold automatically. The τ Ñ ´1{τ transformation will thus hold
automatically. Interpret this as an anomaly? Yes, Narain, Witten do this in Section 3 of their
paper. It seems careful anomaly analysis is not enough and one must indeed impose modular
invariance by hand.

Altogether then the 16 complex antiholomorphic fermions contribute in each instanton sector:

e´iπ
ř

I θ
IpφI`τ̄ θIq 1

2

1
ÿ

a,b“0

16
ź

i“1

θ̄
“

a
b

‰

pφ` τ̄ θ|τ̄q

η̄

Giving a total partition function as in the second (unnumbered) equation of Appendix E:

»

–

R
?
τ2ηη̄17

ÿ

m,n

e
´πR2

τ2
|m`nτ |2

e´iπ
ř

I nY
Ipm`nτ̄qY IY I 1

2

1
ÿ

a,b“0

16
ź

i“1

θ̄

„

a

b



pY Ipm` τ̄nq|τ̄q

fi

flˆ
1

τ
7{2
2 η7η̄7

1

2

1
ÿ

a,b“0

θ4
“

a
b

‰

η4

From the properties of the theta functions in Equation (79), the underlined fermionic sum has the exact
same transformation properties as a sum of θ16 terms and thus makes the full partition function modular
invariant.

Each theta function can be written in sum form as:

θ

„

a

b

„

θ

φ



“ eπiθφqθ
2{2

ÿ

nPZ
q

1
2
pn´a

2
q2e2πipn´a

2
qpφ`τθ´ b

2
q “

ÿ

nPZ
q

1
2
pn`θ´a

2
q2e2πiφpn` 1

2
θ´a

2
q´πibpn´a

2
q

Then we get the following expression for the underlined fermionic term:

1

2

1
ÿ

a,b“0

16
ź

I“1

ÿ

kPZ
q̄

1
2
pk`nY I´a

2
q2e´2πimY Ipk` 1

2
nY I´a

2
q`πibpk´a

2
q

“
1

2

1
ÿ

a,b“0

ÿ

qIPZ16

q̄
1
2
pqI`nY I´a

2
q2e´2πimY IpqI`nY I´a

2
q`πibpk´a

2
q

“
1

2

ÿ

qIPZ16

”

q̄
1
2
pqI`nY Iq2e´2πimY IpqI` 1

2
nY Iqp1` p´1q

ř

I q
I
q ` q̄

1
2
pqI`nY I´ 1

2
q2e´2πimY IpqI` 1

2
nY I´ 1

2
qp1` p´1q

ř

Ipq
I´ 1

2
qq

ı

“
ÿ

qIPΛ16

qpq
I`nY Iq2e´2πimY IpqI` 1

2
nY Iq

We note that the second-to last line is indeed the sum over the roots of Op32q augmented with one of the
spinor weight lattices. Altogether the compact dimensions contribute:

R
?
τ2ηη̄17

ÿ

mPZ,nPZ,qIPΛ16

exp

„

πR2

τ2
pm` nτqpm` nτ̄q ` πiτpqI ` nY Iq2 ´ 2πimY Ipk `

1

2
Y Iq


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To put this whole thing into Hamiltonian form, we proceed as in the bosonic case and perform a Poisson
summation over m. The terms that contribute are:

e
´πR2

τ2
n2τ2

1´n
2πR2τ2

ÿ

m

e
´πR2

τ2
m2´2πimY IpqI` 1

2
nY Iq´i

nR2τ1
τ2

“ e
´πR2

τ2
n2τ2

1´n
2πR2τ2

?
τ2

R

ÿ

m

e
´
πτ2
R2 pm`Y

IpqI` 1
2
nY Iq´in

R2τ1
τ2

q2

“ e
´πR2

τ2
n2τ2

1´n
2πR2τ2

?
τ2

R

ÿ

m

e
´
πτ2
R2 pm`Y

IpqI` 1
2
nY Iqq2`πR2 τ

2
1
τ2
n2`2πipm`qI` 1

2
nY Iqnτ1

“ e´n
2πR2τ2

?
τ2

R

ÿ

m

e´
πτ2
R2 pm`Y

IpqI` 1
2
nY Iqq2`2πipm`qI` 1

2
nY Iqnτ1

Together with the other terms this gives us

1

ηη̄17

ÿ

n,m,qI

q
1
2
pqI`nY Iq2e´n

2πR2τ2e´
πτ2
R2 pm`Y

IpqI` 1
2
nY Iqq2`2πipm`qI` 1

2
nY Iqnτ1

“
1

ηη̄17

ÿ

n,m,qI

q
1
2
pqI`nY Iq2q

1
2
p 1
R
pm´Y IpqI` 1

2
nY Iq`nRq2 q̄

1
2
p 1
R
pm´Y IpqI` 1

2
nY Iq´nRq2

where I’ve flipped mÑ ´m at the end there. We get momenta

kL “
1

R
pm´ qIY I ´

1

2
nY IY Iq ` nR “

m

R
` npR´

1

2
Y IY Iq ´ qIY I

kR “
1

R
pm´ qIY I ´

1

2
nY IY Iq ´ nR “

m

R
´ npR`

1

2
Y IY Iq ´ qIY I

kIR “ qI ` nY I

consistent with Polchinski with m Ð nm, n Ð wn, Y I Ð RAI and α1 “ 0 (might be off by a factor of
2 for kIR rel. to Polchinski but I think I’m consistent with Ginsparg). We only care about the
SOp1, 1,Zq T-duality group coming from the compact x9. This does not act on the Y I as far as I can see
CHECK

The SOp16,Zq on the other hand acts on the Y I as in the standard vector representation.

2. I am going to re-do the computations of appendix F Hatted indices denote the 10D terms. Greek indices
from the start of the alphabet denote compact 10-D-dimensional indices while greek indices from the middle
of the alphabet denote noncompact D-dimensional indices.

The 10D action is
ż

d10x

b

´Ĝ10 e
´2Φ̂rR̂` 4p∇Φ̂q2 ´

1

12
Ĥ2 ´

1

4
TrF̂ 2s `Op`2sq

with F̂ Iµν “ BµÂ
I
ν ´ BνÂ

I
µ and Ĥµνρ “ BµB̂νρ ´

1
2

ř

I Â
I
µF̂

I
νρ ` 2 perms.. Here I is the internal 16-dimensional

index for the heterotic string.

We take the 10-bein (r, a denote D and 10 ´D 10-bein indices, hatted indices r̂, µ̂ should not be confused
for 10-bein indices!!)

er̂µ̂ “

˜

erµ AβµEaβ
0 Eaα

¸

eµ̂r̂ “

ˆ

eµr ´eνrA
α
ν

0 Eαa

˙

This gives us the metric:

Gµ̂,ν̂ “

˜

Gµν ´A
α
µGαβA

β
ν GαβA

β
µ

GαβA
β
ν Gαβ

¸

As we’ve done before in chapter 7, we then define

φ “ Φ´
1

4
log detGαβ, FAµν “ BµAν ´ BνAµ
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With this, the compactification of R` 4p∇φq2 is clear:

ż

dD
?
ge´2φrR` 4BµφB

µφ`
1

4
BµGαβB

µGαβ ´
1

4
GαβF

A
µν
α
FAµν

β
s

The first and second terms are clear. The third term makes up for the redefinition of Φ in terms of φ while
the last term is the standard KK mechanism generating a gauge field strength from the compact dimensions.

Next, let’s look Ĥ. Because we have no sources for the H field, Ĥ is on the compact cycles. We can define
the D-dimensional fields using the 10-bein as:

Hµαβ “ erµe
µ̂
r Ĥµ̂αβ “ Ĥµαβ (80)

Hµνα “ erµe
s
νe
µ̂
r e
ν̂
sHµ̂ν̂α “ Ĥµνα ´A

β
µĤναβ `A

β
ν Ĥµαβ (81)

Hµνρ “ erµe
s
νe
t
ρe
µ̂
r e
ν̂
se
ρ̂
t Ĥµ̂ν̂ρ̂ “ Ĥµ̂ν̂ρ̂ ` r´A

α
µĤανρ `A

α
µA

β
ν Ĥαβρ ` 2 perms.s (82)

The point of defining these coordinates in terms of the 10-bein coordinate is that now, we can just directly
separate the Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂ sum into terms without worrying about the metric, and yield directly:

ż

dD
?
´ge´2φr´

1

12
HµνρH

µνρ ´
3

12
HµναH

µνα ´
3

12
HµαβH

µαβs

The method is the same for the F tensor. We define new Wilson lines and field strengths:

Y I
α “ AIα, AIµ “ erµe

µ̂
r Â

I
µ̂ “ ÂIµ ´ Y

I
αA

α
µ

I can define F in the standard F Iµν “ BµA
I
ν ´ BνA

I
µ, F̃ Iµα “ BµY

I
α . This gives me F̂ Iµν “ F Iµν ` BµpY

I
αA

α
ν q ´

BνpY
I
αA

α
ν q. By redefining

F̃ Iµν “ F Iµν ` Y
I
αF

A,α
µν

we can equate this with F̂ Iµν . For the compact coordinates its more simple and I take F̃µα “ BµY
I
α . Again

F̃αβ vanishes since we cannot have internal sources. This yields directly

ż

dDx
?
´ge´2φr´

1

4

16
ÿ

I

F̃ IµνF̃
I,µν ´

2

4
F̃ IµαF̃

I,µαs

Its not good enough for us to write everything in terms of an abstract H 3-form. We want to relate H to B
and Y . From our relationship in 10D we can directly write:

Hµαβ “ BµBαβ `
1

2

ÿ

I

pY I
α BµY

I
β ´ Y

I
β BµY

I
α q

Taking Cαβ “ B̂αβ ´
1
2

ř

I Y
I
αY

I
β we get

Hµαβ “ BµCαβ `
ÿ

I

Y I
α BµY

I
β

Next

Hµνα “ BµBνα ´ BνBµα `
1

2

ÿ

I

pÂIνBµY
I
α ´ Â

I
µBνY

I
α ´ Y

I
αF

I
µνq

We define the B field using not just the vielbein but also the gauge connection:

Bµα :“ B̂µα `BαβA
β
µ `

1

2

ÿ

I

Y I
αA

I
µ, FBµν “ BµBν ´ BνBµ

Then using (81) we get

Hµνα “ FBαµν ´ CαβF
A
µν
β
´
ÿ

I

Y I
αF

I
µν
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Finally, using both vielbein and connection

Bµν “ B̂µν `
1

2
rAαµBνα `

ÿ

I

AIµA
α
νY

I
α ´ pν Ø µqs ´AαµA

β
νBαβ

And this gives us

Hµνρ “ BµBνρ ´
1

2
LijA

i
µF

j
νρ ` 2 perms.

where Lij is the p10´D, 26´Dq-invariant metric and we have combined Aαµ, Bαµ, A
I
µ into a length 36´ 2D

vector.

Now the full action is:
ż

dD
?
ge´2φrR` 4BµφB

µφ´
1

12
HµνρH

µνρ

´
1

4
GαβHµναH

µνβ ´
1

4
GαβF

A
µν
α
FA

µνβ
´

1

4
F̃ IµνF̃

I,µν

´
1

4
HµαβH

µαβ `
1

4
BµGαβB

µGαβ ´
1

2
F̃ IµαF̃

I,µαs

Using our expressions for Hµνα and F̃Aµν , the middle line can be combined into

´
1

4

¨

˝

G` CTG´1C ` Y TY ´CTG´1 CTG´1Y T ` Y T

´G´1C G´1 ´G´1Y T

Y G´1C ` Y ´Y G´1 1` Y G´1Y T

˛

‚

ij

F iµνF
µν j

here F i “ pFA
α
, FBα, F

Iq. Call the matrix M´1 and notice that LML “ M´1, and indeed we get M
transforms in the adjoint of SOp26´D, 10´Dq.

Similar arguments would give that the last line becomes 1
8TrBµMB

µM´1 (Too much algebra).

From this, its immediate that any SOp10´D, 26´Dq transformation on the scalar matrix (adjoint rep) and
array of vector bosons (vector rep) will preserve both of these last two terms. It will also preserve H since
it depends on the invariant Bνρ and SO-invariant combination LijA

i
µF

j
νρ.

3. The action for IIA in the string frame is

1

2κ2
10

ż

d10x

b

´Ĝ

„

e´2Φ̂rR̂` 4p∇Φ̂q2 ´
1

12
Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂s ´
1

4
F 2

2 ´
1

2 ¨ 4!
F 2

4



`
1

4κ2

ż

B2 ^ dC3 ^ dC3

Doing the same reduction as before, the R̂` 4p∇Φ̂q2 ´ 1
12H

2 term becomes:

ż

d4?´ge´2φ
”

R` 4BµφB
µφ´

1

4
FAµν

α
FA

µν
α `

1

4
BµGαβB

µGαβ ´
1

12
HµνρH

µνρ ´
1

4
HµαβH

µαβ ´
1

4
GαβHµναH

µνα
ı

“

ż

d4?´ge´2φ
”

R` 4BµφB
µφ´

1

12
HµνρH

µνρ ´
1

4
M´1
ij F

i
µνF

µν j `
1

8
TrrBµMB

µM´1s

ı

Here we used H as in the last problem and the matrix M consisting of the 21 Gαβ and 15 Bαβ. The F i are
the field strengths of the 6` 6 Up1q vectors coming from G and B compactification.

Hµνρ “ BµBµρ ´
1

2
LijA

i
µF

j
νρ ` 2 perms. M´1 “

ˆ

G`BTG´1B ´BTG´1

´G´1BG´1 G

˙

The Hµνρ can be dualized to provide a sixteenth scalar coming from the B field. By analogy to 9.1.13, in
the string frame I would expect to write:

e´2φHµνρ “ Eµνρσ∇σa
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The Bµν equations ∇µpe´2φHµνρq are now automatically satisfied. The axion EOMs come from the Bianchi
identity:

EµνρσBµHνρσ “ ´
1

2
LijE

µνρσF iρσF
j
µν “ ´LijF̃

i
µνF

j µν , F̃ iµν “
1

2
EµνρσFρσ

Here we have defined the dual 2-form as required. This can now be recast as the equation of motion for the
axion (contracting the Es gives a 4):

∇µpe2φ∇µaq “ ´
1

4
LijF

i
µνF̃

j µν

With this, we can dualize the action in terms of the axion to yield:

ż

d4?´ge´2φ
”

R` 4BµφB
µφ´

1

2
e4φpBaq2 `

1

4
e2φaLijF

i
µνF̃

j µν ´
1

4
M´1
ij F

i
µνF

µν j `
1

8
TrrBµMB

µM´1s

ı

We could also do this in the Einstein frame and get exactly the same action as in 9.1.15 with the M matrix
as we have it (no sum over heterotic internals).

The only thing left is the RR fields. We follow Kiritis’ treatment of the 4-form field strength. We use the
10-bein to get:

Cαβγ “ Ĉαβγ

Cµαβ “ Ĉµαβ ´ CαβγA
γ
µ

Cµνα “ Ĉµνα ` ĈµαβA
β
ν ´ ĈναβA

β
µ ` CαβγA

β
µA

α
ν

Cµνρ “ Ĉµνρ ´ pA
α
µĈνρα `A

α
µA

β
νCαβρ ` 2 perms.q ´ CαβγA

α
µA

β
νA

γ
ρ

Let’s now define the field strengths. Now we must have Fαβγδ “ 0 since the internal dimensions do not
contain sources for the field. What remains is

Fµαβγ “ BµCαβγ

Fµναβ “ BµCναβ ´ BνCµαβ ` CαβγF
γ
µν

Fµνρα “ BµCνρα ` CµαβF
β
νρ ` 2 perms.

Fµνρσ “ pBµCαβγ ` 3 perms.q ` pCσραF
α
µν ` 5 perms.q

Then this gives the contribution (here all two-lower one-upper index Fαµν are taken to mean FA):

S
p4q
RR “ ´

1

2 ¨ 4!

ż

d4?´g
a

detGαβrFµνρσF
µνρσ ` 4FµνραF

µνρα ` 6FµναβF
µναβ ` 4FµαβγF

µαβγs

It is important to realize that in 4-D the 4-form field strength coming from the 3-form has no dynamical
degrees of freedom. It plays the role of a cosmological constant Check w/ Alek.

The two-spacetime-index term can be directly dualized. It corresponds to 6ˆ 5{3 “ 15 vectors. The three-
spacetime-index term can be dualized to become the kinetic term for 6 scalar axions aα with no interaction
term.

The Fµαβγ correspond to kinetic terms of the 6ˆ 5ˆ 4{3! “ 20 scalars C
p4q
αβγ .

Let’s do a similar thing for the 2-form field strength. There, we get Cα “ Ĉα, Cµ “ Ĉµ ´ CαA
α
µ. The

corresponding field strength is Fαβ “ 0, Fµα “ BµCα and Fµν “ BµCν ´ BνCµ ` CαF
α
µν . We then get

contribution

S
p2q
RR “ ´

1

4

ż

d4?´g
a

detGαβrFµνF
µν ` 2FµαF

µαs

Again Fµν can be written in terms of dual fields F̃
p2q
µν “ EµνρσF

p2q ρσ. This is one gauge fields and six further
scalars.

Return and think about the effect of the CS terms. I bet they make the RR field equations
non-free.
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4. First note that using the OPE

ΣIpzqΣ̄Jpwq “
δIJ

pz ´ wq3{4
` pz ´ wq1{4JIJpwq

the xJIIΣJ Σ̄Jy correlator can be evaluated as

xJIIpz1qΣ
Jpz2qΣ̄

Jpz3qy “ pδ
IJ ´ 1

4q
z

1{4
23

z12z13

Taking z1 Ñ z2 we see a singularity going as
pδIJ´

1
4 q

z12
z
´3{4
23 . Meanwhile taking the JΣ OPE gives

q
xΣpz2qΣ̄pz3qy

z12
“

q

z12
z
´3{4
23

So we see that under JI the charge of ΣJ is 3{4 if I “ J and ´1{4 otherwise. We have 4 JII , and notice
that the total charge under all four of each ΣI is always zero. Consider the following combination of charges,
which provides a basis for the ΣI charge space

J̃1 “ J11 ` J22 ´ J33 ´ J44

J̃2 “ J11 ´ J22 ` J33 ´ J44

J̃3 “ J11 ´ J22 ´ J33 ` J44

Under each of J̃ i we have the following charges

Σ1 Ñ p1
2 ,

1
2 ,

1
2q, Σ2 Ñ p1

2 ,´
1
2 ,´

1
2q, Σ3 Ñ p´1

2 ,
1
2 ,´

1
2q, Σ4 Ñ p´1

2 ,´
1
2 ,

1
2q

Σ̄1 Ñ p´1
2 ,´

1
2 ,´

1
2q, Σ̄2 Ñ p´1

2 ,
1
2 ,

1
2q, Σ̄3 Ñ p1

2 ,´
1
2 ,

1
2q, Σ̄4 Ñ p1

2 ,
1
2 ,´

1
2q

These are exactly all combinations, and we can define the three bosonic fields φi with T “
ř

i
1
2pBφiq

2 so
that

Σ1 “ exp
“

ip1
2φ1 `

1
2φ2 `

1
2φ3q

‰

, Σ2 “ exp
“

ip1
2φ1 ´

1
2φ2 ´

1
2φ3q

‰

, etc.

Each of these ΣI , Σ̄I has dimension 3{8 as required.

Let’s look at the supercurrent Gint. It can be written in terms of an eigenbasis of the commuting J̃ i. In
particular look at J̃1.

Gint “
ÿ

q

eiqφ1T pqq

Now consider the OPEs Gint ¨ Σ1 and Gint ¨ Σ̄1. As observed in the chapter, both of these have only the
singular term going as pz ´ wq´1{2. Together both of these require that q in G can only be ˘1. We can
repeat this argument for J̃2, J̃3 to see that Gint must be a sum of 6 terms:

eiq1φ1Z1 ` e
´iq1φ1Z̄1 ` e

iq2φ2Z2 ` e
´iq2φ2Z̄2 ` e

iq3φ3Z3 ` e
´iq3φ3Z̄3

Each Zi, Z̄i must be dimension one operators, so they are themselves bosonic fields iBXi
˘. We thus have

that Gint “
ř3
i“1,˘ ψ

˘
i BX

i
˘. This is exactly the supercurrent for six free boson-fermion systems and will

give (under anticommutator) the stress tensor of a six free boson-fermion systems. This is exactly a toroidal
CFT.

5. The relevant partition function is not difficult to compute, as we can follow 9.4’s example but not do the
twist on the internal p0, 16q part. Firstly the fermions on the left-moving (SUSY) side have orbifold blocks
under the shifts as before:

Zψ

„

h

g



“
1

2

1
ÿ

a,b“0

p´1qa`b`ab
θ2
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4
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Similarly we’ve already constructed the bosonic blocks before. They are given by 4.12.10 as:

Z4,4

„

0

0



“
Γ4,4

η4η̄4
, Z4,4

„

h

g



“ 24 η2η̄2

θ2
“

1´h
1´g

‰

θ̄2
“

1´h
1´g

‰

Then the p2, 2q part is untouched, yielding
Γ2,2

η2η̄2 as is the p0, 16q part. We get the partition function

Zhet “
Γ2,2

η2η̄2
loomoon

1

ˆ
1

2

1
ÿ

h,g“0

Z4,4

“

h
g

‰

τ2η2η̄2

loooooooomoooooooon

2

ˆ
1

2

1
ÿ

a,b“0

p´1qa`b`ab
θ2
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4

looooooooooooooooooooooomooooooooooooooooooooooon

3

ˆ

´

1
2

ř1
a,b“0 θ̄

“

a
b

‰8
¯2

η̄16
loooooooooomoooooooooon

4

Let’s see how each term transforms under τ Ñ ´1{τ . 1 stays invariant. 2 have Z4,4

“

h
g

‰

Ñ Z4,4

“

g
h

‰

with τ2η
2η̄2

invariant. 3 is the only nontrivial one. We will do it explicitly in the next step. 4 will remain invariant.

Under τ Ñ τ ` 1, we must be careful, as θ
“

1
0

‰

picks up an eiπ{4 while θ
“

´1
0

‰

picks up e´3iπ{4. The other two
nonzero theta functions simply do θ

“

a
b

‰

Ñ θ
“

a
a`b´1

‰

1, 2, remain invariant, with 2 making us change variables g1, h1 “ g, h ` g ´ 1. The η functions in the
denominators of 3 and 4 leave over an 1{η̄12 which contributes a ´ sign.

Let’s look at 3. First when h “ 0, g “ 0 we have p´1qa`b`abθ4
“

a
b

‰

and τ ` τ ` 1 will send this to ´ itself as
required to cancel the η̄12 ´ sign.

The other terms looks like (after canceling θ
“

1
1

‰

)

h “ 0, h “ 0 : θ

«

0

0

ff4

´ θ

«

1

0

ff4

´ θ

«

0

1

ff4

´ θ

«

1

1

ff4

“ 0

h “ 1, g “ 0 : θ

«

0

0

ff2

θ

«

1

0

ff

θ

«

´1

0

ff

´ θ

«

1

0

ff2

θ

«

2

0

ff

θ

«

0

0

ff

´
���

���
��

θ

«

0

1

ff2

θ

«

1

1

ff

θ

«

´1

1

ff

´

��
��

��
�

θ

«

1

1

ff2

θ

«

2

1

ff

θ

«

0

1

ff

“ θ

«

0

0

ff2

θ

«

1

0

ff2

´ θ

«

1

0

ff2

θ

«

0

0

ff2

“ 0

h “ 0, g “ 1 : θ

«

0

0

ff2

θ

«

0

1

ff

θ

«

0

´1

ff

´
���

���
��

θ

«

1

0

ff2

θ

«

1

1

ff

θ

«

1

´1

ff

´ θ

«

0

1

ff2

θ

«

0

2

ff

θ

«

0

0

ff

´

�
��

�
��
�

θ

«

1

1

ff2

θ

«

1

2

ff

θ

«

1

0

ff

“ θ

«

0

0

ff2

θ

«

0

1

ff

θ

«

0

1

ff

´ θ

«

0

1

ff2

θ

«

0

0

ff2

“ 0

h “ 1, g “ 1 :
���

���
��

θ

«

0

0

ff2

θ

«

1

1

ff

θ

«

´1

´1

ff

´ θ

«

1

0

ff2

θ

«

2

1

ff

θ

«

0

´1

ff

´ θ

«

0

1

ff2

θ

«

1

2

ff

θ

«

´1

0

ff

´

��
��

�
��

θ

«

1

1

ff2

θ

«

2

2

ff

θ

«

0

0

ff

“ ´θ

«

1

0

ff2

θ

«

0

1

ff2

` θ

«

0

1

ff2

θ

«

1

0

ff2

“ 0

Ok, so in fact this partition function is zero. This should not be surprising, since naively we are just
breaking supersymmetry in half, and so we should still expect fermions and bosons to run in loops such that
the vacuum energy vanishes. Naively, then we would again say “zero is modular invariant” and be done with
it- but not so fast. There are still phases we can pick up, say from τ Ñ τ ` 1 that would not be visible given
the vanishing of the partition function, but would nonetheless spoil modular invariance.

One way around this is to turn on the chemical potential νi in the theta functions to prevent vanishing.
Effectively, then, we ignore the Jacobi identity and don’t just set θ

“

1
1

‰

“ 0. Then, let’s look at how each

term transforms under τ Ñ τ ` 1. Again, the terms not involving θ
“

1
1

‰

will cancel independently of νi “ 0 or
not, and after simplifying things ,we have

p0, 0q : θ

«

0

0

ff4

´ θ

«

1

0

ff4

´ θ

«

0

1

ff4

´ θ

«

1

0

ff4

Ñ θ

«

0

1

ff4

` θ

«

1

0

ff4

´ θ

«

0

0

ff4

` θ

«

1

1

ff4

ð ´p0, 0q

p1, 0q : ´ 2θ

«

0

1

ff2

θ

«

1

1

ff2

Ñ ´2i θ

«

0

0

ff2

θ

«

1

1

ff2

ð iˆ p1, 1q

p0, 1q : 2θ

«

1

0

ff2

θ

«

1

1

ff2

Ñ ´2θ

«

1

0

ff2

θ

«

1

1

ff2

ð ´p0, 1q

p1, 1q : ´ 2θ

«

0

0

ff2

θ

«

1

1

ff2

Ñ ´2iθ

«

0

1

ff2

θ

«

1

1

ff2

ð iˆ p1, 0q
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So we see p0, 1q (ie the projected part of the untwisted sector) goes to its negative as required. On the other
hand, the twisted sector has p1, 0q and p1, 1q swap, but with a factor of i instead of ´1. This is not good
enough for modular invariance.

Under τ Ñ ´1{τ the sectors appropriately get sent to one another except for the twisted projected sector

which picks up a factor of ´1 from the θ
“

1
1

‰2
, so this too is not modular invariant.

It is worth adding that Polchinski remarks in 16.1 that for abelian orbifolds (of the type Tn{H with H and
abelian group), the only obstruction to modular invariance is τ Ñ τ ` 1

Indeed, we see that this twist violates 16.1.28 of Polchinski, where we hae r2 “ 0, r3 “ r4 “ 1 and so
ř4
i“2 ri ´

ř16
k“1 sk2 ‰ 0 mod 2N when N “ 2.

6. Now the partition function is given by

ZhetN“2 “
Γ2,2

η2η̄2
loomoon

1

ˆ
1

2

1
ÿ

h,g“0

Z4,4

“

h
g

‰

τ2η2η̄2

loooooooomoooooooon

2

ˆ
1

2

1
ÿ

a,b“0

p´1qa`b`ab
θ2
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4

looooooooooooooooooooooomooooooooooooooooooooooon

3

ˆ
1

2

1
ÿ

γ,δ“0

θ̄6
“

γ
δ

‰

θ̄
“

γ`h
δ`g

‰

θ̄
“

γ´h
δ´g

‰

η̄8

loooooooooooooooomoooooooooooooooon

4

ˆ

1
2

ř1
a,b“0 θ̄

“

a
b

‰8

η̄8
looooooomooooooon

5

Things will still remain invariant under τ Ñ ´1{τ for the reasons given above, now applied to both 3 and 4.
The only important subtlety is now in the p1, 1q sector the E8 θ̄

6
“

1
1

‰

will contribute a ´1 sign, as necessary
to cancel the twisted projected left-moving fermion sector.

Next, under τ Ñ τ ` 1, the exact same arguments apply to 3 and 4, namely the untwisted sector of the
left-handed fermions picks up ´1 phase as required to cancel with the η̄. The twisted sectors look like:

p0, 0q : θ̄

«

0

0

ff8

` θ̄

«

1

0

ff8

` θ̄

«

0

1

ff8

` θ̄

«

1

0

ff8

Ñ θ̄

«

0

1

ff4

` θ̄

«

1

0

ff4

` θ̄

«

0

0

ff4

` θ̄

«

1

1

ff4

ð p0, 0q

p1, 0q : θ̄

«

0

0

ff6

θ̄

«

1

0

ff2

` θ̄

«

1

0

ff6

θ̄

«

0

0

ff2

` θ̄

«

0

1

ff6

θ̄

«

1

1

ff2

` θ̄

«

1

1

ff6

θ̄

«

0

1

ff2

Ñ ´iθ̄

«

0

1

ff6

θ̄

«

1

0

ff2

´ iθ̄

«

1

0

ff6

θ̄

«

0

1

ff2

´ iθ̄

«

0

0

ff6

θ̄

«

1

1

ff2

´ iθ̄

«

1

1

ff6

θ̄

«

0

0

ff2

ð iˆ p1, 1q

p0, 1q : θ̄

«

0

0

ff6

θ̄

«

0

1

ff2

´ θ̄

«

1

0

ff6

θ̄

«

1

1

ff2

` θ̄

«

0

1

ff6

θ̄

«

0

0

ff2

´ θ̄

«

1

1

ff6

θ̄

«

1

0

ff2

Ñ θ̄

«

0

1

ff6

θ̄

«

0

0

ff2

´ θ̄

«

1

0

ff6

θ̄

«

1

1

ff2

` θ̄

«

0

0

ff6

θ̄

«

0

1

ff2

´ θ̄

«

1

1

ff6

θ̄

«

1

0

ff2

ð p0, 1q

p1, 1q : ´ θ̄

«

0

0

ff6

θ̄

«

1

1

ff2

´ θ̄

«

1

0

ff6

θ̄

«

0

1

ff2

´ θ̄

«

0

1

ff6

θ̄

«

1

0

ff2

´ θ̄

«

1

1

ff6

θ̄

«

0

0

ff2

Ñ iθ̄

«

0

1

ff6

θ̄

«

1

1

ff2

` iθ̄

«

1

0

ff6

θ̄

«

0

1

ff2

` iθ̄

«

0

0

ff6

θ̄

«

1

1

ff2

` iθ̄

«

1

1

ff6

θ̄

«

0

0

ff2

ð iˆ p0, 1q

So we get that the untwisted sector remains the same, while each of the two twisted sector components
change by a factor of i. This combines with what we know about the left-moving fermions to make every
combined contribution change with a ´ phase which exactly cancels the η-functions. The result is modular
invariant.

To verify the spectrum, as remarked in the text when we act by orbifold on the E8 ˆ E8 we break down
r120s ‘ r128s of Op16q. We get: r120s Ñ r3, 1, 1s ‘ r1, 3, 1s ‘ r1, 1, 66s ‘ r2, 1, 12s ‘ r1, 2, 12s and 128 Ñ
r2, 1, 32s ‘ r1, 2̄, 32s in SUp2q ˆ SUp2q ˆOp12q.

The Z2 action takes the spinors of the two SUp2q subgroups to minus themselves, keeping the conjugate
spinors in variant. Projecting by this keeps r3, 1, 1s ‘ r1, 3, 1s ‘ r1, 1, 66s, r1, 2̄, 32s. This organizes into
r3, 1s ‘ r1, 133s ‘ r2, 56s P SUp2q ˆ E7. Here 56 is the fundamental representation and 133 is the adjoint
representation of E7.

Now let’s organize our coordinates into µ “ 2, 3 indicating the spatial coordinates in lightcone gauge, and
pair the remaining 6 coordinates into Zi “ 1?

2
pX2i˘ iX2i`1q, i “ t2, 3, 4u. Let’s organize the different sector

contributions based on how they transform under the Z2 twist:

• Untwisted Sector

– Left-handed side:

∗ NS - The zero-point energy is ´1{2 and we thus have massless states coming from single fermion
excitations.

` : ψµ
´1{2, ψ

4,5
´1{2

´ : ψ6,7,8,9
´1{2
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∗ R - The zero-point energy is 0 from equal number of bosons and fermions and our massless
excitation comes from the ground state. Under the rotation e2πips2φ2´s3φ3q the ground states
organize as follows:

` : |12 ,
1
2 ,

1
2 ,

1
2y , |´

1
2 ,´

1
2 ,

1
2 ,

1
2y , |

1
2 ,

1
2 ,´

1
2 ,´

1
2y , |´

1
2 ,´

1
2 ,´

1
2 ,´

1
2y

´ : |12 ,´
1
2 ,

1
2 ,´

1
2y |

1
2 ,´

1
2 ,´

1
2 ,

1
2y |´

1
2 ,

1
2 ,

1
2 ,´

1
2y |´

1
2 ,

1
2 ,´

1
2 ,

1
2y

Note we only have an even number of ` signs in any of the ground states by GSO projection.
These won’t matter for the massless bosonic spectrum.

– Right-handed side
The zero-point energy is ´1, so we either have a bosonic excitation:

` : α̃µ´1, α
4,5
´1

´ : α̃6,7,8,9
´1

Or a weight 1 excitation from the current algebra:

` : |a`y P r3, 1, 1s ‘ r1, 133, 1s ‘ r1, 1, 128s

´ : |a´y P r2, 56, 1s

So, the untwisted bosonic massless states must be the Z2-invariant combinations of left (NS) and right
movers. We get

– ψµ
´1{2α̃

ν
´1: Gµν , Bµν ,Φ.

– ψµ
´1{2 |a

`y - vector boson in the adjoint of SUp2qˆE7ˆE8. This combines together with ψµ
´1{2α̃

4,5
´1

and ψ4,5
´1{2α̃

µ
´1 to produce an extra Up1q4.

– ψ4,5
´1{2 |ay Y ψ

4,5
´1{2α̃

4,5
1 - complex scalar transforming in the adjoint of Up1q4 ˆ SUp2q ˆ E7 ˆ E8

– ψ6,7,8,9
´1{2 α̃6,7,8,9

´1 - 16 neutral real scalars.

– ψ6,7,8,9
´1{2 |a´y 4 real scalars transforming in the r2, 56, 1s representation of SUp2q ˆ E7 ˆ E8

Here Kiritsis does not mention the presence of the dilaton with the other 16 real scalars. I assume this
is an accidental omission.

• Twisted Sector

For the transformation g, we have 4 points on each T 2 that are equivalence classes with the transformed
point gx. This means that we have 4ˆ 4 equivalence classes that we must include in the spectrum for
the twisted sector. This will be the same as looking at the spectrum for 1 class of twist and taking it
16-fold.

Equivalently, because fixed points correspond to the equivalence classes in this case, note that our
transformation has fixed points given by p0, 1

2 ,
τ2
2 ,

1
2 `

τ2
2 q ˆ p0,

1
2 ,

τ3
2 ,

1
2 `

τ3
2 q on the respective T 2s. The

products give 16 fixed points. So we will have 16 copies of the spectrum at the fixed point p0, 0q on our
T 4 Appreciate this. Are you sure its not 32?

– Left side The bosonic oscillators will be shifted by 1{2
The fermionic oscillators will also be shifted by 1{2.

∗ NS - The zero-point energy is now ´1
4 `

1
4 “ 0 and so we get only one ground state - the

vacuum.

∗ R - The zero-point energy remains zero. The zero modes that give the vacuum are now obtained
from ψ2,3,4,5. We thus get 2 ground states after GSO projection, which will end up giving us
the two requisite gravitinos

– Right side:
This is the hardest part. We use complex fermion language for the current algebra. We separate it
into two parts λ˘,1...8, λ˘,9...16. We get massless states from the pR,NSq and pNS,NSq states.
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∗ (NS,NS) Here the ground state energy is ´1{2. We thus get the following states contributing:

α6,7,8,9
´1{2 , λ˘3...8

´1{2

The first one will get GSO projected out (as will anything with an even number of fermions).
The second one will transform as the r12s of SOp12q. In line with this, we can also construct
three other copies of r12s (or r12s):

λ˘3...8
´1{2 λ

˘1
0 λ˘2

0

ISNT THIS 5?
The other state we can build that does not get GSO projected out is:

α6,7,8,9
´1{2 λ˘,1,20

This gives 4ˆ 2 copies of the r2s of SUp2q.

∗ (R, NS) Here the ground state energy is 0. We have zero modes coming from the 12 fermions
λ˘,3...8 giving 26 ground states giving the 32 and 32 spinors of SOp12q, one of which will get
projected out by GSO.
α0 alone will get GSO projected out, so does not contribute to the spectrum.

Together the two copies of r32s ` r12s ` r12s of SOp12q combine together to form the two copies of
the r56s of E7 and we get 8 copies of the 2 of SUp2q.
Altogether our gauge multiplets lie in 2ˆ r1, 56, 1s and 8ˆ r2, 1, 1s.

Thus we get the twisted bosonic states coming from |0yNS |ay giving us 32 scalars in the r1, 56, 1s and
128 scalars in the r2, 1, 1s.

The zero-point energy calculations are here:

7. Under τ Ñ τ ` 1 its quick to see that compactifying on any pd, d` 16q Lorentzian lattice and orbifolding by
a Zn shift symmetry of ε{N will give a transformation

τ Ñ τ ` 1 : ZN
„

h

g



“ e4πi{3e
iπh2ε2

N2 ZN
„

h

h` g



where the first exponential factor comes from the η̄´16 and the second factor comes from shifting p2
L ´ p2

R

which is otherwise even by εh{N which gives h2

N2 pε
2
L ´ ε

2
Rq “ h2ε2{N2.

The τ Ñ ´1{τ phase

τ Ñ ´1{τ : ZN
„

h

h



Ñ e´
2πihgε2

N ZN
„

g

´h


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can similarly be proven from straightforward Poisson resummation.

This problem specializes to N “ 2.

For ε2{2 “ 1 mod 4 the twisted sector picks up a phase under τ Ñ τ ` 1 and one can see that this phase is
`i, just as in the last problem. This is what was necessary to combine with the left-moving fermions to give
a modular invariance. Note this happens only when ε2{2 “ 1 mod 4.

Under τ Ñ ´1{τ the twisted sector’s projected part picks up a factor of ´1, exactly what we need to cancel
the ´1 on the left-moving side.

8. The partition function for our general heterotic N “ 2 compactification takes the form:

ZhetN“2 “
1

2

1
ÿ

h,g“0

Γ2,18

“

h
g

‰

Γ4,4

“

h
g

‰

τ2η8η̄24

1

2

1
ÿ

a,b“0

θ2
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4

We seek to compute τ2B2 where B2 “ Trrp´1q2λλ2s over our string’s Hilbert space. To do this, consider the
following helicity generating partition function:

Zpν, ν̄q “ TrrqL0 q̄L̄0e2πiνλL´2πiν̄λRs “
1

2

1
ÿ

h,g“0

Γ2,18

“

h
g

‰

Γ4,4

“

h
g

‰

τ2η8η̄24
ξpνqξ̄pν̄q

1

2

1
ÿ

a,b“0

θ
“

a
b

‰

pνqθ
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4
(83)

Here

ξpνq “
8
ź

n“1

p1´ qnq2

p1´ qne2πinνqp1´ qne´2πinνq
“

sinπν

π

θ11pνq

θ1pνq

plays the role of exchanging the traces over the bosons in the non-compact spatial (3,4) directions with traces
that involve the helicity.

I apply formula D.21 in Kiritsis to simplify the theta functions to:

1

2

1
ÿ

a,b“0

θ
“

a
b

‰

pνqθ
“

a
b

‰

θ
“

a`h
b`g

‰

θ
“

a´h
b´g

‰

η4
“
θ2
“

1
1

‰

pν2 qθ
“

1´h
1´g

‰

pν2 qθ
“

1`h
1`g

‰

pν2 q

η4
(84)

This vanishes at least as fast as ν2

We must now take (83) this and apply

´ 1

2πi
Bν ´

1

2πi
B̄ν̄

¯2
Zpν, ν̄q.

Because our generating function (83) vanishes as ν2 thanks to (84), we only need to look at B2
ν .

To obtain a nonzero result we thus need to act with B2
ν . On these terms for each h, g. First note that for

h “ g “ 0 (84) vanishes as ν4 so will not contribute. For ph, gq ‰ p0, 0q, the terms vanish as ν2 due to the
θ2
“

1
1

‰

, exactly cancellable by taking two derivatives on that term. Thus, we need only worry about the zeroth

order behavior of everything else: ξ „ 1 and θ
“

1´h
1´g

‰

θ
“

1`h
1`g

‰

pν{2q „ θ
“

1´h
1´g

‰

θ
“

1`h
1`g

‰

p0q. We are left with

´
π2

4

1

p2πq2
1

2

ÿ

h,g‰p0,0q

Γ2,18

“

h
g

‰

τ2η8η̄20

16η2η̄2

θ2
“

1´h
1´g

‰

θ̄2
“

1´h
1´g

‰θ

„

1´ h

1´ g



θ

„

1` h

1` g



`

Bνθ

„

1

1



ν“0

˘2

“ ´
4η6

2τ2η6η̄18

«

Γ2,18

“

1
1

‰

θ̄2
“

0
0

‰ `
Γ2,18

“

1
0

‰

θ̄2
“

0
1

‰ ´
Γ2,18

“

0
1

‰

θ̄2
“

1
0

‰

ff

Where we have used θ
“

1
2

‰

“ ´θ
“

1
0

‰

, as well as θ11|ν“0 “ 2η3 We now use the identity

θ̄2θ̄3θ̄4 “ 2η̄3

and recover

τ2B2 “ ´
Γ2,18

“

1
1

‰

θ̄2θ̄3

η̄24
´

Γ2,18

“

1
0

‰

θ̄2θ̄3

η̄24
`

Γ2,18

“

0
1

‰

θ̄3θ̄4

η̄24
.
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9. The gravitini can only come from the untwisted left-moving R sector (spinor spacetime index) tensored
with an α̃2,3

´1 on the right (vector spacetime index). The zero-point energy of the left-moving R sector
is 0 from equal numbers of bosons and fermions. Because our group acts on the (bosonized) fermions
the same way it acts on the bosons, we get that Z2

2 gives the three nontrivial elements given by rotations
e2πips1φ1´s2φ2q, e2πips1φ1´s3φ2q, e2πips2φ1´s3φ2q, with φ0 corresponding to the spacetime fermions not appearing.
We see that the only spinors which are invariant under these three transformations take the form

|˘1
2 ,

1
2 ,

1
2 ,

1
2y , |˘

1
2 ,´

1
2 ,´

1
2 ,´

1
2y

And we must have an even number of signs by GSO projection, so we in fact get two supersymmetries
preserved: α̃2,3

´1 |
1
2 ,

1
2 ,

1
2 ,

1
2y , α̃

2,3
´1 |´

1
2 ,´

1
2 ,´

1
2 ,´

1
2y, providing the ˘3{2 states only one gravitino.

10.

11. As before, the twist acts the same way on the bosons and (left moving) fermions. Already at this level, we
see that the only invariant states |s1, s2, s3, s4y must satisfy s2 “ s3 “ s4 so we will have the (GSO projected)
possibilities:

|12 ,
1
2 ,

1
2 ,

1
2y , |´

1
2 ,´

1
2 ,´

1
2 ,´

1
2y

providing again the ˘3{2 states of a single gravitino.

To avoid anomaly from ground state energy mismatch, we need the condition of Polchinski 16.1.28

4
ÿ

i“2

r2
i ´

16
ÿ

I“1

s2
I “ 0 mod 2N

Here N “ 6. Note that our ri “ p1, 1,´2q already sums to 6, so we must have the same for our si that
determines the Γ16 action.

I am confused why Kiritsis is saying there is only one such action of Z3 on Γ16. As long as
ř

s2
i “ 0 mod 6

we should get a consistent theory, as shown in Table 16.1 of Polchinski.

The simplest such twist (aside from the trivial one that leaves the E8 ˆ E8 untouched) would be to act on
the first 3 complex fermions of forming the first E8 group in the same way as we act on the complexified
bosons and left-moving fermions, namely by

λ̃˘,1,2,3 Ñ e˘2πiβ1,2,3 λ̃˘,1,2,3, β1 “ β2 “
1
3 , β3 “ ´

2
3

while the remaining λ˘,4...16 are left untouched. Let’s now get the massless spectrum under Z3 “ t1, r, r
2u

• Untwisted

– Left-moving The bosons are labeled by

• Twisted by r

• Twisted by r2

12. The Nijenhuis tensor is defined in terms of the almost-complex structure p1, 1q tensor J ij as

Nk
ij “ J li pBlJ

k
j ´ BjJ

k
l q ´ J

l
jpBlJ

k
i ´ BiJ

k
l q “ J li pBrlJ

k
jsq ´ J

l
jpBrlJ

k
isq “ J li p∇rlJkjsq ´ J

l
jp∇rlJkisq

We are able to replace partial derivatives with covariant derivatives and vice versa because the non-tensoriality
can only enter through the Christoffel symbols Γ, as follows

J li pΓ
k
rrlJ

r
js´��

��Γq
rljsJ

k
q q´J

l
jpΓ

k
rrlJ

r
is´�

��
�Γq

rlisJ
k
q q “ ΓkrrlJ

r
jsJ

l
i´ΓkrrlJ

r
isJ

l
j “ p´q

2

���
���

��
pδri Γ

k
rj ´ δ

r
jΓ

k
riq`(((

((((
((

ΓkrlpJ
r
j J

l
i ´ J

l
jJ

r
i q “ 0

So we see because everything is antisymmetrized that the Nijenhuis tensor is indeed a tensor.
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13. It is easiest to directly construct coordinate patches on CPN . We define N such patches to consist of N
complex coordinates z1 “ Z1{Zi . . . zi´1 “ Zi´1{Zi, zi`1 “ Zi`1{Zi, . . . zN “ ZN{Zi that are valid for all
parts of CPN where Zi ‰ 0. It is clear that these coordinates cover the whole manifold, since one Zi is
always not equal to zero, so any given point is always in a coordinate patch.

Moreover, the transition functions between different patches U,U 1 are simply fractional linear transformations
of the zi, z

1
i, so are holomorphic. This is enough to give a globally defined complex structure (vanishing Nk

ij)
the the manifold.

14. We begin with the existence of a Killing spinor

r∇m,∇nsξ “ Rrs,mnγ
rsξ “ 0

Now, multiplying by γn, we get

0 “ γnγrsRrs,mnξ “ pγ
nrs ` gnrγs ´ gnsγrqRrs,mnξ

The first term vanishes by the Bianchi identity. The other two terms give:

2Rnsγ
sξ “ 0

Now we can multiply by ξ̄γr to get
0 “ Rnsξ̄γrγ

sξ “ RnsJ
r
s

Since the complex structure is invertible, this gives Rns “ 0, so indeed our space is Ricci flat.

15. To verify the masslessness of the graviton, it is enough to look at linearized gravity and confirm that the
perturbations satisfy the massless spin 2 condition.

To

16.

17.

18. The NSNS fields give a graviton, an antisymmetric tensor, and 81 scalars. From the RR sector we get
another scalar from the axion C2, another 2-index antisymmetric tensor and 22 scalars from C2. Finally the
self-dual 4-form C4 gives 19 anti-self-dual and 3 self-dual two-index antisymmetric tensors.

The supergravity multiplet contains two left-handed Weyl gravitini. The tensor multiplet contains two Weyl
fermions of opposite chirality from the gravitini.

In order to cancel anomalies, we must be able to apply the Green-Schwartz mechanism

Thus we get NT “ 21. Now IIB has a self-dual 5-form. For each of 20 2-cycles wrapped we get
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Chapter 10: Loop Corrections to String Effective Couplings

It is not likely that this will be relevant to my research. I will skip it indefinitely for now.

1.
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Chapter 11: Duality Connections and Nonperturbative Effects

1. Taking the expression for a toroidal heterotic compactification from exercise 9.1

»

–

R
?
τ2ηη̄17

ÿ

m,n

e
´πR2

τ2
|m`nτ |2

e´iπ
ř

I nY
Ipm`nτ̄qY IY I 1

2

1
ÿ

a,b“0

16
ź

i“1

θ̄

„

a

b



pY Ipm` τ̄nq|τ̄q

fi

flˆ
1

τ
7{2
2 η7η̄7

1

2

1
ÿ

a,b“0

θ4
“

a
b

‰

η4

Using θ function identitiess as in the second equation in appendix E, we get

Γ1,17pR, Y q “
R
?
τ2

ÿ

m,n

e
´πR2

τ2
|m`nτ |2 1

2

1
ÿ

a,b“0

eiπmY
IY In´iπbnY I θ̄

„

a´ 2nY I

b´ 2mY I



Now take Y I “ 0 for I “ 1 . . . 8 and Y I “ 1{2 for I “ 1 . . . 16. Then

ź

I

eiπmY
IY In´iπbnY I “ eiπm

ř

IpY
Iq2´iπb

ř

I Y
I
“ 1

and we can ignore this term. Similarly because we are taking a product over 16 θ̄, no phases will interfere
with us replacing θ

“

u
v

‰

with θ
“

´u
´v

‰

for integer u, v. This gives us the desired first step

Γ1,17pR, Y q “ R
ÿ

m,n

e
´πR2

τ2
|m`nτ |2 1

2

1
ÿ

a,b“0

θ̄

„

a

b

8

θ̄

„

a` n

b`m

8

Now again because we have enough θ
“

a`n
b`m

‰

that phases do not interfere, we see that we only care about n,m
modulo 2 in the fermion term. We know how to divide the partition function of the compact boson into
parity odd and even blocks by doing the Z2 stratification corresponding to the πR translation orbifold of the
circle. This gives our desired answer:

1

2

ÿ

h,g

Γ1,1p2Rq

„

h

g



1

2

ÿ

a,b

θ̄

„

a

b

8

θ̄

„

a` h

b` g

8

with

Γ1,1p2Rq “ 2R
ÿ

m,n

exp

„

´πR2

τ2
|2m` g ` p2n` hqτ |2



2. As before, take the ansatz

ds2 “ e2Aprqηµνdx
µdxν ` e2Bprqdxi ¨ dxi, A012 “ ˘e

Cprq ñ Gr012 “ ˘C
1prq eCprq

The BPS states in 11D require only the gravitino variation to vanish:

δψM “ BM ε`
1

4
ωPQM ΓPQε`

1

2 ¨ 3! ¨ 4!
GPQRSΓPQRSΓM ε´

8

2 ¨ 3! ¨ 4!
GMQRSΓQRSε

We have worked out ω in 8.43.

ωµ̂ν̂ “ 0, ωµ̂î “ p´q
µ“0 BiAe

A´Bdxµ, ωîĵ “ BjBdx
i ´ BiBdx

j

Let’s look first at M “ µ parallel. Since ε is Killing we expect no longitudinal variation and we get

0 “�
�Bµε`

1

2
A1 eA´BΓµ̂r̂ε˘

1

2 ¨ 3!
C 1prqeC���

�
Γr012Γµε¯

1

3!
C 1prqeCΓµΓr012ε

“
1

2
A1 eA´BΓµ̂r̂ε¯

1

3!
C 1eC´B´2AΓµ̂r̂0̂1̂2̂ε

ñ 0 “ A1ε¯
1

3
C 1eC´3AΓ0̂1̂2̂ε

128



If we would like these two terms to be proportional, then we should take C “ 3A, and we get the following
condition for ε

p1¯ Γ0̂1̂2̂qε “ 0

So half the dimension of the space of spinors satisfies this at any given point. We thus get

For M “ i transverse, we recall Γij generates rotations, so assuming rotational invariance in the transverse
space, we’ll cancel this. We get

Brε`
��

��
�1

4
ωjkr Γjkε`

���
���

���
�1

2 ¨ 3!
Gr012Γr012Γrε¯

1

3!
Gr012Γ012ε “ 0

ñBrε¯
1

3!
Gr012Γ012ε “ 0

ñBrε¯
e´3A

3!
C 1eCΓ0̂1̂2̂ε

Solving this gives us that
εprq “ eCprq{6ε0

for ε0 some constant spinor. We still do not have a relationship between C and B. This can be obtained by
not assuming rotational invariance but rather imposing cancelation of the second and third terms above as
follows:

1

2
BjB Γîĵε˘

1

2 ¨ 3!
BjC e

C Γj012Γiε

“
1

2
BjB Γîĵε˘

1

2 ¨ 3!
BjC e

C´3A Γîĵ0̂1̂2̂ε

ñ BjB `
1

3!
BjC “ 0

where we have used the condition on ε already obtained. Thus C “ 3A “ ´6B. Finally Let’s look at G’s
equation of motion:

dG “ 0,
1

3!
d ‹G`

3

p144q2
εMNOPQRSTGMNOPGQRST “ 0

By assumption, the term quadratic in G vanishes. What remains gives us:

0 “ Brpe
3A`8Be´6A´2BC 1prqeCq “ Brpe

´3A`6B`CC 1q “ BrpC
1e´Cq ñ B2

re
´C “ 0

So we have that e´C “ Hprq as required, where

Hprq “ 1`
L6

r6

I’m happy with this. I could use Mathematica to show that the other EOM:

RMN ´
1

2
gMNR “ κ2TMN , κ2TMN “

1

2 ¨ 4!

ˆ

4GMPQRG
PQR
N ´

1

2
gMNG

2

˙

is satisfied - but this is barely different from what I’ve done several times before for the D-branes and
fundamental string solutions in chapter 8.

As before, this generalizes straightforwardly to multi-membrane configurations.

The charge of the M2 brane with H “ 1` 32π2N`6s
r6 is given by integrating ‹G

2κ2
11

on a seven-sphere at infinity.

Here 2κ2
11 “ p2πq

8`911 Asymptotically we will get the field strength going as

32ˆ 6π2N`611

r6

Altogether, using Ω7 “
π4

3 this gives a total charge of

π4

3

32ˆ 6π2N`611

p2πq8`911

“
N

p2πq2`211
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This is exactly consistent with 11.4.10-13, with µ “ N “ 1 corresponding to a single M2 brane.

Calculating the Ricci scalar curvature in fact gives a constant as r Ñ 0 so we do not encounter a divergence.
This signifies that this is just a coordinate singularity and we can extend past.

Finally, we can take the near-horizon limit and get

ds2 “
r4

L4
ηµνdx

µdxν `
L2

r2
dxi ¨ dxi

“
r4

L4
ηµνdx

µdxν `
L2

r2
dr2 ` L2dΩ2

7

Take now r “ L{
?
z to get the first term to look like 1{z2 while not affecting the second term much:

1

z2
pηµνdx

µdxν ` 4L2dz2q ` L2dΩ2
7

We can rescale z, xµ and see that this geometry is AdS4 ˆ S
7

3. The M5 brane is now magnetically charged under C3. Now the equations of motion d ‹ dC “ 0 are trivially
satisfied but the Bianchi identity is nontrivial, giving

B2
rH “ 0 ñ H “ 1`

L3

r3

The metric form can be fixed by analyzing the gravitino variation similar to before. Longitudinally:

0 “
1

2
A1eA´BΓµ̂r̂ `

1

2 ¨ 3!
C 1eC`A´4BΓθ̂1θ̂2θ̂3θ̂4µ̂

ñ A1ε`
1

3!
C 1eC´3BΓr̂θ̂1θ̂2θ̂3θ̂4ε

We see that we must take C “ 3B and A “ ´C{6, and we get the half-BPS condition:

p1´ Γ7̂8̂9̂1̂01̂1qε “ 0

The transverse components will give the profile for ε.

Brε`
1

2 ¨ 3!
C 1eC´3BΓθ̂1θ̂2θ̂3θ̂4r̂ε

and this gives a profile
ε “ e´C{12ε0

The membrane charge is given by integrating G on a 4-sphere whose area is given by 8π2{3, so we get

8π2

3

3πN`311

p2π8q`911

“
N

p2π`11q
5`11

Again we get that the Ricci scalar tends to a constant as r Ñ 0, giving regularity at the horizon. Again,
this signifies that this is just a coordinate singularity and we can extend past.
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Taking the near-horizon limit we arrive at

ds2 “
r

L
ηµνdx

µdxν `
L2

r2
dxi ¨ dxi “

r

L
ηµνdx

µdxν `
L2

r2
dr2 ` L2dΩ2

4

Now take r “ L{z2 yielding
1

z2
pηµνdx

µdxν ` 4L2dr2q ` L2dΩ2
4

so again after rescaling the same was as before we get AdS7 ˆ S
4.

As before, a solution can consist of an arbitrary number of M5 branes at different places, in which case we
get

Hprq “ 1`
ÿ

i

Li
|r ´ ri|3

This remains half-BPS.

4. First look at the field strengths. The general M5 brane solution For a uniform distribution of M5 charges,
we know that in the transverse (3D) space the potential must now decay as

H “ 1`

ż

dx11 L

|~r ´ x11ê11|
2
“ 1`

2L

r2
10D

where L depends on the density of the distribution. Then the 3-form field strength in 10D will just be

pdBqabc “ εabceBeH

Given this source in 10D, we have already worked out Einstein’s equations in Chapter 8. Another way to
see this is that we remain half-BPS after adding even an infinite number of parallel branes.

We have that e4Φ{3 “ G11,11 so that eΦ “ H1{2 consistent with the NS5 solution.

Using the perscription of dimensional reduction in appendix I.2, we take eσ “ e2Φ{3 “ H1{3. Using gµν “
e´σgSµν , we see that multiplying by H1{3 takes us to the string frame NS5 metric solution.

ds2 “ ηµνdx
µdxν `Hprqdxi ¨ dxi
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This is exactly the NS5 metric in string frame.

We can further take gSµν “ eΦ{2gEµν and multiply the string frame by e´Φ{2 “ H´1{4 to get us to the Einstein
frame.

5. Recall the BPS D6 brane in 10D is described by

H´1{2ηµνdx
µdxν `H1{2d~x ¨ d~x, H “ 1`

L

|x|
, L “ gs`sN{2, F “ LdΩ2, eΦ “ g2

sH
´3{4

This means that e´2Φ{3 “ H1{2. Multiplying ds2
string by this factor, we the 10D part of 11D metric

ηabdγ
adγb ` V d~x ¨ d~x

Here we’ve picked notation consistent with the problem so that γ0...6 “ x0...6, Hprq “ V prq, and xi is the
same.

Note also that
1

2κ2
10

ż

S2

F “
L4π

p2πq7`8sg
2
s

“ nTp ñ 2L “ `sngs

This should be supplemented by the metric component in the internal 11th dimension, given by e4Φ{3pdγ `
Aµ ¨ d~xq

2 “ V ´1pdγ `Aµ ¨ d~xq
2 where Aµ is the 10D gauge field generated by the monopole solution.

Now A cannot be globally defined because of the monopole. Given L “ 2N , it takes the same form as Aµ
does in 3D about a monopole of charge n “ N{`s.

We could have taken a more “active” approach, demonstrating that this metric ansatz does indeed solve
Einstein’s equations, and shown that for the field strength to satisfy the Bianchi identity in this geometry it
needed to indeed be a harmonic function of the transverse coordinates taken with flat metric.

6. The DBI action for a two-brane in flat space with vanishing B-field and constant dilaton is given in euclidean
signature as

´T2

ż

d3x
a

detpδab ` BaXµBbXν ` 2π`2sFabq ` i

ż

Cp3q ^ TrreF s ^ G,

where the second integral consists of Chern-Simons terms that we will ignore in this argument. We can work
with the field variable F rather than A by imposing the Bianchi identity “by hand”, namely writing the
(non-CS) part of the action as

´T2

ż

d3x

„

a

detpδab ` BaXµBbXν ` 2π`2sFabq `
i

2
λεabcBaFbc


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This last term can just as well be integrated by parts to give εabcBaλFbc.

We now introduce an auxiliary V variable to rewrite the action as

´ T2

ż

d3x

„

1

2
V detpδab ` BaX

µBbX
ν ` 2π`2sFabq `

1

2

1

V
`
i

2
εabcBaλFbc



“ ´T2

ż

d3x

„

1

2
V p1`

1

2
p2π`2sq

2F 2
ab ` . . . q `

1

2

1

V
`
i

2
εabcBaλFbc



here . . . involves terms depending on the BaX
µ. The equations of motion for F then give

Fab “ ´i
εabcBaλ

p2π`2sq
2V

Substituting this back in gives

´T2

ż

d3x

„

1

2
V p1` p´

1

2
` 1qp2π`2sq

´2pBλq2 ` . . . q `
1

2

1

V



Integrating out V gives us the square root action again, but now with F replaced by Bλ, a new coordinate

´T2

ż

d3x
a

detpδab ` BaXµBbXν ` p2π`2sq
´2BaλBbλq

Taking X “ λ{2π`2s gives our desired result

I have only shown classical equivalence. How to I prove this is quantum-mechanically true as
well?

7. We are looking at the transformation τ Ñ ´1{τ . We see that

C0 ` ie
´Φ Ñ

´1

C0 ` ie´Φ
“
´C0 ` ie

´Φ

C2
0 ` e

´2Φ

So we see C0 Ñ ´ C0

C2
0`e

´2φ and e´Φ Ñ e´Φ

C2
0`e

´2Φ . On the other hand, C0 will not affect the C2, B2 transfor-

mations. Nor will it affect C4, which remains invariant

In the Einstein frame the metric is invariant. That means that e´Φ{2gstring is invariant, which means gstring
transforms as e´Φ{2 times the Einstein frame metric. Consequently, in the string frame g1string “ e´Φgstring
(I think Kiritsis is wrong here, and Polchinski agrees with this)

Am I missing anything with that last one?

8. There’s effectively nothing to derive. Translating the Einstein frame means multiplying all lengths by e´Φ{4.

At fixed dilaton this is g
´1{4
s . Given `2s in the denominator will then contribute a factor

?
gs overall, that’s

exactly what was done here.

9. We have that C4 is invariant. That means that objects charged under C4 remain charged under C4, with the
same charge. These are precisely the D3/anti-D3 branes. Now recall the DBI action has coupling constant

g2
YM “

1

p2π`2sq
2T3

“ 2πgs

note that this is dimensionless, as it should be for a gauge theory in 4D. At low energies, the closed strings
decouple we can reliably trust the DBI action, considering the D-brane gauge theory on its own. In the
absence of axion, the SLp2,Zq of IIB takes gs Ñ 1{gs. This corresponds to

g2
YM Ñ

4π2

g2
YM

So this is the Weak-Strong Montonen-Olive duality of N “ 4 SYM.
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The only subtlety is that one must take care to include the Chern-Simons terms in the DBI action in order
to get the full duality, specifically

ż

C0TrrF ^ F s.

At fixed C0 “ θ{2π this produces the instanton number. The duality C0 Ñ C0 ` 1 is a bona-fide duality of
the N “ 4 theory, a consequence of the fact that instanton charge is quantized.

Is there anything else that I can say that constitutes any form of “showing” that this fact is
true? The only thing is I think I’m assuming that the D3 brane is the only object charged
under C3 at leading order in `s. Can I safely assume this?

10. I’ll start from the F1 string rather than the D1, not that it matters. Let us look at the macroscopic solution
in the Einstein frame, so we multiply the string frame solution obtained in the chapter 8 exercises by H1{4.
We get:

ds2
E “ H´3{4p´dt2 ` pdx1q2q `H1{4d~x ¨ d~x, H “ 1`

L6

r6

Here L6 “
2κ2

10TF1

6Ω7
“ 32`6sg

2
sπ

2 Note this is the same metric as the D1 solution, and indeed the metric will
stay the same for all pp, qq strings.

The C0 field has been set to zero. For F1 the dilaton and B-field have the profile

eΦ “ gsH
´1{2, B01 “ H´1

and indeed the dilaton has the inverse of this for the D1 while B and C exchange. Indeed, consider the
SL2pZq action

Λ “

ˆ

a b
c d

˙

.

Here, we have ad ´ bc “ 1, implying c, d are relatively prime. This will correspond to the fact that pp, qq
bound states only exist for p, q relatively prime, since otherwise there is a decay process of marginal instability
allowing the pp, qq system to separate into two or more sub-systems. Further S “ C0 ` ie´φ and C2, B2

transform as

S Ñ aS ` b
cS ` d

,

ˆ

B2

C2

˙

Ñ pΛT q´1 ¨

ˆ

B2

C2

˙

“

ˆ

d ´c
´b a

˙ˆ

B2

C2

˙

There is a subtlety in the problem, which resolved the ambiguity in our choice of Λ. I learned of it from
reading arXiv:hep-th/9508143. The subtlety is as follows: We need to fix the dilaton’s asymptotic value as
r Ñ 8 so as to define the vacuum of our string theory. First, consider φ,C0 “ 0 asymptotically, i.e. S Ñ i.
We then stay within the SOp2q Ă SL2pRq that fixes S “ i. We want to take p1, 0q to the string p, q. This is
now uniquely determined:

Λ “
1

a

p2 ` q2

ˆ

p ´q
q p

˙

Applying this to B2, C2 given that we start with only NS charge p1, 0q gives
ˆ

B2

C2

˙

“
H´1

a

p2 ` q2

ˆ

p
q

˙

Upon doing this, the B2, C2 fluxes will have coefficients that get modified from just p, q by a factor of
1?
p2`q2

, so will no longer be integers satisfying the quantization condition. We can fix this by modifying

T Ñ Tp,q “
a

p2 ` q2T . Since this only serves to modify L, which was an arbitrary parameter of the classical
solution, this still remains a valid solution.

This means: Hp,q “ 1`
L6
p,q

r6 , L6
p,q “

2κ2Tp,q
6Ω7

“
a

q2
1 ` q

2
2

2κ2T1,0

6Ω7
“

a

q2
1 ` q

2
2L

6.

Our solution is now:

ds2
E “ H´3{4

p,q p´dt2 ` pdx1q2q `H1{4
p,q d~x ¨ d~x

ˆ

B2

C2

˙

“
H´1
p,q

a

p2 ` q2

ˆ

p
q

˙

S “ χ0 ` ie
´φ “

ipH
1{2
p,q ´ q

iqH
1{2
p,q ` p
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Note that as r Ñ 8,S Ñ i as we expect. Now, let us generalize this for different asymptotic values of the
dilaton and axion. After applying Λ, we can further apply

Λ1 “

ˆ

e´φ0{2 χ0e
φ0{2

0 eφ0{2

˙

S now asymptotes to
e´φ0{2i` χ0e

φ0{2

0` eφ0{2
“ χ0 ` ie

´φ0

exactly as we want. To get the right final field strengths, take Λ initially arbitrary:

pΛT q´1 “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

Again, applying this will break our quantization condition. Now, the electric charges transform contragradi-
ently from the fields strengths, which means that

ˆ

QB
QC

˙

“ eφ0{2

ˆ

e´φ0 cos θ ` χ0 sin θ
sin θ

˙

“:
1

a

∆p,q

ˆ

p
q

˙

We can solve this to get

sin θ “
eφ0{2

a

∆p,q
e´φ0q ñ cos θ “

eφ0{2

a

∆p,q
pp´ χ0qq ñ eiθ “

eφ0{2

a

∆p,q
pp´ Sqq

The asymptotic value of the charges of B2, C2 is thus given by pp, qq{∆
1{2
p,q . Unimodularity gives:

1 “ eiθe´iθ ñ ∆p,q “ eφ0 |p´ qS|2 “ eφ0pp´ qχ0q
2 ` e´φ0q2

This coincides with the invariant

`

p q
˘

S´2
2

ˆ

|S|2 S1

S1 1

˙ˆ

p
q

˙

“ eφ0pp´ qχ0q
2 ` e´φ0q2

So in full generality we get the tension:

Tp,q “
b

eφ0pp´ qχ0q
2 ` e´φ0q2 TF1

Where TF1 “
1

2π`2s
is the tension in the string frame.

Because (aside from redefining L) the metric is unchanged, the singularity structure of pp, qq strings is no
different from p1, 0q or p0, 1q strings. Neither of these has a regular horizon. Confirm

11. First, by naive reasoning - there is no reason to write the full effective action to see what β should look
like. From the perspective of IIA in the string frame, we have coupling gA “ R̃11{`s “ R11τ2{`s “ R11{`sgB.
Recognizing RB “ `2s{R11 we can write this as `s

RBgB
. Because the translation of metrics between the 11-D

frame and the standard string frame in IIA involves the factor g
2{3
A we get β “

´

`s
RBgB

¯2{3
. What about

conversion to the Einstein frame?
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Now let’s do it the long way. The 11-D SUGRA Lagrangian is

LD“11 “
1

2κ2
11

„

R´
1

2
|G4|

2 `G4 ^G4 ^ Ĉ3



In this problem we’ll ignore the Chern-Simons terms.

Let’s take M-theory to 9 dimensions. The metric takes the form

Gµ̂ν̂ “

˜

gµν `GαβA
α
µA

β
ν GαβA

β
µ

GαβA
β
ν Gαβ

¸

Here

Gαβ “
eσ

τ2

ˆ

1 τ1

τ1 |τ |2

˙

with eσ “
?

detG the Kähler parameter (area) of the torus. The metric’s R term becomes:

1

2κ2
11

eσ
”

R` BµσBµσ `
1

4
BµGαβB

µGαβ ´
1

4
GαβF

A
µν
α
FAµν

β
ı

.

Here FAµν “ BµA
α
ν ´ BνA

µα. We now have two Up1q field strengths. Using the fact that we have the explicit
form of the torus metric, we can further write this as:

p2πR11q
2τ2

p2πq8`911

eσ
„

R`
1

2
pBσq2 ´

1

2

pBτ1q
2

τ2
2

´
1

2

pBτ2q
2

τ2
2

´
1

2 ¨ 2!

eσ

τ2

`

FA,1 FA,2
˘

ˆ

1 τ1

τ1 |τ |2

˙ˆ

FA,1

FA,2

˙

(85)

The kinetic 3-form potential yields a four-form, two three-form, and a two-form field strength:

R2
11τ2

p2πq6`911

eσ
”

´
1

2 ¨ 4!
F p4qµνρσF

p4qµνρσ ´
1

2 ¨ 3!
GαβF p3qµνραF

p3qµνρ
β ´

1

2 ¨ 2!
GαβGγδFµναγF

p2qµν
βδ s

Again, using the explicit form of the metric we can write this as

R2
11τ2

p2πq6`911

eσ
”

´
1

2
|F4|

2 ´
1

2 ¨ 3!

e´σ

τ2

`

F p3q Hp3q
˘

ˆ

1 τ1

τ1 |τ |2

˙ˆ

F p3q

Hp3q

˙

´
1

2 ¨ 2!

e´2σ

τ2
2

p|τ |2 ´ τ2
1 qF

p2q
µν12F

p2qµν
12s

“
R2

11τ2

p2πq6`911

”

´
eσ

2
|F4|

2 ´
1

2 ¨ 3!

1

τ2

`

F p3q Hp3q
˘

ˆ

1 τ1

τ1 |τ |2

˙ˆ

F p3q

Hp3q

˙

´
e´σ

2
|F2|

2
ı

Here the last 2-form field strength is defined as F
p2q
µν :“ F

p2q
µν12.

This action not in any standard frame. Let’s take it to the Einstein frame g11 “ e´2{7σgE :

R2
11τ2

p2πq6`911

”

R´
3

7
pBσq2 ´

1

2

pBτ1q
2

τ2
2

´
1

2

pBτ2q
2

τ2
2

´
1

2 ¨ 2!

e9σ{7

τ2

`

FA,1 FA,2
˘

ˆ

1 τ1

τ1 |τ |2

˙ˆ

FA,1

FA,2

˙

´
e´12σ{7

2
|F2|

2 ´
1

2 ¨ 3!

e´3σ{7

τ2

`

F p3q Hp3q
˘

ˆ

1 τ1

τ1 |τ |2

˙ˆ

F p3q

Hp3q

˙

´
e6σ{7

2
|F4|

2
ı

The IIB SUGRA Lagrangian in the string frame is

1

2κ2
10

„

e´2Φ

„

R` 4p∇Φq2 ´
1

2
|H3|

2



´
1

2
|F1|

2 ´
1

2
|F3|

2 ´
1

4
|F5|

2



supplemented by ‹F5 “ F5. Taking this to 9 dimensions, the NSNS terms become

2πRB
p2πq7`8sg

2
B

e´2φ
”

R` 4p∇φq2 ´ pBρq2 ´ e2ρ

2
|FA|2 ´

1

2
|H3|

2 ´
e´2ρ

2
|H2|

2
ı
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with G10,10 “ e2ρ, φ “ Φ´ 1
2ρ. The RR forms give

RB
p2πq6`8sg

2
B

eρ
”

´
1

2
F 2

1 ´
1

2 ¨ 3!
F 2

3 ´
e´2ρ

4
F 2

2 ´
1

4 ¨ 5!
F 2

5
looomooon

dualize

´
e´2ρ

4 ¨ 5!
F 2

4

ı

.

Here F2 comes from F3 and F4 from F5. We can dualize the 9D F5 to give the canonical normalization to
the F4 term.

RB
p2πq6`8sg

2
B

”

´
eρ

2
|F1|

2 ´
eρ

2
|F3|

2 ´
e´ρ

2
|F2|

2 ´
e´ρ

2
|F4|

2
ı

.

It is important to T-dualize this to get to IIA. This takes φ Ñ φ, ρ Ñ ´ρ,Gp9q Ñ Gp9q and also swaps H2

and FA. Lastly, we have g2
B{RB “ g2

A{RA. We then get

LIIA “
RA

p2πq6`8sg
2
A

«

e´2φ
”

R` 4p∇φq2 ´ pBρq2 ´ e2ρ

2
|FA|2 ´

1

2
|H3|

2 ´
e´2ρ

2
|H2|

2
ı

´
e´ρ

2
|F1|

2 ´
e´ρ

2
|F3|

2 ´
eρ

2
|F2|

2 ´
eρ

2
|F4|

2

ff

Now let’s take this to the Einstein frame gS “ e4{7φgE :

LEIIA “
RA

p2πq6`8sg
2
A

«

R´
4

7
p∇φq2 ´ pBρq2 ´ e2ρ´4φ{7

2
|FA|2 ´

e´8φ{7

2
|H3|

2 ´
e´2ρ´4φ{7

2
|H2|

2

´
e´ρ`2φ

2
|F1|

2 ´
eρ`10φ{7

2
|F2|

2 ´
e´ρ`6φ{7

2
|F3|

2 ´
eρ`2φ{7

2
|F4|

2

ff

Comparing |τ1| with |F1|
2 since these are the only two scalars that aren’t minimally coupled, we get ´ρA `

2φ “ ´2 logpτ2q. T-dualizing to get back to IIB gives ρB ` 2φ “ 2ΦB “ ´2 log τ2 implying that τ1 “ C0 and
τ2 “ e´Φ in IIB as required.

Comparing the F4 coefficient gives ρA`2φ{7 “ 6σ{7. This gives σ “ 4
3ρA`

1
3ΦB “ ´

4
3ρB`

1
3ΦB. This gives

A3{2g´1{2 „ R´2
B , close to what is desired. Expressing the relevant quantities in terms of the fundamental

units of their respective frames, this gives our desired relationship

`2s
R2
B

“
A3{2

p2π`11q
3g1{2

ñ
1

R2
B

“
R3

11

`5sg
5{2

Off by a factor of g1{2

Note that in the IIA action, FA and F2 have coefficients that differ by ´ρA ` 2φ “ 2ΦB. We should thus
identify them with e9σ{7˘ΦB of the M theory action. This implies that 9σ{7 “ 3

2ρA ` 3φ{7, exactly what
we got from the F4 coefficient. The same argument for the F3, H3 terms in both theories gives the same
difference between them, and their average gives the same relationship. Finally, the lone H2 term in IIA
compared to the F2 gives the same dependence as well, giving three nontrivial checks that what we’ve done
is correct.

Finally let’s get the conversion factor. To go from 11D to the string frame we must do e4{7φe2{7σ. We now
understand σ “ ´4

3ρB `
1
3ΦB and φ “ Φ´ ρB

2 we get the relationship

2

7
σ `

4

7
φ “ ´

2

3
pρB ´ ΦBq ñ β “

ˆ

`s
RBgs

˙2{3

as required. The dilaton dependence is flipped, fix!

137



12. There is a subtlety in this problem involving the form of the metric. Recall that the Einstein frame metric
gE gets mapped to itself under S-duality gE “ g1E . This implies that the string frame metric gS “ eΦ{2gS is
related to its S-dual by:

gS “ e´Φ1g1S

We can verify this at the level of the solutions to the string equations of motion:

D5 : ds2
E “ H´1{4dx‖ `H

3{4dxK, ds2
S “ H´1{2dx‖ `H

1{2dxK, eΦ “ gsH
´1{2

NS5 : ds2
E “ H´1{4dx‖ `H

3{4dxK, ds2
S “ dx‖ `HdxK, eΦ “ gsH

1{2

We see that the string frame metric are related in this way except for the issue of rescaling by gs. This means
we should redefine length so that ds2

S asymptotes to gsηµν for the NS5 metric why don’t we modify D5
instead?.

First, let’s calculate the energy of the F1 string stretched between two D5 branes. Directly from the Nambu-
Goto action, noting that the parallel Xµ will be along the τ direction while the transverse Xi will be along
the σ direction we can write

SNG “ ´TF1

ż

d2ξ
a

detpGab `Babq “ ´
1

2π`2s

ż

d2ξ

d∣∣∣∣ BτX
µBτXµ BτX

µBσXipGµi `Bµiq
BτX

µBσXipGµi `Bµiq BσX
iBσXi

∣∣∣∣
“ ´

1

2π`2s

ż

dσdτ
a

H´1{2BτXµBτXµ
a

H1{2BσXiBσXi

“ ´
1

2π`2s

ż π

0
dσ|BσX

i|
loooooooooomoooooooooon

mS

ż

dτ |BτX
µ|

This gives the string and Einstein frame mass:

mS “
1

2π`2s

ż π

0
|BσX

1|dσ ñ mE “
g1{4

2π`2s
∆x1

For the D1 stretching the two NS5s, we apply the same logic to the DBI action:

SDBI “ ´

ż

d2ξ TD1

a

´detpGab `Babq “ ´
1

2π`2s

ż

dσe´Φpxiq
a

BσXiBσXi

ż

dτ
a

BτXµBτXµ

“ ´

?
g

2π`2sg

ż

dσ|BσX
i|

ż

dτ
looooooooooooomooooooooooooon

mS

a

BτXµBτXµ
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Again we get string and Einstein frame mass:

mS “
1

2π`2s
?
g

ż

dσ|BσX
1| ñ mE “

1

2π`2sg
1{4

∆x1

The masses agree under S duality: g Ñ 1{g.

13. The argument will go very similar to how it did for the string-like objects. Again, call pp, qq “ p1, 0q the NS5
brane (magnetically charged under B2) with pp, qq “ p0, 1q the D5 brane (magnetically charged under C2).
Again, first take the axio-dilaton S to asymptote to i. The NS5 solution in the Einstein frame is:

ds2
E “ H´1{4ηµνdx

µdxν `H3{4d~x ¨ d~x, H “ 1`
L2

r2

Here L2 “ Q
2κ2

10TNS5

2Ω3
“ Q`2s. We also have

eΦ “ gsH
1{2, pdBqθφψ “ ´BrH

This time, the magnetic charges transform in the same way as the field strengths (since they are associated
with the Bianchi identity, not the EOMs), giving

ˆ

QB
QC

˙

“

ˆ

eφ0{2 cos θ

χ0e
φ0{2 cos θ ` e´φ0{2χ0 sin θ

˙

“:
1

a

∆p,q

ˆ

p
q

˙

Solving this gives

cos θ “
e´φ0{2

a

∆p,q
pñ sin θ “

eφ0{2

a

∆p,q
pq ` pχ0q ñ eiθ “ i

eφ0{2

a

∆p,q
pq ` Spq

Unimodularity gives
∆p,q “ eφ0 |q ` pS|2 “ eφ0pq ` pχ0q

2 ` e´φ0p2

We thus get that the 5-brane tension in the Einstein frame satisfies a similar relation to the case of 1-branes:

Tp,q “
b

e´φ0p2 ` eφ0pq ` pχ0q
2 T

with T “ 1
p2πq5`6s

the appropriate dimensionful constant.

For the general pp, qq-brane solution, we get Lp,q “
a

∆p,qL “
a

∆p,q `
2
s

14. We’re going to work in the Einstein frame. After compactifying on T 2 we will get scalars not just from the
φ and C0 term but also from C2, B2, and the 3 metric components Gαβ.

The torus moduli in 1
4BµGαβB

µGαβ will take the same form as in Equation (85), namely

pBT q2

T 2
`

1

4
BµGαβB

µGαβ “ ´
1

2

pBτ2
1 q

τ2
2

´
1

2

pBτ2
1 q

τ2
2

`
1

2

pBT q2

T 2

Here T “
a

detGαβ is the Kähler modulus and does not belong to the SLp2,Rq{Up1q coset. We have that

the axio-dilaton is ´1
2
|BS|2
S2

2
. The scalars coming from B2, C2 give kinetic terms:

´
1

2

G11G22 ´ pG12q2

S2
pS2BµB12q

2 “ ´
1

2

S2

T 2
pBµB12q

2, ´
1

2

pBµC12q
2

T 2S2

Altogether the scalars have appear as:

ż

d8x
?
´g T

”

R´
1

2

pBτ2
1 q

τ2
2

´
1

2

pBτ2
1 q

τ2
2

looooooooooomooooooooooon

SLp2,Rq{Up1q

`
1

2

pBT q2

T 2
´

1

2

|BS|2

S2
2

´
1

2

S2

T 2
pBµB12q

2 ´
1

2

pBµC12 ` C0H3q
2

T 2S2
loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

SLp3,Rq{SOp3,Rq

ı
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Taking things to the new Einstein frame will get rid of the T out front, and modify 1
2
pBT q2

T 2 Ñ ´2
3
pBT q2

T 2

It remains to find the metric for SLp3,Rq{SOp3q. Because SOp3q is maximally compact, we can write the
metric on this space in a set of global coordinates known as Borel gauge. This is given by taking the Einbein
on T 3 symmetric space to be the exponentiation of the SLp3,Zq Borel sub-algebra: L “ exprχiEis exprφiHis.
From this, the T 3 metric isM “ LLT , and the kinetic terms are then TrrBµM BµM´1s. By choosing the χi
and φi judiciously we see

here et “ T, eΦ “ S´1
2 . It is worth stressing that this exactly recovers our kinetic terms. Everything matches

perfectly.

15. The the field strengths coming from the two-forms yield the following terms in the Einstein frame Lagrangian

ż

d8x
?
´g T 2{3

”

´
1

2

|F3 ` C0H3|
2

S2
´

1

2
S2|H3|

2 ´
1

2

|F3Ð5|
2

T 2

ı

The two-form field strengths F3, H3 are unaffected by dualities of the torus. F5 can be dualized to an F3

as well, and we also get a further F3Ð5 by wrapping the D3 around the torus, which will combine with the
F 2

3Ð5 to give a single (canonically normalized) field strength invariant under symmetries of the torus. Thus,
the F3, F3Ð5, H3 are invariant under the SLp2,Zq part of the U-duality group involving τ1, τ2.

We can indeed write these terms in a manifestly SLp3,Rq-invariant form, namely as

´
1

2

`

H3 F3 F 13Ð5

˘

M

¨

˝

H3

F3

F 13Ð5

˛

‚

Here though, we should take care that it is really F3Ð5 `B12F3 `C12H3 that forms the kinetic term of the
action. Understand this, as well as the C0H3 in the Einstein frame generally.

16. The metric will contribute 6 scalars while the 3-form C3 will contribute a seventh. We understand how to
generally build T 3 metrics from the last problem. Indeed, L there is the einbein not on the symmetric space
itself but on the torus T 3. Given a Borel subgroup of SLp3,Rq, the einbein for the unit torus is specified by
three twist “axion” parameters χ1, χ2, χ3 and two dilaton parameters φ1, φ2 as:

L “ exprχiEis exprφiHis “

¨

˝

1 χ1 χ2

0 1 χ3

0 0 1

˛

‚

¨

˝

eφ1{3´φ2{2 0 0

0 eφ1{3`φ2{2 0

0 0 e´φ2{2

˛

‚
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We see directly that the parameters of this three-torus coincide exactly with the scalars C0, C12, B12, T,Φ in
IIB compactified on T 2 from the prior problem.

The 3-torus volume parameter, which we will call T (not to be confused with T ) in the prior problem,
together will have kinetic terms

ż

d8?´g T rR`
pBT q2

T 2
´

1

3

pBT q2

T 2
´

1

2

|C0Ð3|
2

T 2
s “

ż

d8?´g T rR`
2

3

pBT q2

T 2
´

1

2

|C0Ð3|
2

T 2
s

Taking this to the Einstein frame:

ż

d8?´grR´
1

2

pBT q2

T 2
´

1

2

|C0|
2

T 2
s

This is exactly the SLp2,Zq-invariant action, which came from the perturbative T -duality in the earlier
problem. We see they are neutral under SLp3,Zq, while the other 5 belonging to the SLp3,Rq{SOp3q coset
are neutral under this SLp2,Zq. This re-derives the results for scalars of Section 11.6.

From the M-theory perspective, the three distinct 2-form potentials come from wrapping the C3 around
different T 3 cycles from 11D.

17. From M-theory, the 3-form Cp3q descends directly down to a 3-form in the 8D picture. This has a field
strength G4 with kinetic term

ż

d8x
?
g T

„

´
1

2
|G4|

2



which is the same in both the original and the Einstein frames. We could have started with ‹G4 in 11D,
giving the 8D action:

ż

d8x
?
g T´1

„

´
1

2
|G4|

2



The Chern-Simons term further contributes a further topological piece:

ż

d8x
?
g C0T G4 ^G4

Summing these all together gives the standard SLp2,Rq invariant bilinear form. Thus, SLp2,Rq acts by
electric magnetic duality, transforming the tuple pG, ‹Gq in the 2 representation.

Slightly incomplete, understand the origin of the action better. Look at 9506011

18. Taking IIB down to 5D and looking at conserved vectors (coupling to point-like objects). First, note we can
wind any of the pp, qq strings around any of the 5 cycles of T 5, giving 10 vector currents. We also get 5
KK currents from the dimensional reduction that are T -dual to the string modes and together forms a 10 of
SOp5, 5q. We also have the D3 brane winding around any

`

5
3

˘

“ 10 cycles. Finally, the D5-brane and NS5
can wrap the torus giving an additional 2 charges. The NS5 is a singlet of SOp5, 5q. The D-branes are all
T-dual and give a 16-dimensional representation, which is either the spinor or conjugate spinor depending
on whether we start from IIA or IIB.

Altogether we get 1+10+16. This is exactly the 27 representation of E6 under U -duality. This gives a
total of 27 point-like charges, which are the 27 different electric charges than can be carried by black holes
in 5D.

19. Note that rescaling the string length by eγ will correspond rescaling the metric by e´2γ . So relationships
between the string lengths are inverse-square-root proportional to the relationships between the metrics.

At the level of the supergravity theory, we have gI “ e´Φhetghet is a symmetry of the theory. Then the string
length scales must obey

`Is “ `hets

b

ghets ñM I
s “

Mhet
s

a

ghets
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20. The effective action will look like

V

p2πq7`8sg
2
s

ż

d4x
?
g e6σe´2φrR` ¨ ¨ ¨ ´

e´2σ

2
|H2|

2 ´
1

4
TrrF 2ss

Taking this to the proper string frame requires g Ñ e´6σg. This gives

V

p2πq7`8sg
2
s

ż

d4x
?
ge´2φrR` ¨ ¨ ¨ ´

e4σ

2
|H2|

2 ´
e6σ

4
TrrF 2ss

Because σ is such that V e6σ is strictly larger than the order of `s, then both of the gauge fields will have
coupling constants that go as Op`8sg

2
s{V e

4σq or Op`8sg
2
s{V e

6σq. This is only going to be Op1q if gs " 1. In
this case, we can (after a possible T -duality that doesn’t change the coupling substantially, esp. if one of
the dimensions is reasonably close to the order of the string length already) apply the type I - heterotic O
duality to get a weakly coupled type I description.

21. Since the B-field strength Hhet gets mapped directly to the RR field strength HI , we expect that the objects
electrically charged between them should get mapped to one another. This means the heterotic fundamental
string gets mapped to the D1 brane in type I. Their magnetic cousins should also be swapped, which will
interchange the heterotic NS5 with the type I D5 brane. At the classical level this is easy to see, since the
two branes have the same supergravity solution. Clearly this is not enough, eg in IIA vs IIB the worldvolume
theories of the NS5 are radically different.

To understand the quantum mechanical equivalence, we need to understand the origin of the Spp2q on the
D5 in type I and the NS5 in the heterotic picture. This question is answered (using nontrivial arguments
involving ADHM) first in Witten “Small Instantons in String Theory”. Return and understand this
when you know more N “ 2 SUSY.

22. Certainly we see that heterotic-type I together with T -duality will relate both heterotic strings together,
and connect this with type I which, after T-dualizing and moving the orientifold plane appropriately, will
connect with the other type II string theories.

It remains to look at the self-duality of type IIB. For this, we took a leaf from Sen’s paper. Let’s look at IIB
on a Z2 orientifold T 2{p´1qFL ¨Ω ¨I where I is the inversion z Ñ ´z on the torus and Ω is worldsheet parity
inversion. This manifold has 4 singular points that each carry ´4 RR charge why. Since it is compact, we
must cancel this by placing 4 D6 branes at each of the 4 points for a total of 16. In this case, the geometry
of the tetrahedron is flat everywhere except for the 4 deficit angles of π at each vertex. The singularities at
the verticies are of D4 “ SOp8q type, so this theory has an unbroken SOp8q4 gauge symmetry. The torus
has moduli T, τ together with axiodilaton S. There is no B field in the orientifold.

Now, let’s T-dualize both cycles of the torus. This keeps us in IIB, but takes us to pT 2q1{Ω, undoing the
effects of p´1qFLI. Type IIB on this space is just Type I on pT 2q1, but with SOp32q broken down to SOp8q4.
Now it is time to dualize to heterotic O theory. We see that we have heterotic string theory on pT 2q1 with
gauge group broken down to SOp8q4.

Let’s match the moduli:

• The τ modulus is the same in IIB and the heterotic theory.

• The torus in the heterotic picture now has a B89 scalar that gets mapped to the axion C0 in IIA. B89

can combine with the heterotic torus volume to provide another modular parameter ρ “ B ` iVhet.

• The standard parameter in compactification on a torus is Ψhet “ Φhet´
1
4 log detGhetαβ “ Φhet´

1
2 log Vhet.

This will be mapped to ´1
2ΦIIB ` log VIIB where VIIB is the original T 2 radius.

We know that heterotic on T 2 has T-duality Op18, 2;Zq. This has a subgroup SOp2, 2q „ SLp2,ZqˆSLp2,Zq1
that does not affect the Wilson lines but acts only on the torus parameters. Both τ and ρ transform under
fractional linear transformations of the two SLp2,Rq separately, while Ψhet remains unaffected.

Now, taking VIIB Ñ 8, the two SLp2,Zq symmetries remain unbroken. One of these can be identified with
large diffeomorphisms of the torus, and so combines with spacetime diffeomorphisms in the large V limit.
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The remaining SLp2,Zq then becomes the S-duality group. The SOp8q gauge theory living at each of the
vertices is not seen, since the singularities and accompanying D7 branes have “flown off” to infinity.

That Ψhet remains unaffected means that GIIBe
´ΦIIB{2 is an invariant under SLp2,Zq. So the volume as

measured in the frame of that modified metric is an invariant. This is exactly the Einstein frame metric.

We have also seen in the chapter that the M theory - heterotic E duality can be obtained through a chain of
dualities involving heterotic O - type I together with the M theory - type IIA. We are only asked to reproduce
dualities between string theories in this question however.

23. The D9 brane is orthogonally projected, as we know from tadpole conditions on it from chapter 7, and the
same argument with the cylinder gives a 1?

2
reduction of tension relative to type II.

For a D1 brane interacting with itself, the gravitational contribution in the cylinder amplitude also has a
extra 1

2 factor due to the orientation-projection. Thus, the total tension of the D1 brane is lowered by a
factor of 1?

2
relative to type II as required.

Naively we could apply the same argument to D5 branes, which would then violate the D1-D5 Dirac quan-
tization by a factor of 2.

However, from an analysis of the cylinder amplitude for 59 and 95 strings with orientation projection, we
get the constraint ε259ζ5ζ9 “ 1. By consistency of interactions of 59 strings with 55 and 99 strings, we get
ε259 “ ε255 “ ε299 “ ´1. Consequently, the D5 brane will have opposite orientation projection than the D9
brane, namely the symplectic one. Taking the determinant of γ “ ζγT however gives ζN “ 1, so ζ “ ´1 will
only work for N even. Another way to say this is: “symplectically projected branes must move in pairs”.

Thus, the “fundamental” D5 brane should be thought of as a D5 with Spp2q index a “ 1, 2. Repeating the

cylinder amplitude calculation gives a factor of 22, which translates to a tension of 2ˆ
T II5?

2
“
?

2T II5 .

24. The crucial component of this is to note that at Dp worldvolume theory contains a CP-odd term coupling
to the lower-dimensional forms going as:

iTp

ż

dp`1xC ^ TrreF s ^ G Ą iTpp2π`
2
sq

2

ż

dp`1xCp´3TrrF ^ F s

in the absence of an NS-NS background.

Consider the 9-brane with an instanton background in the 5678 directions with instanton number obtained
from integrating over x5,6,7,8

ż

d4x
TrrF ^ F s

p2πq2
“ k

For the case of k “ 1, the CP-odd term simplifies to

iT9p2πq
2p2π`2sq

2

ż

d6xC6 “ iT5

ż

d6xC6

This is exactly the CP-odd term for a D5 brane. In the limit of vanishing instanton size, this sources RR
fields in the same way with the exact same RR charge. It is also a BPS state, so has the same mass as a D5
brane. This satisfies all the criteria to qualify as a D5 brane.

We can extend this to k localized D-branes and see the exact same coupling

k
ÿ

i“1

iT5

ż

x5...8“xi

d6xC6

as k distinct D5 branes. For nonvanishing instanton size, this describes D5 branes “dissolved” in the D9.

This argument can be carried over for an arbitrary pair pp, p´ 4q.
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25. We have already seen by general arguments that we need the number of Newman-Dirichlet conditions to be
a multiple of 4 so that the NS and R sectors have a chance of having degeneracy. I will repeat the argument
here.

In the R sector, the zero-point energy is always zero because of the equal number of periodic fermions and
bosons. The excitations above this will have integer or half-integer weights.

In the NS sector, the NN and DD fermions and bosons contribute zero point energies ´ 1
24 and ´ 1

48 , so
´ 1

16 total. The ND sector bosons and fermions contribute 1
48 and 1

24 , ie the opposite. Altogether for ν ND
boundary conditions we get:

´
p8´ νq

16
`

ν

16
“ ´

1

2
`
ν

8

This ground state and its excitations above it will have half-integer weight when ν “ 0 mod 4.

Since type I string theory necessitates 32 D9 branes to cancel out the O9 tension, we are only allowed
ν “ 8, 4, 0 giving D1, D5, and D9 brane configurations preserving supersymmetry in the theory. In the
text, we have seen that D1, D5, D9 all lead to consistent worldvolume excitations that respect GSO and
Ω-projection

26. Let’s review the logic so far. For supersymmetric open strings in the NS sector, we are principally interested
in the ψr states. Orientation projection acts as on the NN string as Ωψr “ i2rψr (in both NS and R sectors)
and on the DD string as Ωψr “ ´i

2rψr. For the R sector ground states, supersymmetry requires that for all
directions NN (D9 brane) εR “ ´1: that is, Ω |Ry “ ´ |Ry.

When we add indices, writing the NS state as |p, ijy, for NN strings the massless levels are given by
ψµ
´1{2λij |p, ijy. We get the constraint λ “ ´iεNSγλ

Tγ. WLOG we can either have γ “ 1 for SOpNq

with ζ “ 1 or γ “ iω for SppNq with N even, ζ “ ´1. In either case the Jacobi identity require εNS “ ´i.
This gives that λ “ ´γTλγ´1 for the massless level. In both cases this corresponds to the adjoint represen-
tation. In the DD case, we get an extra minus sign, giving λ “ γTλγ´1. This corresponds to the symmetric
traceless representation plus a singlet.

For the D1 brane, the above discussion already shows us that in the 1-1 NS sector, we get the 8 DD scalars
transforming the symmetric traceless plus single representation of SOpNq together with the 2 NN scalars
transforming in the adjoint.

For the 1-1 R sector, before orientation projection we have the 16` ground state from GSO. The orientation
projection acts as

Ω |Sα, i, jy “ ´e
iπps1`s2`s3`s4qγ |Sα, i, jy γ

´1

What Kiritsis writes can’t be the adjoint for N “ 1. We need it to have dim 1 in that case,
but it would have dim 0. I believe that the correct thing is that we have 8 fermions forming the 8´ (ie
left-moving) and in the symmetric representation of SOpNq while we have 8 forming the 8` (ie right-moving)
but in the adjoint of SOpNq (these disappear for N “ 1).

In the 1-9 sector, we have 2 NN and 8 DN boundary conditions. The NS ground state energy is positive, so
this will not contribute. The massless states come from the R ground state in the DN part combined with
the Op1, 1q spinor from the R sector of the NN part. The fermions are right-moving (chirality +) as before.
We get 32 indices from the D9 brane and N from the D1 brane. The orthogonal projection guarantees that
these transform in the pN, 32q bi-fundamental representation. Orientation projection disallows for the second
copy of this spectrum (ie the 1-9 string with the orientation reversed).

27. To get to the D5-brane from the D9-brane we T-dualize four times. In this problem we focus only on the
5-5 strings. Again, the R-sector contains the GSO-projected 16` spinor before orientation projection. We
must decompose under SOp5, 1q‖ ˆ SOp4qK. The projection condition in the R sector reads:

Ωλij |Sα, ijy “ ´e
iπps1`s2qγλijγ

´1 |Sα, ijy

Here γ “ iω, since we have the symplectic Spp2q projection for the D5. Then, for s1`s2 odd, the 6D fermion
is negative chirality, and we require λ “ ´γλTγ´1. This gives a negative-chirality fermion in the adjoint
representation of Spp2q, completing the vector multiplet.
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For s1 ` s2 even, the 6D fermion is positive chirality and we require λ “ γλTγ´1 which will leave the skew-
traceless antisymmetric representation plus a singlet. For Spp2q this is just the singlet, so we get a single
positive chirality fermion, completing the hypermultiplet.

I think I’m off by a sign?

28. From the D5-D5 analysis of the previous problem, we immediately see the generalization to general Spp2Nq.
The R sector yields fermions in the Spp2q adjoint combining with the vectors ψµ

´1{2 in the adjoint, yielding

the vector multiplet. The DD boundary conditions reverse the projection sign for ψi
´1{2λij |p, ijy yielding

a sum of the skew-traceless antisymmetric representation plus a singlet. I assume this is the same as the
two-index symmetric rep, by analogy to SOpNq, where a similar thing happens. We also know that the R
sector also provides (positive chirality) fermions to combine with this to form the hypermultiplet.

Finally, we must look at the D5-D9 spectrum. We have 4 ND boundary conditions and 6 NN ones. For 4
ND boundary conditions, the NS sector ground states also contribute to the massless spectrum. The ND
conditions these consists of ground states transforming in the 4 of SOp4q, combining with the singlet NS
ground state of the 6 NN coordinates. This yields 4 scalars.

In the R sector, the massless states come from the bosonic ND ground state combining with one of the 4 NN
R sector states giving an SOp5, 1q spinor. After GSO projection, this gives a chirality ` fermion, completing
the hypermultiplet. This part is a bit shifty, thing about it

Each of these states has 32 labels from the D9 brane, and 2N labels from the D5 brane. Therefore, we get
that this hypermultiplet in fact transforms in the p2N, 32q bi-fundamental. Again, orientation projection
simply restricts us to not have a second copy of this spectrum from 5-9 strings of opposite orientation.

Say we pull apart m D5 branes. Because the D5 branes move in pairs in type I, we must have m an even
integer. The 5-9 strings now all have positive zero-point energy and will not contribute to the massless
spectrum. The 5-5 strings remain the same, but transforming in Spp2N ´mq instead of Spp2Nq.

29. We can focus on the purely chiral left-moving CFT, since this is the only part that the orbifold acts on
nontrivially. Immediately, we see that the untwisted sector corresponds to the NS states, which are the same
between IIA and IIB.

In the twisted sector, we again have NS and R fermions. Because the NS fermions are taken to minus
themselves, they are now integrally modded while the R fermions become half-integral. Again, the R fermions
will be projected out by the p´1qFL . The 8 NS fermions will give two (unprojected) ground states 8` 8̄ of
fermion numbers 1,´1 respectively. In Polchinski’s convention, the original |0y NS ground state has fermion
number ´1, so the only the C operator on top of this will give something that is unprojected. In Kiritsis’
convention, the NS ground state has fermion number 1 but we we take p´1qF “ ´1 for GSO. In either case,
we can only keep the C operator. In the original IIA we kept the S on the left and the C on the right. Now
we keep C on both sides giving IIB (we could have done the same with p´1qFR , and C,C or S, S both yield
IIB, since they are related by parity).

Orbifolding IIB by this symmetry is the same as orbifolding twice. This necessarily must return us back to
IIA.
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The M theory parity orbifold differs from this p´1qFL orbifold primarily in that it includes fixed points, on
which the twisted sectors localize.

30. Start with the heterotic E theory and compactify on a circle. n units of KK momentum on this circle will be
T-dualized to n units NS flux in the O(32) theory, ie a string wrapping the circle n times. Upon S-duality,
this will correspond to a D1 brane wrapping the circle in type I n times. We T-dualize again to get a D0
brane in the type I’ theory carrying n units of charge. In the strong coupling limit, this is understood as n
units of momentum in the eleventh direction.

31. The bosonic part of the vector multiplet on a single boundary is given by

´
1

4λ2

ż

d10x
?
´g10 TrrF 2s

At first glance, λ would appear arbitrary. Anomaly cancelation will yield an exact value for it in terms of
the eleven-dimensional gravitational coupling. Kiritsis writes explicitly λ2 “ 2πp4πκ2

11q
2{3, which gives that

the dimensionless ratio λ6{κ4
11 “ p2πq

3p4πq2 “ 128π5. This is as in Horava and Witten, but it is not obvious
that this is how λ is determined from κ11 from first principles.

Let’s recall anomaly cancelation in 10D. Recall that for the type I supergravity theories, it was crucial to
have enough 10D vector multiplets to cancel the TrrR6s terms, giving n “ 496

We can view the M-theory orbifold R11{Z2 as giving rise to two twisted sectors (as in string theory). In 11D
we have

Γ1 . . .Γ11 “ 1

The supersymmetries preserved by the Z2 action are those that satisfy (WLOG) Γ11ε “ ε. This means that
in the 10D perspective, this gives rise to chiral fermions in the 16`. Although in the smooth part of the
bulk, there cannot be a gravitational anomaly, the incorporation of a boundary (or more) can. A general
diffeomorphism in the bulk will not lead to any anomalous variation δΓ of the effective action. WLOG, take
a diffeomorphism on R10 and pull it back to the orbifold by making it constant along the interval S1{Z2.
The anomaly is the standard one in 10D. The boundaries must therefore contribute massless multiplets. The
only such candidate is a vector multiplet. By symmetry, each must contribute the same number of vector
multiplets. The prior paragraph then shows that each must contribute 248.

In order to apply Green-Schwarz, we crucially need a two-form B, that we are guaranteed in all 10D string
theories. The answer here comes from the pullback of the 3-form A3 to the boundaries H1, H2 giving
B2, B

1
2 “ Aµν11

ˇ

ˇ

H1,H2
respectively. The anomaly polynomial in 10D of the form I4 ^X8 leads to

ş

B ^X8,
but one can see that X8 for E8 ˆ E8 involves no cross terms from either E8, and can in fact be written as

I12pR,F1, F2q “ Î12pR,F1q ` Î12pR,F2q (86)

Î12pR,Fiq “ Î4pR,FiqÎ8pR,Fiq (87)

Î4pR,F q “
1

2
trR2 ´

1

2
trF 2 (88)

Î8pR,F q “ ´
1

2
Î4pR,F q

2 `
`

´
1

8
trR4 `

1

32
ptrR2q2

˘

(89)

Here tr “ 1
30Tradj for E8. This gives Chern-Simons terms of the form:

ż

H1

B2 ^ I8pR,F1q `

ż

H2

B12 ^ I8pR,F2q

This does not quite go far enough, in that we would not be able to recover λ6{κ2
11 from this.

This next part I got from Horava and Witten 9603142 First note that we would like our boundary
theory to be locally supersymmetric. As it stands, it is not. The standard way in SUGRA (although I did
not know this because I don’t know enough SUGRA at this point) is to add the gravitino interaction with
the supercurrent to the Lagrangian:

´
1

4λ2

ż

d10x
?
´gψ̄SYM “ ´

1

4λ2

ż

d10x
?
´gψ̄AΓA {F

a
χa
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After some work, we see that the only term with uncanceled supersymmetric gauge variation is

1

16λ2

ż

d10x
?
´gψ̄AΓABCDEF aBCF

a
DEε

The only way to cancel this is to modify the 11D Bianchi identity. The reason is that, in checking invariance
under local supersymmetry for the 11D Lagrangian, there is an integration by parts that involves the Bianchi
identity dG “ 0. If one instead modifies it to

dG11ABCD “ ´3
?

2
κ2

λ2
δpx11qtrpFrABFCDsq

We can then locally write

G11,ABC “ B11CABC `
κ2

?
2λ2

δpx11qΩCS
ABC (90)

ΩCS
ABC “ trpAAFBC `

2

3
AArAB, ACs ` perms.q (91)

ñ dΩCS “ 6trpFrABFCDsq (92)

δεΩ
CS “ dtrrεF s (93)

ñ δεC11,AB “ ´
κ2

6
?

2λ2
δpx11qtrpεF q (94)

Note that the anomalous variation in equation (94) is similar to the δB „ trrεF s for the string theory 2-form.
This gives that the 11D Chern-Simons 11D interaction has variation

1

3!

ż

C ^G^GÑ
1

2!

κ2

6
?

2λ2

ż

H
trrεF s ^G^G

The value of GABCD on one of the hyperplanes is quickly seen to be

GABCD|H “ ´
3κ2

?
2λ2

trrFrABFCDss

Altogether the anomalous variation looks like

´
κ4

128λ6

ż

trrεF strrF 2s2

On the other hand, the variation from the 10D chiral fermions in the vector multiplet gives

1

2

1

p4πq55!

ż

TrrεF 5s

where the trace is taken in the adjoint.

It is only for E8 that we have the nice identity TrX6 “
pTrX2q2

7200 and similarly TrrεF 5s “ TrεTrF 5

7200 . After
identifying tr “ Tr{30, we can write TrX6 “ 15

4 ptrX
2q3 etc. We get

15

8p4πq55!

ż

TrrεF 5s

This will cancel exactly when κ and λ are related as required.

Thus, we see that the Green-Schwarz term already present in 11D SUGRA plays a crucial role in canceling
the gauge anomaly. We needed the GS terms to be bulk objects, as if they were simply δ-function supported
on the boundary this would a) not seem very much like quantum gravity, and b) give gauge variations of
boundary interactions proportional to δp0q.
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Note that the CS term for the gauge field in the supergravity action was classical (as opposed to the 10D
superstrings, where they are 1-loop effects). Consequently, a classical theory with the SUGRA multiplet in
the bulk and the gauge multiplet on each boundary is classically inconsistent.

Given our understanding of 10D anomalies, we then expect (correctly) that the full gauge and gravity
variation will modify the Bianchi identity as:

dG11ABCD “ ´3
?

2
κ2

λ2
δpx11q

´

trpFrABFCDsq ´
1

2
trpRrABRCDsq

¯

These trR2 terms are not required from classical 11D SUGRA, so they must arise as quantum effects of
M-theory.

The anomaly cancelation term usually takes the form:
ż

C ^ I8

Note the suggestive way I8 is written in equation (89). Because we have seen that G9I4 on the boundary,
the Chern-Simons term C ^G^G on the boundary reduces to C ^ I2

4 . This is a part of I8. We thus expect
the remaining part to take the form:

?
2

p4πq3p4πκ2q1{3

ż

C ^

ˆ

´
1

8
R4 `

1

32
ptrR2q2

˙

Again, this is a purely quantum effect of M-theory.

32. Here M is a 20ˆ 20 matrix. It is quick to see that MLM “ L for the 20ˆ 20 matrix

L “

¨

˝

0 14 0
14 0 0
0 0 116

˛

‚.

This means that M is an element of Op4, 20q. We can act on it as a bi-fundamental representation (on left
and right). This is more subtle, because not all Op4, 20q matrices have the form of M . Showing
that M keeps the same form would take too much time. This ensures that the last term is invariant.

The 4` 4` 16 “ 24 gauge fields from the compactification can be directly seen to transform in the contra-
gradient representation of Op4, 20q. This ensures that the second-to-last term is invariant. All other terms
are invariant.

33. The heterotic action
ż

d6x
?
´GrR´ BµΦBµΦ´

e´2Φ

2
|H|2 ´

e´Φ

4
M´1
ij F

i
µνF

j µν `
1

8
TrrBµMB

µM´1ss

Hµνρ “ BµBνρ ´
1

2
LijA

i
µF

j
νρ ` 2 perms.

and the IIA action:
ż

d6x
?
´GrR´ BµΦBµΦ´

e´2Φ

2
|H|2 ´

eΦ

4
M´1
ij F

i
µνF

j µν `
1

8
TrrBµMB

µM´1ss `
1

2

ż

d6xLij B ^ F
i ^ F j

Hµνρ “ BµBνρ ` 2 perms.

I will take the shorthand 1
2M

´1
ij F

i
µνF

j µν “ |F |2

The EOMs for G give respectively

Rµν ´
1

2
gµνR´ 2p∇µΦ∇νΦ´ gµνp∇Φq2q ´

1

2
Rgµν ´ e

´2ΦpH2
µν ´

1

2
gµν |H|

2q ´ e´ΦpFµν ´
1

2
gµν |F |

2q ` pM termsq

Rµν ´
1

2
gµνR´ 2p∇µΦ∇νΦ´ gµνp∇Φq2q ´

1

2
Rgµν ´ e

´2ΦpH2
µν ´

1

2
gµν |H|

2q ´ eΦpFµν ´
1

2
gµν |F |

2q ` psame M termsq
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here H2
µν “

1
4HµρσH

ν
ρσ etc. All terms are invariant under Φ Ñ ´Φ, including the terms involving H2, since

we will have
e´2Φ1H 1

2
“ e2Φpe´2Φ ‹Hq2 “ e´2Φ|H|2

and the same for Hµν .

The EOMs for Φ give respectively:

Het E: ∇2Φ` e´2Φ|H|2 `
e´Φ

2
|F |2 “ 0

IIA: ∇2Φ` e´2Φ|H|2 ´
eΦ

2
|F |2 “ 0

The EOMs for the Aµ give respectively:

Het E: e´2Φp‹Hq ^ F ´ dpe´ΦMij ‹ F
jq “ 0

IIA: ´dpeΦMij ‹ F
jq `H ^ F “ 0

This is equivalent under Φ Ñ ´Φ, e´2ΦH “ ‹H 1.

The EOMs and Bianchi identity for the Bµν give respectively

Het E: ´dpe´2Φ ‹Hq “ 0, dH ´ F ^ F “ 0

IIA: ´dpe´2Φ ‹Hq ` F ^ F “ 0, dH “ 0

The fact that the H duality exchanges the Bianchi identity and the EOMs speaks to the fact that it is an
electric-magnetic duality of strings.

The EOMs for the M terms are Φ, A,B independent. Consequently, the M matrices can be directly identified
between the two theories.

34. Consider just the 3D space of the xi. Note that V is harmonic, and consequently F :“ ´ ‹ dV is a closed
2-form on that space. We can view F as a curvature 2-form on a principal Up1q bundle, and can thus write
(upon picking a trivialization of the Up1q) a potential A giving dA “ F . Call the the Up1q bundle X. We
will write the connection as A “ A` dγ.

For each of the three xi there is a symplectic form on the 4D Up1q bundle given by:

ωi :“ A^ dxi ` V ‹ dxi ñ dω “ ´ ‹ dV ^ dxi ` dV ^ ‹dxi “ 0

Here we have used that all the dxi forms are (canonically) pulled back from R3 and in R3, ‹α^ β “ α^‹β.
Now, define a different basis of symplectic forms on X by

Ω1 “ ω2 ` iω3 “ A^ pdx2 ` idx3q ` iV dx1 ^ pdx2 ` idx3q

defining z1 “ x2 ` ix3 this gives:

Ωi “ A^ dzi ` iV dxi ^ dzi “ V pV ´1A` idx1
looooooomooooooon

α1

q ^ dzi.

The kernel of this form on the Up1q-bundle is 2D. For Ω1 it is spanned by

B̃x2 ` iB̃x3 , V Bγ ` iB̃x1

Here each Bxi is lifted to the Up1q tangent space by using the connection A to identify the appropriate
horizontal subspace. We identify this as a holomorphic tangent space. Similarly Ω̄1 would complete the
basis of TpM and give the anti-holomorphic tangent space. Thus, each Ωi gives a distinct stratification into
holomorphic and anti-holomorphic tangent spaces. The closedness of Ω guarantees integrability. Defining
3 separate complex structures Ij to act as `i on the jth holomorphic tangent space and as ´i on the jth
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anti-holomorphic tangent space, we can easily check that pointwise they reproduce the quaternion algebra.
This makes the manifold hyper-Kähler, with metric given by:

ds2 “ V p<pα1q
2 ` =pα1q

2q ` V p<pdz1q
2 ` =pdz1q

2q

“ V ´1pAq2 ` V |d~x|2

“ V ´1pAdx` dγq2 ` V |d~x|2

In particular, V can take the form of the multi-center potential in the problem.

Could we not have just exhibited a 3 Killing spinors? Are there such? In any case, this was
more instructive

Lastly, to see the asymptotic limit, we can take the xi to collide. At a distance, V will look like N
r . This

corresponds to an F with N units of flux asymptotically. The circle bundle over the R3 will asymptotically
looks like an S1 fibration over S2. For N “ 1, this is simply the Hopf fibration. For higher N , the connection
is N times larger, which makes the Up1q circle N times smaller, and corresponds to a fiberwise quotient of
S3 Ñ S2 by ZN .

Did Kiritsis mean to write N?

35. We have seen that to apply the GS mechanism, the heterotic B-field must have a modification of its Bianchi
identity from

H “ dB ´ ΩYM
3 pAq `

κ2

g2
ΩGR

3 pωq, Ω3pAq “ Tr
”

A^ dA´
2i

3
A^A^A

ı

I have absorbed the factor of κ2

g2 into these fields. This will cancel the anomalous change in B

δB “
κ2

g2
TrrΛF0 ´ΘR0s

required to have a GS term
ş

B ^X8 cancel the full anomaly. The modified Bianchi identity is

dH “ ´trrF ^ F s ` trrR^Rs

Here tr is taken always in the fundamental. The second addition important for the cancelation of gravitational
anomalies. Following the logic in question 33, by duality, a modification of the Bianchi identity in heterotic
string requires a modification in the B equations of motion on the heterotic side corresponding to the addition
to the action of a term:

´

ż

B ^R^R

The CS terms are thus:
ż

B ^ ptrpF ^ F q ´ trpR^Rqq

Further, Vafa and Witten confirm this term from a 1-loop calculation using the elliptic genus on the IIA
side in 9505053. This gives a nontrivial 1-loop test of the 6D string-string duality. This problem only asks
me to assume the duality in performing the match.

36. In our case, wrapping 3-branes around 2-cycles give rise to two-forms. As one 2-cycle shrinks B to zero size,
we get a tensionless string, of tension approximately |VolpBq|{gs. For each isolated singularity of K3 (type
ADE) there is such a tensionless string theory. Note that this is not yet the (2,0) SCFT, since we have not
taken any sort of IR limit that would lead us to expect that the theory is conformal. We still have mass
scales. This is an interacting QFT of light strings.

Upon compactifying on an S1, we can T-dualize to type IIA, where now we have the familiar appearance
of massless states associated to a 3-cycle shrinking in K3. The IIA theory sees massless particles emerge at
this transition, corresponding to the tensionless strings of IIB wrapping the S1.
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37. Here, our cycle is C “ niB
i. Take a euclidean D2 brane wrapping this cycle. The total volume (counting

orientation) will be |ni
ş

Bi Ω| “ |niZ
i|.

Because of the BPS property of the 3-cycle, we will still have M “ Tp|Z|, giving us

Sinst “
1

p2πq2`3sg
|niZ

i|.

It is worth remarking that we get contributions from all winding numbers of D instantons in this case, while
in the IIB case, it looks like only the singly-wrapped D3 brane is stable.

Is there anything else I should say? Reproduce Vafa+Ooguri’s calculation?

38. In IIB, we have seen that as a three-cycle shrinks, a (BPS) D-brane wrapping this cycle contributes a
hypermultiplet that becomes massless as the volume goes to zero. At the conifold point, we get a new
massless multiplet. Resolving this singularity by expanding the 2-cycle corresponds to giving an expectation
value to the massless hypermultiplet from the D-brane. In general, these hypermultiplets will have a potential.
See the discussion on page 378.

From this POV, condensation of D-branes has the interpretation of topology change! For IIA the (instantonic)
D2 branes instead serve to smooth out the singularity, which corresponds to the hypermultiplet moduli space
receiving quantum corrections.

This does not answer the question, though - which was about the resolution of the two-cycles. However,
using the tool of mirror symmetry, we can posit a guess. A two-cycle shrinking in IIA causes a singularity in
the vector multiplet, and maps to the familiar three-cycle shrinking in IIB. In IIA, then, we expect a wrapped
D2 brane to contribute to a massless hypermultiplet. On the other hand, we expect quantum effects in IIB
to smooth out this singularity.

Check against literature.

39. To simplify this problem, I will reduce the heterotic theory directly from 10D and keep in mind that reduction
on tori commutes. In the string frame I get

ż

d4x
?
´ge´2φ

„

R` 4pBφq2 ´
1

2
|H3|

2 ´
1

4
M´1

ijF
i
µνF

j µν `
1

8
TrrBµM

ijBµMijs



Upon taking g Ñ e2φg we get the Einstein frame:

ż

d4x
?
´g

„

R´ 2pBφq2 ´
e´4φ

2
|H3|

2 ´
e´2φ

4
M´1

ijF
i
µνF

j µν `
1

8
TrrBµM

ijBµMijs



Here the Mij scalar matrix lives in the SOp6, 22q coset, and there are 28 fields F i. We can dualize the H3 to
a scalar axion through the relation (as in 9.1.12)

e´4φH “ ‹BC0 ñ e´4φ|H|2 “ e4φpBC0q
2

In performing this dualization, the B equations of motion are automatically satisfied.

∇µpe´4φHµνρq “ ∇µpε σ
µνρ BσC0q “ 0

The Bianchi identity for H must now be imposed by hand

εµνρσBµHνρσ “ ´LijF
i
µνF̃

j µν

This corresponds to adding the term
1

4
C0 LijF

i
µνF̃

j µν

to the Lagrangian. We then combine the axion with φ to give:

ż

d4x
?
´g

„

R´
1

2

BSBS̄
S2

2

´
1

4
S2M

´1
ijF

i
µνF

j µν `
1

4
S1LijF

i
µνF̃

j µν `
1

8
TrrBµM

ijBµMijs


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where here S “ C0 ` ie
´2φ (note the 2φ, by contrast with 10D).

For the IIA side we get:
ż

d4x
?
´Geσ

´

R` |Bσ|2 `
1

4
BµGαβB

µGαβ ´ |BΦ|2´

e´2Φ

2
|H3|

2 ´
e´2Φ

4
GαβHαµνH

µν
β ´

1

2
e´2Φ´2σpBµBαβq

2

´
eΦ

2
M´1

ijF
i
µνF

j µν ´
eΦ

2
M´1

ijG
αβF iµαF

j µβ `
1

8
TrrBMBM´1s

¯

We take this to the Einstein frame g Ñ e´σg giving
ż

d4x
?
´g

´

R´
1

2
|Bσ|2 `

1

4
BµGαβB

µGαβ ´ |BΦ|2´

e´2Φ`2σ

2
|H3|

2 ´
e´2Φ`σ

4
GαβHαµνH

µν
β ´

1

2
e´2Φ´2σpBµBαβq

2

´
eΦ`σ

2
M´1

ijF
i
µνF

j µν ´
eΦ

2
M´1

ijG
αβF iµαF

j µβ `
1

8
TrrBMBM´1s

¯

In this case, the dilaton and axion fields enter the mass matrix M , as does the torus complex modulus,
whose kinetic term is the third term in the action above. The complexified Kähler modulus parameters of
the torus remain Why? This part needs elaboration. Altogether, including the CS term, this reduces
to

ż

d4x
?
´g

´

R´
1

2
|Bσ|2 ´

1

2
e´2σpBµBq

2 ´
eσ

4
M´1

ijF
i
µνF

j µν `
1

8
TrrBµM

ijBµMijs `
1

4
BLijF

i
µνF̃

j µν
¯

Defining the parameter T “ B ` ieσ we get

ż

d4x
?
´G

´

R´
1

2

BTBT̄

T 2
2

´
1

4
T2M

´1
ijF

i
µνF

j µν `
1

4
T1 LijF

i
µνF̃

j µν `
1

8
TrrBµM

ijBµMijs

¯

Comparing the above action with the heterotic one we identify S with T , giving (unprimed indicates heterotic,
primed indicates IIA)

C0 “ B1αβ (external SL2), C 10 “ B1αβ (internal)

e´2φ “ eσ
1

(external SL2), e´2φ1 “ eσ (internal)

This makes us also identify g “ g1 and M “M 1 as well as all the gauge fields descending from 6D Aiµ “ pA
i
µq
1

and the two descending from the T 2 metric Aαµ “ pA
α
µq
1.

Electric-magnetic duality acts least trivially on Hµνρ in 6D. Consequently, it will act nontrivially on its axion
and scalar descendants B,C0 (as we have seen). The 2-form field strength FB remains. From 6D we have
e´2φH “ ‹H 1. This descends to

e´2φGαβpFBβ,µν ´ LijY
i
βF

j
µν ´ CβγF

A,γ
µν q ´

1

2
a ‹ FA “

1

2

ε ρσ
µν εαβ
?
g

pFBβ,ρσq
1

where we see on the heterotic side we have additional terms due to how Ĥµνρ is defined in that case account
for additional axion term there.

Relatively unfinished.

40. I will just demonstrate this on the Bosonic sector. p´1qFL sends the RR fields to minus themselves (ie
C0, C2, C4), while S swaps B2, C2 and flips the axion part of the axio-dilaton τ Ñ ´τ̄ . Conjugating p´1qFL

by S will flip the sign of C4 and B2 and also take τ Ñ ´τ̄ . The untwisted sector will thus be without
B2, C0, C4 leaving only G,φ,C2. This is the closed-string sector of type I.

On the other hand, we have shown that orbifolding IIB by just p´1qFL yields just IIA. At the level of bosonic
fields, we already see that these operations do not commute.
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41. It is worth appreciating that this duality was known before the Horava-Witten construction.

First note that the moduli space of the heterotic string on T 3 is given by the coset space

R` ˆ SOp19, 3;ZqzSOp19, 3q{pSOp19q ˆ SOp3qq

with R` parameterizing the dilaton. Now, in string compactifications K3 has a moduli space coming from
cosets of SOp4, 20q{SOp4qˆSOp20q. This includes the complexified Kähler modulus, which takes into account
the NSNS B-field. M theory lacks this parameter, and consequently the Kähler component of moduli space
involves only real moduli (ie metrics). This gives SOp3, 19q{SOp3qˆSOp19q. The volume gives another factor
of R.

The low-energy effective actions also match. Wrapping the M-theory A3 on K3 gives one 3-form C3 and 22
1-forms Ai1. We get an action:

1

2κ2
11

ż

d11
a

G11pR`
1

2
|dA3|

2q Ñ

ż

d7
a

G7re
4σpR` pBσq2 ´

ÿ

i

1

2
|dAi1|

2 `moduliq ´
1

2
|dC3|

2s

Upon rescaling g Ñ e´4σg and taking φ “ 3σ we arrive at:

ż

d7
a

G7re
´2φpR` pBσq2 ´

ÿ

i

1

2
|dAi1|

2 `moduli´
1

2
|dC3|

2qs

This exactly matches with the heterotic theory. We go to strong heterotic coupling by taking σ Ñ 8, ie
taking the volume of the K3 to be large.

42. Because A3 is odd under the Z2 transformation, we must wrap it on either a 1-cycle or a 3-cycle to have
things survive. There are 5 1-cycles giving 5 vectors and

`

5
2

˘

“ 10 2-cycles giving 10 0-forms in 6D. Further,
the internal metric has 5 ˆ 6{2 “ 15 even terms that survive. Altogether we get 5 2-forms, 25 scalars, and
10 vectors.

This is N “ p2, 0q (chiral) supergravity consisting of the supergravity multiplet and five tensor multiplets,
each of which contains an anti-self-dual two-form field (the 5 self-dual parts are part of the SUGRA multiplet).
Cancelation of anomalies (prove and understand compared to the N “ p1, 0q case) require NT “ 21.
We are missing sixteen tensor multiplets.

The orbifold has 25 “ 32 fixed points which we expect will lead to twisted sectors. We shouldn’t be too
sure of how things go, though, because we don’t know how to deal with twisted sectors of M-theory. It
initially looks paradoxical that we need 16 extra tensor multiplets but have 32 fixed points. This is resolved
in Witten 9512219. The solution is to recognize the fixed points as 32 magnetic sources of charge ´1{2 for
the G4 field. The constraint that the total charges should vanish is satisfied when 16 of these sources have
a five-brane on top of them of `1 magnetic charge. Each fivebrane can be seen to support a single tensor
multiplet, giving our desired 16. We interpret the five scalar in each multiplet as describing the position of
the fivebrane inside T 5{Z2.

This now gives the massless spectrum of type IIB on K3.

The question is how to arrange the fivebranes in such a way that we can see the duality to IIB on K3.
The equivalence implies that when any circle shrinks show more rigorously, we would expect to recover
weakly coupled IIB on K3. The naive guess I have is to arrange them in an alternating “checkerboard”
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pattern. (Witten confirms this.) Now, in the limit where any circle shrinks to zero size, the opposite
charge sources cancel, giving zero 4-form field strength in the 6D spacetime, consistent with the fact that
the 3-form has been projected out on the M-theory side and doesn’t exist on the IIB side.

As a second check, we can further compactify on S1. We get IIA on T 5{Z2 vs IIB on S1ˆK3. T-dualizing the
latter along S1 (the only 1-cycle!) gives IIA on S1 ˆK3 which is equivalent to heterotic on S5. S-dualizing
this gives type I on S5 which is T-dual to IIA on T 5{Z2 as an orientifold (why do we need to act with
Ω too?)

43. I will work with covariant derivatives and take the axiodilaton fields in terms of the S, S̄ basis. I will write
the equations of motion for the axiodilaton as:

∇̄
ˆ

BS
pS ´ S̄q2

˙

´ 2
BS B̄S̄
pS ´ S̄q3

“
BB̄S

pS ´ S̄q2
´ 2

BS B̄S̄
pS ´ S̄q3

` 2
BS B̄S̄ ´ BS B̄S
pS ´ S̄q3

ñ BB̄S ` 2
BS B̄S
S̄ ´ S

“ 0

Where it is important to note that we can write BB̄S for the laplacian in complex 2D coordinates instead of
∇∇S. We thus get our desired EOM.

44. Recall that as a holomorphic function of z, S should have positive imaginary part, and have its image
restricted to the fundamental domain F . This mapping should be finite energy density. From the effective
action we compute the energy density by pulling back as:

E “ ´ i

κ2
10

ż

d2z
BS B̄S̄
pS ´ S̄q2

“
i

κ2
10

ż

F
d2S BB̄ logpS ´ S̄q

At this point we apply Stokes’ theorem to get a boundary integral:

i

κ2
10

ż

BF
dSB logpS ´ S̄q “ i

κ2
10

ż

BF

dS
S ´ S̄

The vertical lines of the fundamental domain have the same values but are traversed in opposite orientation
picture. Therefore, only the semicircle counts. This integral is readily evaulated:

ż π{3

2π{3

dθ ieiθ

eiθ ´ e´iθ
“ ´

iπ

6

This gives our desired final answer of π
6κ2

10
: the angular defect due to a D7 brane.
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Chapter 12: Compactifications with Fluxes

It is not likely that this will be relevant to my research. I will skip it indefinitely for now.

1.
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Chapter 13: Black Holes and Entropy in String Theory

1. We begin with

ds2 “ ´F prqCprqdt2 `
dr2

Cprq
`Hprqr2dΩ2

2

and Cprq vanishes at the horizon r “ r0 while all other functions are positive for r ě r0 and everything
asymptotes to 1 as r Ñ8. Now, let’s do a wick rotation tÑ iτ with τ Euclidean time. We get

F prqCprqdt2 `
dr2

Cprq
`Hprqr2dΩ2

2

Now at r “ r0 ` ε we see that the geometry takes the form

F pr0qC
1pr0qpr ´ r0qdt

2 `
dr2

C 1pr0qpr ´ r0q
` r2

0dΩ2
2

The last term is simply the expected metric on a 2-sphere of fixed radius r0. The other two terms give a
metric

ds2 “ F pr0qC
1pr0qεdt

2 `
dε2

C 1pr0qε

Take u “ 2
?
ε?

C1pr0q
then du “ dε?

C1pr0qε
giving us

ds2 “ F pr0q
C 1pr0q

2

4
u2dt2 ` du2

This describe a conical deficit geometry in polar coordinates. In order to obtain a smooth geometry, we need
the requirement that

τ ` 2π ˆ
2

C 1pr0q
a

F pr0q
“ τ

Giving an inverse temperature of
1

T
“ β “

4π

C 1pr0q
a

F pr0q

This formula generalizes directly to higher-dimensional black holes.

2. In what follows, recall the area formula for a general KN Black hole of mass charge and spin pM,Q, Jq is:

A “ 4πpr2
` ` a

2q, r` “M `
a

M2 ´ a2 ´Q2, a “ J{M

In particular an extremal Kerr black hole has area 8πM2.

(a) The areas of the individual Schwarzschild black holes are

4πp2Miq
2 “ 16πM2

i

each. The area of their composite must then be ě 16πpM2
1 ` M2

2 q. Because they start as almost
stationary, the total angular momentum in the center of mass frame is zero, so the final black hole will
be (essentially) Schwarzschild. So we get

M2
f ěM2

1 `M
2
2

If the initial masses were equal, we’d get Mf ě
?

2M so that E “ 2M ´
?

2M and E{pM1 `M2q “

1´ 1{
?

2. Let’s write WLOG M2 “ γM1 with γ ď 1 then

M2
f ě p1` γ

2qM2
1 ñ E “ p1` γqM1 ´

a

1` γ2M1

ñ
E

M1 `M2
“
p1` γqM1 ´

a

1` γ2M1

p1` γqM1
“ 1´

a

1` γ2

p1` γq
ě 1 ď 1´

1
?

2

as required.
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(b) For two extremal RN black holes we have r` “M so each has area 4πM2. They will collide to form a
neutral (perhaps rotating) black hole. The area law gives us

4πppMf `

b

M2
f ´ a

2q2 ` a2q ě 2ˆ 4πM2.

This bound is sharpest if we take the final state to be extremal Kerr a “M , giving

8πM2
f ě 8πM2 ñMf ěM

We get

E ď 2M ´M ñ
E

2M
ď

1

2
.

(c) Such a decay would look like

2M2
f ěM2 ñ

?
2Mf ěM ñM ´ 2Mf ď p

?
2´ 2qMF ă 0.

This is a contradiction.

3. We have that n “ 1?
grr
Br “

a

fprqBr so that

Kµν “
1

2

1
?
grr
BrGµν “

a

fprq

2
diag

´

f 1prq,´
f 1prq

fprq
, 2r, 2r sin2 θ

¯

Contracting with the 3 ˆ 3 boundary inverse metric hµν “ diagpfprq´1, r´2, r´2 sin´2 θq which has no r
component gives

K “

?
f

2

ˆ

f 1

f
`

4

r

˙

“
a

f
rf 1 ` 4f

2rf

ˇ

ˇ

ˇ

r“r0

where r0 is large and formally infinite. We can then evaluate

1

8πG

ż

BM

?
hK “

4πr2β
?
f

8πG
K
ˇ

ˇ

ˇ

r“r0
“ β

r

4G
prf 1 ` 4fq

ˇ

ˇ

ˇ

r“r0

Directly evaluating this for fprq “ 1´ 2GM
r `

Q2

r2 gives

β

2G

ˆ

Q2

r2
0

` 2r0 ´ 3GM

˙

This is the gravitational boundary term contribution to the classical action. The gravitational bulk term is
zero since the Ricci scalar vanishes for the RN solution. The electromagnetic contribution is

1

16πG

ż

M

?
gFµνF

µν “
1

8πG

ż β

0
dτ

ż

dΩ2

ż r0

r`

r2dr
Q2

r4
“ β

4πQ2

8πG

ˆ

1

r`
´

1

r0

˙

“
β

2G
Q2

ˆ

1

r`
´

1

r0

˙

All together, as r0 Ñ8 we get action:

SRN “ ´
β

2G

ˆ

2r0 ´ 3GM `
Q2

r`

˙

Note that there is one divergent term, namely the one linear in r0 in the boundary action, but this is
insensitive to the properties of the RN black hole and is also present in flat space. It is then sensible to
define a regularized (renormalized) action by subtracting this term off. In doing this subtraction, there is
an ambiguity of how we should define the inverse temperature of the reference flat space subtraction. The
appropriately redshifted temperature Justify is β

?
f , giving reference action:

Sflat “ ´
β

G
r0

a

fpr0q “ ´
β

2G
p2r0 ´ 2GM `Op1{r0qq

The renormalized Euclidean action is thus

IRN “ SRN ´ Sflat “
β

2
pM ´

Q2

Gr`
q “

β

2
pM ´ µQq “ βF
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4. The specific heat C is given by the coefficient in

dM “MCdT

For Schwarzschild, T “ p8πGMq´1 so this is

dM “ ´MC
dM

8πGM2
ñ C “ ´8πGM

Which is negative. This should not be so surprising, given that by increasing the energy (ie mass) of the
Schwarzschild black hole we make a larger one which thus have lower temperature. It is worth noting that,
including units, this is proportional to 1

~ .

5. First off, at a “ 0 Kerr-Newman reproduces the RN black hole, which we already know is a solution of the
Einstein-Maxwell system.

Further, it is quick to check using Mathematica that at Q “ 0 the Kerr metric is itself Ricci-Flat: Rµν “ 0
so is indeed a solution of the vacuum Einstein equations (away from r “ 0).

When Q ‰ 0 we get a nonzero Ricci tensor (the Ricci scalar still vanishes since classical electrodynamics is
conformal).

The Ricci tensor must correspond to an electromagnetic stress-energy tensor. It comes from an electric po-

tential of the form Aµ “ p
rQ
Σ , 0, 0,´arQ sin2 θ

Σ q
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For r very large we get an electric field going as qr2{Σ2 „ q{r2 corresponding to the electric field for a charge
q, and we also get a magnetic field dying off as a cos θ{r3 corresponding to the field from a spinning charged
source. Said another way, we see that 1

4π

ş

‹F “ q and 1
4π

ş

F “ 0 asymptotically, so we have just an electric
charge q.

We can verify mass and angular momentum using the killing vectors Bt and Bφ respectively using the formulas
in Wald 12.3.8-9

´
1

8πG

ż

εabcd∇cpBtqd “M
1

16πG

ż

εabcd∇cpBφqd “ aM

For the KN black hole metric, the only singularities can come from Σ “ 0 or ∆ “ 0. Σ is only zero for
a ą 0 when r “ 0, θ “ π{2. This corresponds to the curvature singularity of the black hole (in fact despite
deceptive coordinate choice, this takes the form of a ring S1 ˆ R as is revealed in Kerr-Schild coordinates).
The horizons come from grr becoming singular, namely ∆ “ 0 which occurs at

r2 ´ 2GMr ` a2 `Q2 “ 0 ñ r˘ “M ˘
a

M2 ´ a2 ´Q2.

These give the outer and inner horizons.

The horizon area is given by
ż π

0
dθ

ż 2π

0
dφ
?
gθθgφφ

ˇ

ˇ

ˇ

r“r`
“ 2π

ż π

0
dθ sin θ

b

pr2
` ` a

2q2 ´∆a2 sin2 θ

But ∆ “ 0 at the horizon so this trivializes to

4πpr2
` ` a

2q “ 4πppm`
a

m2 ´ a2 ´Q2q2 ` a2q

The entropy of the black hole is then

S “
A

4
“ πpr2

` ` a
2q

Taking care to write things in terms of J and not a now, by holding J,Q fixed, let’s vary M and get

159



The Hawking temperature is thus

TH “
1

2π

a

M2 ´ a2 ´Q2

r2
` ` a

2

Now let’s fix S and Q. We get

Which gives us that

Ω “
´

BM

BJ

¯

Q,S
“ ´

ˆ

dS

dJ

˙

Q,M

ˆ

dS

dM

˙´1

Q,J

“
a

r2
` ` a

2

Finally let’s hold S, J fixed and do the same procedure, giving

µ “
´

BM

BQ

¯

J,S
“ ´

ˆ

dS

dQ

˙

J,M

ˆ

dS

dM

˙´1

Q,J

“
Qr`

r2
` ` a

2

The full form of the first law is then
dM “ TdS ` ΩdJ ` µdQ

We obtain an extremal black hole when M “ a2 ` Q2, as this is the minimum value of M where r` is a
well-defined radius. At this value, r` “ r´.

Thermodynamic stability comes from minimizing the Gibbs free energy:

G “M ´ TS ´ ΩJ ´ µQ

Note that for flat space, G “ 0, so if G ą 0 for any of these black holes, thermal fluctuations will eventually
drive their decay to flat space.

Plugging in what we have gives

Notice that if J ą 0 then this will always be greater than zero, by virtue of the fact that M ą Q always.
If we take J “ 0, we get that this is still thermodynamically unstable unless Q “ M and the black hole is
extremally charged.

6. The Hawking evaporation rate gets modified as

ΓH “
σabspωq

exppβp~ω ´ ~s ¨ ~Ω´ qΦqq ¯ 1

d3k

p2πq3

where ~s ¨ ~Ω is the angular momentum product (orientation of ~s relative to ~Ω matters). The ¯ is for bosons
and fermions respectively.

Return to understand how this generalizes to systems more broadly
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7. This is direct - we take M theory on T 6. Wrap Q1 M2 branes along x9 ´ x10, Q2 M2 branes along x7 ´ x8,
and Q3 M2 branes along x5 ´ x6.

Take the M-theory S1 to be along x10. Now, taking this to be microscopic first, we get Q1 strings wrapping
x9 together with Q2, Q3 D2 branes in IIA.

T -dualize along x5, x6 to get Q3 D0 branes, Q2 D4 branes wrapping x5´8, and Q2 D2 branes wrapping x5, x6.
The F1 around x9 is unaffected.

Finally, T -dualize along x9, taking IIA to IIB and giving Q3 D1 branes and Q2 D5 branes, while replacing
the F1 (ie B-flux) with KK momentum of the system along the x9. This is exactly the D1-D5 system.

8. The D5 and D5 branes are both BPS. We know that, upon toroidal compactification,

In D “ 10 have the D1 stretch x0 “ t, x5 “ γ and the D5 stretch x0, . . . , x5, where we write γa, a “ 1 . . . 4
to be the new D5 directions. These will form the direction of the T 4.

Upon compactifying on T 4ˆS1, the logic we used to for the 10D solution will still carry over to 5D. We will
still write the extremal metric in terms of functions H1,5 that must be harmonic w.r.t. the flat metric of the
4D transverse space.

Then the D1 brane solution gives

ds2
D1 “

´dt2 ` dγ2

?
H1

`
a

H1dγ
a ¨ dγa `

a

H1 dx
i ¨ dxi, H1 “ 1`

r6
1

r6
, e´2Φ “ H´1

1 , F05i “ BipH
´1
1 q

While the D5 brane gives

ds2
D5 “

´dt2 ` dγ2

?
H5

`
dγa ¨ dγa
?
H5

`
a

H5 dx
i ¨ dxi, H5 “ 1`

r2
5

r2
, e´2Φ “ H5, Fijk “ ´εijkBrH

I think this problem has a typo and Kiritsis means D1, D5 not N1, N5. Further, Kiritsis (likely borrowing
from Maldacena’s thesis) writes F05i “ ´

1
2BipH

´1 ´ 1q. This factor of 1{2 is different from what I’m used
to seeing both in Kirtsis and Blumenhagen. This stems from a different choice of normalization for the
Kalb-Ramond and RR forms in Maldacena’s thesis. I am unsure why this different normalization exists, but
at any rate I will ignore the factor of 1{2. Finally, the overall sign in F disagrees also with Kiritsis and
Blumenhagen, and I think the total D-brane charge in Maldacena counts anti-D-branes in our scheme.

When superimposing a D1 and D5 solution, the dilaton and field strength contributions add while the metric
contributions get multiplied. One way to see this is, because the solution remains BPS, we only need to
solve the first-order BPS equations.

For a p-Brane, as we have seen, the Killing spinors have spatial profile εprq “ H1{8ε0 regardless of p. The
linear equations for spinors coincide with the D-brane equations εL “ ˘Γ0 . . .ΓpεR. We know that for the
1-5 system these can be simultaneously solved, giving a 1/4 BPS state.

I could do this in more detail... but I’ve computed enough Killing spinors by this point.

The combined 10D solution thus gives:

´dt2 ` dγ2

?
H1H5

`

c

H1

H5
dγa ¨ dγa `

a

H1H5dx
i ¨ dxi, Fr05 “ BrH

´1, Fijk “ ´H
1prq, , e´2Φ “

H5

H1

The next step is compactification. Upon wrapping D5 and D1 around a T 5, dimensional reduction freezes
out γ, γa dependence of the metric and fields. The T 5 is parallel to the D5, so the D5 solution will look
identical to how it looked before. The D1 also wraps a cycle of the T 5. Compactifying the other 4 directions
will look like a periodic arrangement of D1 branes, which effectively serves to remove γa dependence from
the D1 contribution to the solution. Think about this. Is it really true that the metric warps the
same regardless of where on T 5 I am? More likely that they are taking T 5 small and neglecting
it, or we’re thinking about a uniform distribution of D1s on T 5.

Finally, the D1 solution can be given momentum.
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9. Ignoring the ´1{2 discussed before, we can verify the charge from direct integration along a S3. First, the
electric charge

1

2κ2
10

ż

S3ˆT 4

‹F “
1

2κ2
10

ż

S3ˆT 4

2r2
1

r3
“ ´

4π2p2π`sq
4V

p2πq7`8sg
2
s

r2
1 “

Q1

2π`2sg
“ Q1T1

for r2
1 “ `2sgs{V , as required.

For the magnetic charge, Fθφψ “ εθφψrBrH5 “ ´H
1
5 so we get

1

2κ2
10

ż

S3

F “
1

2κ2
10

ż

S3

dΩ3
2r2

5

r3
“

4π2

p2πq7`8sg
2
s

r2
5 “

Q5

p2πq5`6sgs
“ Q5T5

for r2
5 “ `2sgs, as required.

We can also derive cp from the KK solution Do this.

In the non-extremal case, this generalizes quite directly.

Q1

2π`2sgs
“

1

2κ2
10

ż

S3ˆT 4

‹F “
p2π`sq

4V gs
p2πq7`8sg

2
s

ż

S3

coth a1
2r2

1

r3
“
V r2

0 sinh2 a1 coth a1

2πg2
s`

4
s

“
r2

0 sinh 2a1

4πgs`2sc1
ñ Q1 “

r2
0 sinh 2a1

2c1

Similarly:

Q5

p2πq5`6sgs
“

1

2κ2
10

ż

S3

‹F “
1

p2πq7`8sg
2
s

ż

S3

coth a5
2r2

5

r3
“
r2

0 sinh2 a5 coth a5

p2πq5g2
s`

8
s

“
r2

0 sinh 2a5

2p2πq5`6sgsc5
ñ Q5 “

r2
0 sinh 2a5

2c5

For the KK momentum, I assume it can be read off from the dtdγ term justify (Maldacena writes this too,

in his thesis below 2.34), which goes as r2
0 sinh ap cosh ap “

r2
0 sinh 2ap

2 “ cpQp, giving KK momentum

Qp “
r2

0 sinh 2ap
2cp

10. First, by analogy to 5D we expect an extremal metric of the form

´λ´1{2dt2 ` λ1{2pdr2 ` r2dΩ2
2q, λ “

4
ź

i“1

p1`
ri
r
q

This will have a nonzero area 4π
?
r1r2r3r4 only when all the ri ‰ 0. On the other hand the total mass is

M “
ř4
i“1Mi with Mi “ ri{4G. The question is what the charges correspond to at the level of a brane

construction.

Towards this end, let’s take IIA and compactify on T 6. We consider a D6 brane wrapping x1 . . . x6 together
with a D2 wrapping x1, x6. 6 ´ 2 “ 4 is good, makes the state 1/4 BPS. We can also add KK momentum
along the 1 direction.

The crucial principle (Maldacena 2.5) is that if a scalar diverges at the horizon, the d-dimensional character
of the solution is lost. For a single p-brane p ‰ 3 the dilaton goes either to 8 or 0. In the case of the D1-D5
system, we needed branes symmetric about p “ 3 and differing by 4 in order to give a BPS state with the
dilaton tending to a constant 1

4 logH1{H5 Ñ
1
2 log r1{r5.

We see now that this does not work with a D6 and D2. For a p-brane e´2Φ “ Hpp´3q{2 giving that D6-D2

gas a dilaton going as e´2Φ “ H
3{2
6 H

´1{2
2 . There’s no (even dimensional) D-brane we could add in type 1

that would save us, and adding fundamental strings would only give e´2φ “ Hf , which would not help.

But there is another extended object with the correct dilaton dependence as e´2Φ “ H´1. This is the NS5
brane! But will adding it break supersymmetry completely? On the contrary, the SUSY constraints from
the D6 and D2 and KK momentum are:

εL “ Γ0123456εR, εL “ Γ016εR, εL “ Γ01εL, εR “ ´Γ01εR

The NS5 brane wrapping 1 . . . 5 would give εL “ Γ012345εL, εR “ ´Γ012345εR. This can be rewritten as

εL,R “ ˘Γ6Γ0123456εR,L “ Γ6εL,R

But εL “ ˘Γ6εL already follows from the prior supersymmetry constraints, so adding NS5 breaks nothing!
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11. Directly applying the formula derived in problem 1 with F “ f´1{3, C “ f´1{3h gives

2π
2

a

F pr0qC 1pr0q
“ 2πr0 coshpa1q coshpa5q coshpapq

12. This is direct by writing the differentials in terms of variables r0, a1, a5, ap:

The variations do not involve arbitrary changes in the N˘i. This is not obvious from the form of the first
law as far as I can tell, but N˘i do need to be discrete in the brane interpretation.

13. I have done this problem for Andy’s class on quantum black holes. I will copy the full answer below: BTZ
as a Quotient of AdS3 The objective of this problem is to describe the precise way in which the BTZ
black hole arises as a quotient of AdS3. Take the embedding space to be R2,2, with metric:

η “ diagp´1,´1, 1, 1q

Denote the coordinates of the embedding space by xµ “ px0, x1, x2, x3q. AdS3 is given by xµx
µ “ ´`2. The

Killing vectors generating isometries are given by Jµν “ xνBµ ´ xµBν . The most general Killing vector is
then ωµνJµν .

Define the identification subgroup of AdS3 by

P „ etξP, t P 2πn, n P Z

For this identification to make physical sense, it should not give rise to closed timelike curves. Unfortunately,
in some regions, the ξ used in this construction do give rise to CTCs. Luckily, however, they are bounded
by a region where ξ ¨ ξ “ 0. The part of the spacetime where ξ ¨ ξ “ 0 is then interpreted as a singularity in
the causal structure, and the region where ξ ¨ ξ ă 0 is cut out of the spacetime. Let

ξ “
r`
l
J12 ´

r´
l
J03

(a) Write down ωµν for this Killing vector, and the corresponding Casimir invariants for the
SOp2, 2q isometry group, which are given by

I1 “ ωµνω
µν , I2 “

1

2
εµνρσωµνωρσ

We have
ω12 “ ´ω21 “

r`
l
, ω03 “ ´ω30 “ ´

r´
l

Giving Casimirs:

I1 “ ´2
r2
` ` r

2
´

l2
, I2 “ 4

r`r´
l2
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(b) Find the allowed region ξ ¨ ξ ą 0 in terms of x1, x2.

We can write:

ξ “
r`
l
px2B1 ´ x1B2q ´

r´
l
px3B0 ´ x0B3q “

¨

˚

˚

˝

´
r´
l x3

r`
l x2

´
r`
l x1

r´
l x0

˛

‹

‹

‚

“

¨

˚

˚

˝

´
r´
l x

3

r`
l x

2

r`
l x

1

´
r´
l x

0

˛

‹

‹

‚

This vector has norm:

ξ2 “
1

l2
rr2
`px

2
1 ´ x

2
2q ´ r

2
´px

2
3 ´ x

2
0qs “

1

`2
pr2
` ´ r

2
´qpx

2
1 ´ x

2
2q ` r

2
´

This is ě 0 when (assuming r` ą r´)

x2
1 ´ x

2
2 ě ´

r2
´l

2

r2
` ´ r

2
´

(c) Find the regions for ξ ¨ ξ P tp0, r2
´q, pr

2
´, r

2
`q, pr

2
`,8qu and identify whether the boundaries

between them are timelike, spacelikeor null:

Now let’s look at

r2
` ď ξ2 ñ pr2

` ´ r
2
´qpx

2
1 ´ x

2
2q ě pr

2
´ ` r

2
`ql

2 ñ l2 ď x2
1 ´ x

2
2

Next
r2
´ ď ξ2 ď r2

` ñ 0 ď x2
1 ´ x

2
2 ď l2

Finally

0 ď ξ2 ď r2
´ ñ ´

r2
´l

2

r2
` ´ r

2
´

ď x2
1 ´ x

2
2 ď 0

All boundaries between these regions are null. The boundary x2
1 ´ x2

2 “ l2 implies x2
0 ´ x2

3 “ 0 and so
is a null surface (cone). Similarly, the boundary x2

1 ´ x2
2 “ 0 implies x` “ ˘x´ which is again null

surface.

(d) For region I use the coordinate transform given by x0 “
a

Bprq sinh t̃, x1 “
a

Aprq cosh φ̃, x2 “
a

Aprq sinh φ̃, x3 “
a

Aprq cosh t̃ where A,B “ l2
r2´r2

¯

r2
`´r

2
´

and t̃, φ̃ “ 1
l p˘

tr˘
l ¯ r¯φq to write the

metric in a form
´N2

Kdt
2 `N´2

K
dr2 ` r2pNφdt` dφq

2

Note we get x2
1 ´ x2

2 “ Aprq, x2
3 ´ x2

4 “ Bprq, and Bprq “ Aprq ` l2 so that B ´ A “ l2 as required

in AdS. At r “ r`, A “ ´
pr2
`´r

2
´ql

2

r2
`´r

2
´

exactly saturating the boundary of region 1. Simple differential

manipulations
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gives us

NK “

b

pr2 ´ r2
´qpr

2 ´ r2
`q

lr
, Nφ “

r`r´
lr2

For region II, taking r´ ă r ă r` makes B negative, so we will keep x1, x2 as before and instead define

x0 “ ´p´Bprqq1{2 cosh t̃, x3 “ ´p´Bprqq1{2 sinh t̃

Here we have flipped the sign of B together with exchanging sinh and cosh (so as to remain in coordinates
satisfying the AdS constraint). This is exactly as in Kiritsis 13.7.8, referred to as the “standard
BTZ form”

We keep t̃, φ̃ the same. This gives the same value for NK and Nφ. Lastly for region III, A also becomes
negative, and we redefine x1, x2 while keeping x0, x3 from region II:

x1 “ p´Aprqq1{2 sinh φ̃, x3 “ p´Aprqq1{2 cosh φ̃

The here r ranges from 0 to 8 while t, φ are unrestricted and range from ´8 to 8

(e) Compute the Killing vector ξ in the pt, r, φq coordinates and perform the identification. You
should recognize the metric found in the previous part as the BTZ geometry. Identify
M,J in terms of r˘ and write the casimir invariants from part a) in terms of M,J

By computing the Jacobian Bpx0,x1,x2,x3q

Bpt,r,φq and judiciously guessing what vector I should push forward

(way easier than trying to compute inverse Jacobians to pull back ξ), I see that ξ “ Bφ in our new basis:

Indeed, it is easy to see that Bφ is killing from directly applying the Killing equation, and now we see
it comes directly from a combination of the manifest Jµν symmetries in the embedding space. We can
thus identify φ as a periodic variable and retain the space as a solution to Einstein’s equations.

Looking at the N2
K and N2

φ contributions to g00 we get:

´g00 “ ´
r2
´ ` r

2
`

l2
`
r2

l2

This is a black hole in AdS with mass M “
r2
´`r

2
`

l2
. Similarly, from the dt dφ component, we see that

2r2Nφ corresponds exactly to the angular momentum. We thus get

M “
r2
` ` r

2
´

l2
, J “

2r`r´
l

Note for global AdS when r´ Ñ 0, r` Ñ ´l2, we get mass ´l2. Kiritsis adjusts the definition of
mass by `1 making it 0 in global AdS, so that it counts only the mass of the black hole.

This gives
I1 “ ´2M, I2 “ 2J{l
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14. The KK reduction is not too bad:
ż

d5x
a

det g
´

e´2φ
”

R` 4BµφB
µφ`

1

4
BµGαβB

µGαβ ´
1

4
GαβF

α
µνF

µν β
ı

´
1

4

?
GGαβGγδHµαγH

µ
γδ ´

1

4

?
GGαβHµναH

µν
β ´

1

12

?
GHµνρH

µνρ
¯

with φ “ Φ ´ 1
4 log detGαβ. Here H comes from the two form not from the B field.I’m almost certain

that the formula in Kiritsis is wrong

We can rewrite this as
ż

d5x
a

det g
´

e´2φ
”

R` 4BµφB
µφ´

1

4
GαβGγδ

`

BGαγBGβδ ´ e
2φ
?
GBCαγBCβδ

˘

´
1

4
GαβF

α
µνF

µν β
ı

´
1

4

?
GGαβHµναH

µν
β ´

1

12

?
GHµνρH

µνρ
¯

Now we must take this to the Einstein frame. We perform a Weyl rescaling g Ñ e4φ{3g. This rescales fields
(and changes the kinetic φ term) to give us the requisite action

S5 “
1

2κ2
5

ż

?
´g

”

R´
4

3
pBφq2 ´

1

4
GαβGγδpBGαγBGβδ ` e

2φ
?
GBCαγBCβδq

´
e´4φ{3

4
GαβF

α
µνF

µν β ´
e2φ{3

4

?
GGαβHµναH

µν
β ´

e´2φ{3

12

?
GHµνρH

µνρ
ı

Each of the field strengths will obey:

d ‹ re´4φ{3Gαβ F
α
µνs “ 0

d ‹ re2φ{3
?
GGαβ Hαµνs “ 0

d ‹ re´2φ{3
?
GHµνρs “ 0

∇µrGαβGγδe2φ
?
GBµCβδs “ 0

The dilaton will obey:

8

3
lφ´

1

2
e2φ
?
GGαβGγδBCαγBCβδ`

4

3
e´4φ3GαβF

α
µνF

β µν´
1

6
e2φ{3

?
GGαβHµναH

µνβ`
1

18
e´2φ{3

?
GHµνρH

µνρ

Finally, the metric will obey:

Rµν ´
1

2
gµνR´

4

3
BµφBνφ´

1

4
GαβGγδpBµGαγBνGβδ ` e

2φ
?
GBq

The solution in question has nonzero (magnetic) Hµνρ and (electric) Hµν , which are functions of r alone.
Finish

show solution

15. Write Gαβ “
b

H1
H2
pδαβ ` hαβq

Finish

16. Here we only take the two-form field strengths H5µν F
5
µν to be nontrivial.

By redefining φ̃ “ φ` 1
2ν5, λ “ ´

1
2φ`

3
4ν5, we get

´pBφ̃q2 ´
4

3
pBλq2 “ ´

4

3
pBφq2 ´ pBν5q

2
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The φ term matches, and the ν5 kinetic term together with the four pBνq2 terms exactly reproduces the
expected ´1

4BµGαβB
µGαβ. Let’s look at the field strengths

e´2φ{3
?
GH2

µνρ “ e´2φ{3`ν5`4νH2
µνρ “ e

4
3
λ`4νH2

µνρ

e2φ{3
?
GG55H2

5νρ “ e2φ{3´ν5`4νH2
5νρ “ e´

4
3
φ`4νH2

5νρ

e´4φ{3G55pF
5
µνq

2 “ e´4φ{3`2ν5pF 5
µνq

2 “ e
8
3
λpF 5

µνq
2

These all exactly match. Note that these scalars have a potential- they are not minimally coupled. Conse-
quently, at the horizon, where the field strengths diverge, we expect that the values of these scalars will be
fixed by the equations of motion.

17. This is direct:

Importantly, the derivative of the inner R profile goes as Opr2
0q, which makes it subleading in determining

B. Thus, B is Opr2
0q. On the other hand, this derivative’s r2

0 dependence is important for determining the
incoming flux: Imphr3R˚BrRq. For completeness I will add this part of the notebook as well:

18. Redefining K to be unitless, we have a relationship

eix cos θ “ K
e´iωx

x3{2
Y000 ` higher moments

Let’s integrate both over S3, giving

ż π

0
dθ

ż π

0
dφ

ż 2π

0
dψ sin2 θ sinφeix cos θ “ 2π2J1pxq

x
“ K

eiωx

x3{2

?
2π2

The asymptotic form of J1 is

J1pxq „

c

2

πx
cospz ´ 3π{4q

So then, up to a phase
2π
?

2π “ K
?

2π2 ñ K “
?

4π

as required.
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19. In spacetime dimension d` 1, one can write a black hole metric as:

ds2 “ ´f´1`1{pd´1qhdt2 ` f1{pd´1q

„

dr2

h
` r2dΩ2

d´1



ñ
?
´g “ f1{pd´1qrd´1, h “ 1´

rd´1
0

rd´1

I will ignore the details of f for now, since it depends a lot on the dimension and charges. h is simply what
reproduces the Schwarzschild solution for a totally uncharged black hole. What does matter is that the

horizon is at r “ r0, giving a horizon area A “ Ωd´1r
pd´1q
0 fpr0q

1{2, meaning that to leading order as r Ñ r0

we have

fprq «
R

2pd´1q
H

r
2pd´1q
0

, Rd´1
H “

A

Ωd´1

This is all we need for the near-horizon data.

What matters is that the throat size that is determined by f is much larger than the extremality parameter
r0. For a minimal scalar lφ “ 0 in d` 1 dimensions we get

„

h

rd´1
Br

´

hrd´1Br

¯

` ω2f



Rωprq “ 0

For r small and close to r0 define the coordinate σ by

dσ “
dr

hprqrd´1
ñ Bσ “ hprqrd´1Br

This give us that the wave equation becomes

rB2
σ ` ω

2rd´1fprqsRωprq “ 0

Now, in the r Ñ r0 limit this simplifies to

rB2
σ ` ω

2R
2pd´1q
H sRωprq “ 0 ñ R “ Ãe´iωσR

d´1
H « Ãp1´ iωσRd´1

H q

where we have picked the sign in the exponent so that the wave in the near region is purely incoming. In the
final approximation, we’re looking at the extreme near-horizon limit. Further, keeping rω small but looking
at large r compared to r0 we see that the behavior of σ is given by σ « ´ r´d`2

d´2 , yielding

Rprq « Ãp1´ iω
Rd´1
H

pd´ 2qrd´2
q (95)

Now for the far region:
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Redefining ψ “ r
d´1

2 R and introducing the tortoise coordinate dr˚ “ dr{h so that Br˚ “ hBr we get

”

´
d2

dr2
˚

`
pd´ 1qpd´ 3q

4r2

˜

1´
rd´2

0

rd´2

¸˜

1`
d´ 1

d´ 3

rd´2
0

rd´2

¸

´ ω2fprq

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

V pr˚q

ı

ψprq “ 0

This reproduces 13.8.4 when d “ 4. We don’t expect this to be solvable, and so we will work at it by
matching. Again, r0, rp ! rm ! r1, r5.

For r large, r “ r˚ and we can divide through by ω giving ρ “ rω. The equation then reduces to
ˆ

d2

dρ2
` 1´

pd´ 1qpd´ 3q

4ρ2

˙

ψ

This has a solution in terms of Bessel functions:

ψ “

c

πρ

2
rAJ´1`d{2pρq `BY´1`d{2pρqs

This implies that asymptotically:

R «
1

rpd´1q{2
reiωre´iπ{4e´ipd´2q{4pA´Beipd´2qπ

2 q ` e´iωreiπ{4eipd´2q{4pA´Be´ipd´2qπ
2 qs

The absorption probability is then

Γ “ 1´

ˇ

ˇ

ˇ

ˇ

ˇ

1` B
Ae

i 1
2
pd´2q

1` B
Ae
´i 1

2
pd´2q

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

We need an odd number of spatial dimensions for this to work, reflecting the fact that the Bessel functions
degenerate in these cases. There is probably a cleaner way here.

Taking ρ “ rω ! 1 at r “ rm for matching, the Bessel functions will become at leading order:

R «
1

pωrqpd´1q{2

c

πωr

2

˜

A
21´d{2

Γpd{2q
prωq´1`d{2 `B

2pd´2q{2

Γp2´ d{2qprωqd{2´1

¸

“ A

?
π2p1´dq{2

Γpd{2q
`B

?
π2pd´3q{2

Γp2´ d{2qpωrqd´1

(96)

Now let us match (96) onto (95). This is direct, and gives:

A

Ã
“

Γpd{2q

2p1´dq{2
?
π
,

B

Ã
“ i

Γp2´ d{2qpωRHq
d´12p3´dq{2

?
πp2´ dq

ñ
B

A
“ i

22´dΓp2´ d{2qpωRHq
d´1

p2´ dqΓpd{2q

We will then get in the ω Ñ 0 limit:

Γ “
ˇ

ˇ

ˇ

23´dΓp2´ d{2qpωRHq
d´1

pd´ 2qΓpd{2q

ˇ

ˇ

ˇ

Now, following the discussion of 13.18, we must account for the conversion factor K from partial waves to
plane waves. In d spatial dimensions we get this to be

K “

d

p2πqd´1

ωd´1Ωd´1

This gives

σabs “ Γ|K|2 “
ˇ

ˇ

ˇ

p2πqd´1Γpd2q

ωd´12πd{2
23´dΓp2´ d{2qpωRHq

d´1

pd´ 2qΓpd{2q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

2πd{2´1Rd´1
H Γp2´ d{2q

pd´ 2q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

2πd{2´1Rd´1
H π

pd´ 2qΓpd{2´ 1q sinpd{2´ 1q

ˇ

ˇ

ˇ

“
2πd{2Rd´1

H

Γpd{2q
“ AH .

as required. Literally after all that I’m off only by a factor of 2.
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20. We have seen that the Ricci scalar for a Dp brane solution takes the exact form:

R “
L2p7´pq

4r
p´3

2

pp` 1qpp´ 3qpp´ 7q2

pr7´p ` L7´pq5{2

For p “ 3, this vanishes identically. On the other hand, the dilaton EOM yields

R “ 4p∇Φq2 ´ 4l Φ

since the solution Φ is a constant, at leading order about a classical solution, this equation reads

lΦ “ 0.

Thus, the dilaton is indeed minimal. We do not expect such nice simplification for other Dp branes.

Now, let us calculate cross section per unit D3 brane volume. We consider s-wave scattering. This wave
equation in the D3 background grr “

a

Hprq,
?
g “ r5

a

Hprq translates to

0 “
´ 1
?
g
Brg

rr?gBr ` ω
2gtt

¯

Rprq “

ˆ

1

r5
?
H
Brr

5Br ` ω
2
?
H

˙

Rñ
1

r5
Brr

5BrR` ω
2

ˆ

1`
L4

r4

˙

As before, lets redefine ψ “ r5{2R. We get the equation

0 “ ψ2prq `

„

ω2

ˆ

1`
L4

r4

˙

´
15

4r2



ψprq ñ Veff “
15

4r2
´ ω2

ˆ

1`
L4

r4

˙

Again, this does not look like it has an analytic solution (actually apparently it does and its a Matthieu
function, but we don’t really know that). Taking ρ “ ωr and looking at ρ " 1, we drop the L4{ρ4 term and
obtain solutions

ψ “

c

πρ

2
rAJ2pρq `BY2pρqs

For large ρ these asymptote to

R «
1

2r5{2
reirωpA´ iBqe3iπ{4 ` e´irωpA` iBqe´3iπ{4s

For the small r limit, on the other hand, we get

ψ “

c

πρ

2pLωq2

„

ÃJ2p
pLωq2

ρ
q ` B̃Y2p

pLωq2

ρ
q



For this to be an incoming wave in this region, we require the combination

R “ Ã
pLωq4

ρ2

„

J2p
pLωq2

ρ
q ` iY2p

pLωq2

ρ
q



(97)

We want to match this at an intermediate value of r. Take ρ ! 1, and look at low frequencies. This will
allow us to write the first solution as

R “
1

r5{2

c

πρ

2
pAJ2pρq `BJ2pρqq «

1

8

c

πω5

2
A´

2

r4
a

ω3π{2
B

We see that for small r, the second term blows up, and we expect that for matching to hold, we must take
B “ 0.

Meanwhile, equation (97) for small r gives in the ω Ñ 0 limit an expansion:

R « ´
4iÃ

π
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For these to match we must have:

1

8

c

πω5

2
A “ ´

4iÃ

π
ñ

Ã

A
“

1

32

c

ω5π3

2
i

The conserved flux is

F “ 1

2i

“

r5R˚BrR´ c.c.
‰

For the incoming wave this is Fin “ ´ω|A{2|2. For the absorbed one, a quick Mathematica computation

gives Fabs “ ´2L8ω4

π |Ã|2

This gives

Rabs “
Fabs
Fin

“
|Ã|2

|A|2
8L8ω3

π
“
π2pLωq8

p16q2

Now, following the discussion of 13.18, we must account for the conversion factor K from partial waves to
plane waves. In D spatial dimensions we get this to be

K “

d

p2πqD´1

ωD´1ΩD´1
Ñ 32π2

in our case of D “ 6. Altogether we get

σabs “ K2Rabs “
π4L8ω3

8

as required.

The fact that the B coefficient did not come into play confirms once again that the near-horizon regime is
all that matters in the calculation of σabs

For higher partial waves, the Bessel functions involved take the form J``2. The outer region will continue
to have B “ 0 enforced, and look like

A

ρ2
J2``pρq

while the inner region will look like

Ã
pLωq2

ρ2

”

J2``p
pLωq2

ρ
q ` iY2``p

pLωq2

ρ
q

ı

This will give a match like Ã „ pωLq´2`A. This makes it so that their ratio squared goes as pωLq4`. The flux
calculations remain the same. Altogether we expect σabs to scale as L8ω3pLωq2` for higher partial waves.

Finally, the Hawking emission rate remains zero, since it involves a factor of e´βω and β “ 1{T “ 8 for an
extremal p-brane. There are likely corrections to this beyond the semiclassical level of analysis.

171



21. Let’s expand:
8
ź

n“1

p1` qnq8

p1´ qnq8
“ 1` 16q ` 144q2 ` 960q3 ` 5264q4 ` . . .

For N “ 0 pT 4qN{SN is just a point which has trivial cohomology ring with dimension 1.

For N “ 1 we recover T 4 which has 4 ˆ 4 cocycles generated as an alternating algebra by the elements
dxi, i “ 1 . . . 4, giving dimension 16. Note that we should view dxi as fermionc elements corresponding to
the odd cohomology, and even elements such as 1, dxi ^ dxj , dx1 ^ dx2 ^ dx3 ^ dx3 as bosonic.

For N “ 2 we get T 8{S2 identifying points of two separate T4s. Each individual T4 has all of its cycles
remaining intact, giving 2 ˆ 24 “ 32 cycles untouched. The remaining 28 ´ 24 cycles are half-killed, giving
2ˆ 24`p28´ 2ˆ 24q{2 “ 144. Although this gives the right answer, I see that its not the most generalizable
way to look at things. There will always be an untwisted sector of this orbifold, as well as twisted sectors in
1-1 correspondence with conjugacy classes of SN . The untwisted sector simply considers N particle states
on T 4. There are 8 fermionic elements and 8 bosonic elements in the cohomology. The types of 2-particle
states are thus:

8ˆ 9

2
loomoon

bose-bose

`
8ˆ 7

2
loomoon

fermi-fermi

` 8ˆ 8
loomoon

bose-fermi

“ 128

The twisted sector here is a single copy of T 4, and any cycle is allowed. We thus get an additional 16 terms,
giving 144 as desired.

Now let’s look at N “ 3, the first case where SN becomes nonabelian. We expect an untwisted sector,
corresponding to the system of 3 point particles on T 4. This gives

8ˆ 9ˆ 10

3!
`

8ˆ 7ˆ 6

3!
`

8ˆ 9

2!
ˆ 8`

8ˆ 7

2!
ˆ 8 “ 688

as well as two twisted sectors, in 1-1 correspondence with the conjugacy classes p123q and p12qp3q of S3.
The former gives a single T 4, whose cohomology is 16. The other gives two (independent!) T 4s, whose
cohomology then is 16ˆ 16. Altogether we get:

688` 162 ` 16 “ 960

as required.

Let’s finally do N “ 4.

The generating function, for a manifold M with f odd cycles and b even cycles, consists of taking the
generators of H˚pMq to be αa´1, a “ 1 . . . dimH˚pMq. For each Sn twisted sector of n copies of M , we
introduce “twisted modes” αa´n.

Then, the generating function consists of taking products over all n so that for a given SN , the full orbifold
is built up from taking all the ways one can partition N in terms of subsectors twisted by ni,

ř

ni “ N .
Thus, we look for the qN coefficient in:

8
ź

i“1

p1` qnqf

p1´ qnqb
.

22. A derivation of Cardy’s Formula:

Take the CFT to have continuous spectrum, which we can write in terms of a δ-function based ρp∆q as

Zpτq “

ż 8

0
d∆ρp∆qe2πiτ∆
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We can invert this using a Bromwich integral:

ρp∆q “

ż

C
dτZpτqe´2πiτ∆

where C is the contour running parallel but slightly above the real axis, enclosing the upper half plane. In
the q-disk this would run close to the boundary of the disk.

Now, we would like an expression for Zpτq as = τ Ñ 0, namely the high-temperature limit. We know that
Zpτ Ñ 8q “ dimH0, the space of ground states, which we take to consist of only a unique |0y, so we take
this to be 1. Further, we know that

q´c{24Zpτq “ e´2πiτc{24Zpτq “ Zp´1{τqe
2πic
24τ

is modular invariant. This implies that

Zpτ Ñ 0q « Zp8qe2πi c
24τ “ e2πi c

24τ

We now can approximate the integral:

ρp∆q «

ż 8

´8

dτe´2πipτ∆´ c
24τ
q

This gives a stationary value at

∆`
c

24τ2
“ 0 ñ τ “ i

c

c

24∆

Plugging this back and interpreting ρ as just an expected number of states at a given level ΩpNq gives

ΩpNq “ ρp∆q « e
2π

b

c∆
6 ñ S “ log ΩpNq « 2π

c

c

6

?
N

I did this just for the left-movers, but taking left and right movers together gives the desired result:

S “ log ΩpNL, NRq « 2π

c

c

6
p
a

NL `
a

NRq

23. As we’ve seen before, a single free boson the partition function is Trpe´βL0q “ η´1 while for a two free
fermions, bosonization give the identical result. For a single free fermion then, at leading order (which
means just retaining the same central charge) this gives η´1{2. For nf copies of this system we simply
exponentiate to obtain the leading piece:

˜

8
ź

n“1

1

1´ e´βn{R

¸
3
2
nf

(98)

This can be directly written using q “ e´β{R ie τ “ iβ{2πR

˜

q1{24

ηpτq

¸
3
2
nf

We need the high temperature limit, for which q1{24 is subleading and can be ignored. Now the η function
satisfies ηpτq “

a

i{τ ηp´1{τq

ηpβn{RÑ 0q “

d

2πR

βn
e
´
p2πq2R

24β

The square-root term is also subleading and we obtain to leading order

logZ “
3

2
nf
p2πq2R

24β
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which is exactly what we want, once we remove units from R, RÑ `sR.

In general, we also have fermionic contributions modifying the numerator in equation (98). Here, again
τ “ iβ{2πR. For a single periodic or antiperiodic fermion we will have traces that gives partition functions
of the form:

TrP re
´βL0{2πRs “

8
ź

n“0

p1` q
β

2πR
nq “

d

q1{24θ2pτq

η

TrAre
´βL0{2πRs “

8
ź

n“0

p1` q
β

2πR
pn`1{2qq “

d

q1{24θ3pτq

η

Taking the infinite temperature limit sets τ Ñ 0, q Ñ8 giving respectively

d

θ4p´1{τq

ηp´1{τq
« e

2πi
48τ “ e

p2πq2R
48β

d

θ3p´1{τq

ηp´1{τq
« e

2πi
48τ “ e

p2πq2R
48β

So in both cases we retain the same contribution as the η´1{2 divergence, with sub-leading terms being
different.
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Chapter 14: The Bulk/Boundary (Holographic) Correspondence

1. The two diagrams are as follows:

2. Let us focus on vacuum diagrams. We will rescale the fundamental field (call it φ) so that the action has a
leading factor going as N . Schematically this is:

N

ˆ

1

λ
TrF 2 ` trpDφq2

˙

By the same argument as for fermions in QED, any fermion worldline will give a closed curve, which we
interpret at giving a boundary of the Riemann surface. Moreover, each fundamental field loop will contain
exactly as many propagators as vertices (except for the trivial disconnected loop).

Each fundamental vertex will contribute N while each propagator will contribute 1
N . The connected fun-

damental loops could be viewed as not contributing N because each fundamental line will join with gauge
boson lines which are already traced over. The fact that the fundamental loops do not contribute a face is
consistent with their interpretation as enclosing boundaries of a Riemann surface. Thus, the introduction of
each fundamental loop is equivalent to including a cycle with no interior, so we will not count the face, and
the vertices and edges don’t contribute either. The counting is then unmodified

ˆ

λ

N

˙E ˆ

N

λ

˙V

NF “ Nχ λE´V

3. I think that the normalization of this operator (which is the same as in MAGOO) is just wrong. I think it
should be Φa “ Trr

ś

iX
ni
i s McGreevy confirms this.

Our single trace operator is a product over the distinct Xi fields

Φa “ Tr
ź

i

Xni
i

Each such insertion has
ř

i ni external legs.
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For Φa distinct, we consider:

S “ N
1

λ
TrrdXidXj ` cijkX

iXjXk ` . . . s `
m
ÿ

a“1

NgapxqΦapxq

Here the ga are taken to be functions of x.

We then compute:

x

m
ź

a“1

Φapxaqy “
1

Nm

δ

δg1px1q
. . .

δ

δgmpxmq
logZrtgaus

We can compute vacuum bubbles for this modified action as before. We now get a new vertex type involving
the single-trace operator Φa. Because it still appears with a coefficient N in the action, we can still apply
the same counting logic to the calculation of logZ. The spherical contribution dominates.

Thus, again the leading contributions to the free energy goes as N2, and we get that the correlator expression
behaves as N2´m. In particular, the three-point function vanishes as 1{N , as said in the text.

4. Again, let’s take the operator without the 1
N2 out front. To add in a double-trace operator requires two

factors of N out front.

We thus add to the action the term:

Snew “
N
ÿ

a“1

N2gapxqΨapxq

We get m-point correlators by differentiating m times by N2ga. With our choice of Snew, logZ still satisfies
the same Euler characteristic rules as before, and has a dominant contribution going as N2. We see that the
two-point function then goes as N´2. Normalizing the two-point function two 1 requires that we look at the
fields Ψ̃a “ NΨa. The three point function then goes as N´1.

Understand the Silverstein paper about the connecting S2s contributing for double twist.

5. We add to the action the following (schematic) terms:

NTrrpDqq2 ` pDq̄q2 ` qq̄ ` qq̄Φ` . . . s

Again the propagators will give 1{N and the vertices will give N , so we can apply the same analysis to get
that planar diagrams dominate. For the two point correlator of qq̄, we must introduce a quark loop into our
worldsheet. The lowest-genus such surface is the disk, with two qq̄s inserted on the boundary. This is genus
1. Differentiating with respect to N twice I get a two-point function going as N´1. To get this to be unity
I must rescale my mesons operator to be

?
Nqq̄. Now the m-point correlation function goes as Nm{2N1´m.

We thus get scaling behavior behavior N1´m{2 for mesons. In particular the 3-point function goes as 1{
?
N .

6. It is important that in this case, for both SOpNq and Spp2Nq, the fundamental representation F is real.
Consequently, the adjoint can be written (up to 1{N corrections) as the antisymmetrized (resp symmetrized)
part of Fb F. In double-line notation we can understand the gluons as being labeled by two “fundamental
lines”. Because there is no difference between F and F, there is no inherent orientation to the strips, and
we can twist to form unoriented surfaces. Thus, the string theory that these would correspond to must
necessarily be non-oriented.

The difference between the orthogonal and symplectic projection will be in the relative sign of a propogator
with intermediate twist between Op2Nq and Spp2Nq. For Op2Nq we have the same sign contribution between
the propagator and the propagator-with-crosscap. For Spp2Nq, we have the opposite sign.

Draw this

We can talk about a large N expansion of diagrams identically. The only additional ingredient is incorporat-
ing points where edges swap. These play roles identical to cross-caps. The diagrams we can draw will have V
vertices with N{λ coefficient, E edges with λ{N coefficient, F faces, with N coefficient, and C “cross-caps”
with N´1 coefficient. Altogether these gives

NV´E`F´CλE´V “ NχλE´V

generalizing the prior discussion.
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7. Take L “ 1. The relationships 14.4.7 become:

`s “ λ´1{4 “ p4πgsNq
´1{4

and

GN “
p2πq7`8s

16π
g2
s “

p2πq7`8s
16π

1

p4π`4sNq
2
“

π4

4N2
.

8. Starting with IIB the gravitational constant is 16πGN “ p2πq
7`8sg

2
s . The volume of S5 is π3L3. We get:

G5 “
8π3`8s
L5

g2
s

Recall in AdS/CFT, the coupling constant λ is the 4th power of L in string units:

L4

`4s
“ 4πgsN

Substituting this gives:

G5 “
8π3L3

p4πNq2
“
πL3

2N2

This is a nice relationship, independent of the string length, and only dependent on the size of AdS and the
number of D-branes.

9. Massless and massive vector fields in AdS

(a) Massless Case Take the gauge Au “ 0. Let Aµpu, ~xq “ u∆´1Aµp~xq. Note that this way Aµdx
µ has

scaling dimension u∆. The equations of motion for the Maxwell theory give:

0 “ BM p
?
´gFMN q “ BM p

?
´ggMAgNBBrAABsq “ Bu

ˆ

1

up`2
u4Bupu

∆´1Aµp~xqq

˙

` . . .

where . . . are terms with higher powers of z. Altogether this is:

p∆´ pqp∆´ 1qpAµp~xq “ 0.

This implies that either ∆ “ 1 or ∆ “ p.

Consequently this gives a scaling dimension of d´1 to Jµ, exactly what we want for a conserved current.

(b) Massive case Now again we have:

0 “ BM p
?
´gFMN q ´

?
´g

m2

L2
AN

“ BM p
?
´ggMAgNBBrAABsq ´

?
´g

m2

L2
AM

“ Lp´2Bz

ˆ

1

up`2
u4Bupu

∆´1AM p~xqq

˙

´ Lpm2z∆´p´1AM ` . . .

Then this gives a new quadratic equation for ∆:

0 “ p∆´ 1qp∆´ pq ´ L2m2 ñ ∆ “
p` 1

2
˘

c

pp´ 1q2

4
`m2L2

We see that the massive field picks up an Az component which cannot be gauged away, as the mass
term is not gauge invariant. Because gauge invariance is lost, we see that the corresponding operator
in the CFT does not have dimension d´ 1 anymore and no longer gives rise to a conserved current.
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10. Taking Aµ Ñ Aµ ` Bµε gives:

W rAµs ÑW rAµ ` Bµεs “ xe
ş

ddx JµAµ´
ş

ddx εBµJµy “W rAµs

here Aµ is the source for the boundary Jµ current in the CFT. So the partition function is invariant under
any local gauge transformation of Aµ. This gives us that a global Up1q in the CFT corresponds to a gauged
Up1q on the boundary.

11. We couple our CFT stress tensor Tµν to an external field hµν . Note that under any shift hµν ` Bµεν ` Bνεµ
we get:

W rhµνs ÑW rhµν ` Bµεν ` Bνεµs “ xe
ş

ddxTµνhµν´2
ş

ddx ενBµTµν y “W rhµνs

Thus, the translation invariance given by BµT
µν “ 0 of the CFTd has given diffeomorphism invariance in the

bulk. This is gravity.

12. In global coordinates the metric is

ds2 “
L2

cos2 θ

`

´dτ2 ` dθ2 ` sin2 θdΩ2
3

˘

Let’s find u by integrating:
ż θ1

0

dθ

cos θ
“

ż u1

0

2du

p1´ u2q
ñ u “ tan θ

2

Consequently,
4u2

p1´ u2q2
“ tan2 θ “

sin2 θ

cos2 θ

so we get agreement for the du, dΩ3 terms. Finally

p1` u2q2

p1´ u2q2
“

1

cos2 θ

and we get agreement for the dτ term, without having to rescale τ . Since 0 ă θ ă π{2 we have 0 ă u ă 1 as
required.

13. Take dτ “ 0. First, take the points to be on opposite sides of the AdS cylinder. We get a distance equal to
ż 1`ε

1´ε

2du

1´ u2
“ 2 log

ˆ

2´ ε

ε

˙

« 2 log

ˆ

2

ε

˙

Given that AdS is a homogenous space, we can use symmetry arguments from group theory to get the
general formula, replacing 2 with |x1 ´ x2|. For finding the geodesic distance through direct methods, a
better coordinate system would be global coordinates. In AdS3 this looks like:

X´1 “ L cosh ρ cosT

X0 “ L cosh ρ sinT

X1 “ L sinh ρ cos θ

X2 “ L sinh ρ sin θ

this generalizes directly to AdSp`2. The argument will be the same there. Note

ds2 “ L2p´ cosh2 ρdT 2 ` dρ2 ` sinh2 ρdθ2q.

Now take dT “ 0. The Lagrangian takes the form:

L “ L

b

9ρ2 ` sinh2 ρ 9θ2

Take τ “ ρ so that the EOM for θ quickly gives:

θ1 “
c

sinh ρ
a

sinh2 ρ´ c2

Take c “ sinh ρ0. In AdS this corresponds to the minimum distance ρ that the geodesic will approach, since
there we have θ1 “ 8 ñ dρ{dθ “ 0.
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To get ∆θ, we integrate this, giving

∆θ “ 2 arctan
cosh ρ

?
2 sinh ρ0

?
cosh 2ρ´ cosh 2ρ0

` c0

The factor of 2 comes from the fact that we need to do the ρ integration twice to get the full geodesic curve.
Now we must take ρÑ8 to approach the boundary of AdS. In this case, the equation for ∆θ simplifies to:

tan
∆θ ´ c

2
“ sinh ρ0

Taking θ Ñ 0 (corresponding to ρ0 Ñ8) shows that c “ ´π{2. This gives

tan
∆θ

2
“

1

sinh ρ0

The total length of the trajectory is:

L

ż

dρ

b

1` sinh2 ρ pθ1pρqq2 “ L

ż

dρ
sinh ρ

a

sinh2 ρ´ sinh2 ρ0

“ 2L log

¨

˝

cosh ρf
cosh ρ0

`

d

sinh2 ρf ´ sinh2 ρ0

cosh2 ρ0

˛

‚

Take ρf Ñ8. The leading behavior of this goes as

2L log
2eρf

cosh ρ0
“ 2L log

ˆ

2eρf sin
θ

2

˙

Now note that for x, y coordinates in Rd`2 lying on the unit Sd`1, we have

|x´ y|2 “ pcos2 θ ´ 1q2 ` sin2 θ “ 4 sin2 θ

2
ñ |x´ y| “ 2 sin

θ

2
.

Finally, sinh ρf “ tan θf . This gives θf “ π{2´ ε, with ε “ e´ρf . Then ũ “ tan
θf
2 « 1´ ε. So indeed we get

the final entropy formula:
A “ 2L logp|x1 ´ x2|{εq

14. The volume element goes as

16L4

ż 1´ε

0

u3

p1´ u2q4
dudΩ3 «

16L4

6ε3
2π2 “

16π2L4

3ε3

The ε3 scaling valid in the small ε limit is exactly area scaling.

15. Because of a horizon, particles approaching this horizon will be arbitrarily redshifted. This implies that
the frequencies reaching the boundary can be shifted to arbitrarily low values, giving a continuum of states
above the vacuum state with no mass gap.
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16. Yes (Maldacena already does this in his seminal paper). Take the branes to be separated by a distance r.
The supergravity solution will look like

ds2 “
1
?
H
dx2

‖ `
?
Hdx2

K, H “ 1`
4πgN`4s
r4

and take `s, r Ñ 0 while holding U “ r{`2s fixed (we’ve done this type of near-horizon analysis in chapter
11). This keeps the masses of the stretched strings fixed even as we bring the branes together. If all the
branes are coincident, the coordinate r in the supergravity solution gives an equivalent coordinate U “ r{`2s,
giving the metric

ds2 “ `2s

„

U2

?
4πgN

dx2
‖ `

a

4πgN
dU2

U2
`
a

4πgNdΩ2
5



Now, pulling M of the N D3 branes off by a distance W gives a supergravity solution:

ds2 “ `2s

»

–

U2

?
4πg

b

N ´M ` MU4

|U´W |4

dx2
‖ `

a

4πg
dU2

U2

d

N ´M `
MU4

|U ´W |4
`
a

4πgNdΩ2
5

fi

fl

As long as U " W we still effectively see AdS5 ˆ S5. For smaller values of U , this splits into two separated
AdS backgrounds, with two different near-horizon limits. We can trust these limits when both M and N are
large, but splitting off single branes gives geometries with singular curvatures that we cannot trust.

But since finite U already means that we have taken the near-horizon limit, the entire moduli space R6N{SN
is visible at that level.

17. The eigenvalues of the Laplacian on a 5-sphere of radius L are in correspondence with the quadratic casimir
of SOp6q for the p0, k, 0q representations, giving:

kpk ` 5q

L2

For a proof of this, consider a homogenous harmonic function of degree k. Any such homogenous harmonic
function takes the form f “ |x|k

ř

mi
Y k
mipγq. Look then at the Laplacian

f “ ´∇2p|x|´kfq “ kpk ` 6´ 2q|x|´pk`2qf ` x´s��
�∇2f

Thus the spherical harmonics on a unit S5 have eigenvalue kpk`4q. Rescaling the sphere will contravariantly
rescale these eigenvalues by L´2 as required.

18. The wave equation for a massive scalar field is quickly seen to be:

∇2φ “
u2

L2

”

B2
u ´

p

u
Bu ´ B

2
t ` B ¨ B

ı

φ “ m2φ

Upon Fourier transforming

φpu, xq “

ż

dp`1q

p2πqp`1
φpu, qqeiq¨x, q ¨ x “ ´q0t` ~q ¨ ~x

we get
„

B2
u ´

p

u
Bu ´ q

2 ` B ¨ B ´
m2L2

u2



φpu, qq “ 0

solving this in Mathematica directly yields two solutions

φ˘pu, qq “ Au
1`p

2 Jνpiquq `Bu
1`p

2 Yνpiquq, ν “
1

2

a

pp` 1q2 ` 4m2L2

We can rewrite this in terms of modified Bessel functions as:

Au
1`p

2 Iνpquq `Bu
1`p

2 Kνpiquq
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These two solutions have the desired scaling dimensions of ∆˘ respectively (K will have to be defined
differently from how it is defined in mathematica and wikipedia).

Now WLOG take x1 “ 0. Rotating to Euclidean space, it is a quick check to see that the bulk-to-boundary
propagator as written in L.51 does indeed satisfy the massive Laplace equation precisely when ∆p∆´p´1q “
m2L2.

Next, we see that

ż

dp`1x fpu, x; 0q “

ż

dp`1x
u∆

pu2 ` x2q∆
“ up`1´∆

ż

dp`1y
1

p1` ζ2q∆
“ up`1´∆Ωp

ż 8

0

ζpdζ

p1` ζ2q∆

This last integral can easily be evaluated using Γ-functions. The final result is then:

up`1´∆Ωp
Γp1`p

2 qΓp∆´
1`p

2 q

2Γp∆q
“ up`1´∆π

p`1
2

Γp∆´
1`p

2 q

Γp∆q

Thus, the normalized bulk-to-boundary propagator is:

Γp∆q

π
p`1

2 Γp∆´
1`p

2 q

u∆

pu2 ` |x´ x1|2q∆
.

In the above, we pick ∆ “ ∆`. By convolving a boundary configurations φ0pxq with this propagator, we
obtain a field φ in AdS satisfying the massive Laplace equation.

φpu, xq “
Γp∆q

π
p`1

2 Γp∆´
1`p

2 q

ż

dp`1x1
u∆

pu2 ` |x´ x1|2q∆
φ0px

1q

This is clear. It is also quick to see that as u Ñ 0 the leading behavior comes from the bulk-to-boundary
propagator going as up`1´∆φ0pxq “ u∆´φ0pxq. This is exactly proportional to the leading solution, which
asymptotes with the lower power ∆´.

It is worth noting that there is another very clean way to obtain this propagator, as originally written in
Witten’s paper. Take the delta function source to be at u “ 8 and let’s look for a solution of the massive
wave equation. Because the source is at 8 the solution has full symmetry under translations in x, and so
can only depend on u. The equations of motion are:

Buu
´p´2u2Buφpuq ´m

2L2φ “ 0 ñ φpuq “ u∆, ∆p∆´ p´ 1q “ m2L2

this gives the correct ∆˘ as required. To relate this to our solution for a δ function at 0 we must do an
inversion, which consists of taking u, xÑ u,x

u2`|x|2
yielding our desired propagator.

19. The extrinsic curvature K is defined as

Kµν “
1

2
p∇µnν `∇νnµq, K “ hµνKµν

where nµ is the normal vector and h is the pullback of the metric g to BM . When the coordinate system is
hypersurface-orthogonal, then this simplifies nicely to

Kµν “
1

2
nρBρGµν
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For the poincare patch, we have the normal vector ´ 1?
g
uu
Bu “ ´

u
LBu. Note the minus sign, because u Ñ 0

gives the boundary, which is the opposite from the outward normal orientation. The contraction gives:

Kµν “
1

2
pp´q2

2

L
hµνq ñ K “

p` 1

L

as required.

20. This problem is done for p “ 3, but I will solve it for general p. The subleading order equation of motion
for φ of the form u∆pφ0 ` u

2φ2q is

u∆∆p∆´ p´ 1qφ0 ´ u
∆m2L2φ0 ` u

∆`2lφ0 ` u
∆`2p∆` 2qp∆´ p` 1qφ2 ` u

∆´2m2L2φ2 “ 0

At leading u∆ order we get the quadratic constraint on ∆, giving ∆˘ as solutions. Solving for φ2 at subleading
order gives:

φ2 “ ´
lφ0

p∆` 2qp∆´ p` 1q `m2L2

Plugging in for ∆ “ ∆´ yields:

φ2 “ ´
lφ0

4∆´ ` 2´ 2p

This is consistent with what is written when p “ 3. Taking now ∆ Ñ p` 1´∆ gives

A2 “
lφ0

4∆´ ´ 6´ 2p

Again, taking p “ 3 gives the correct 4p∆´ ´ 3q denominator.

21. Let’s repeat the argument for clarity. We stick to p ` 1 “ d “ 4. We have a bulk-to-boundary propagator
given by:

K∆pu, x;x1q “
1

C3

u∆

pu2 ` |x´ x1|2q∆
, C3 “ π2 Γp∆´ 2q

Γp∆q

At this stage we take ∆ to be arbitrarily. We do not identify it with ∆˘. In the small u-limit the propagator
looks like:

u4´∆pδpx´ x1q `Opu2qq ` u∆

ˆ

C´1
3

|x1 ´ x12|
2
`Opu2q

˙

A general field φ0pxq on the boundary sources a the bulk field φpu, xq to take the form:

φpu, xq “

ż

dx1Kpu, x;x1qφ0px
1q

“ u4´∆pφ0pxq ` u
2φ2pxq ` . . . q ` u

∆

ˆ

C´1
3

ż

d4x1
φ0px

1q

|x´ x1|2∆
` u2A2pxq ` . . .

˙ (99)

Here we have written the additional terms that we obtained in the prior exercise. This gives for the on-shell
action at leading order:

Son-shell “ ´
M3
pl

2

ż

d4x
?
gguuφBuφ

ˇ

ˇ

ˇ

u“ε

“ ´
pMplLq

3

2

ż

d4x1d
4x2φpx1qφpx2q

ż

d4x
Kpu, x1;xqBuKpu, x2;xq

u3

ˇ

ˇ

ˇ

u“ε

This last integral is given by:

p4´∆qu4´2∆δ4px1 ´ x2q `
4C´1

3

|x1 ´ x2|
`

∆

C2
3

u2∆´4

ż

d4x
1

|x´ x1|
2∆|x´ x2|

2∆
` . . .

When 1 ă ∆ ă 3 the remaining terms vanish. The third term doesn’t though, at least not for
1 ă ∆ ă 2. Different kind of counterterm needed?
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Now let’s take 3 ă ∆ ă 4. the third term and all of its higher-order contributions will vanish. on the other
hand, not only will the first term require a counter-term going as φ2, but so will the u6´2∆ term. From
Equation (99) we see that this must go as

u4´∆pδpx´ x1q ´
u2

4p3´∆q
lxδpx´ x

1qq

Then we get divergent terms from:
ż

d4xu´3 u4´∆

ˆ

δpx´ x1q ´
u2

4p3´∆q
lxδpx´ x1q

˙

Bu

„

u4´∆

ˆ

δpx´ x2q ´
u2

4p3´∆q
lxδpx´ x2q

˙

“ p4´∆qu4´2∆δ4px1 ´ x2q ` p4´∆q
u6´2∆

4p∆´ 3q
lx1δ

4px1 ´ x2q ` p6´∆q
u6´2∆

4p∆´ 3q
lx1δ

4px1 ´ x2q

“ p4´∆qu4´2∆δ4px1 ´ x2q ` u
6´2∆ 10´ 2∆

4p∆´ 3q
lx1δ

4px1 ´ x2q

This altogether contributes:

´
pMplLq

3

2
ε6´2∆ 10´ 2∆

4p∆´ 3q

ż

dxφ0lφ0

In the original action, expanding φ to quadratic order in ε gives

φ “ ε4´∆φ0`
ε2`4´∆

4p∆´ 3q
lφ0 ñ

pMLq∆´
2

φ2 “
pMLq3p4´∆q

2
ε2p4´∆qφ2

0`ε
2p4´∆q`2pMLq3p4´∆q

φ0lφ0

4p∆´ 3q
`. . .

This shows that the φ2 term contributes a φ0lφ0 term as well.

We thus need a counterterm action given by:

Sct “

ż

?
h

˜

M3∆´

2L
φ2 `

M3
plL

2

1

4p∆´ 3q
φlφ

¸

Here, now, l is taken with respect to the boundary metric hε, meaning it absorbs two factors of ε{L. This
is correct :)

22. Our correlator is:

xφpkqφpqqy “
B

BλkBλq
Son-shellpφ0pxq “ λke

ikx ` λqe
iqxq

ˇ

ˇ

ˇ

λk,λq“0

We take the on-shell action and get

Son-shell pφq “ ´
M3

2

ż

d4x
?
gguuφBuφ

“ ´
M3

2

ż

d4kd4qλkλq�δ
4pk ` qqu´3φpu, pqBuφpu, qq

ˇ

ˇ

ˇ

u“ε

Using the form L.50 of the bulk-to-boundary propagator we can solve this:
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Factor of 2 off from Gubser, Klebanov, Polyakov, but I don’t think this problem asks for the
coefficients, rather just the form of the correlator.

There is always a term going as logppε{2q. All other terms are positive polynomials in p and so will contribute
contact terms that we will need to supply counterterms to renormalize. There is an easy way to see this.
A term going as p0 simply contributes a δpxq in position space. Even polynomials in p therefore contribute
terms of the form lnδpxq. All of these need to be regulated and subtracted.

We thus recognize the pattern and get

xφpkqφpqqy “ ´M2
�δ

4pk ` qq log

ˆ

p2ε2

2

˙

sinpπνq

Γpνq2

´p

2

¯2ν
“ ´

M2

2
p2∆´ 4q

Γp3´∆q

Γp∆´ 1q
�δ

4pp` qq
´p

2

¯2∆´4

Up to a factor of 2 this is consistent with 3.40 of MAGOO. My argument at the moment works only for
integral ν, but based off of remarks that I have read, this is what should be expected.

Integrating this is not hard if you know a trick:

2π2

p2πq4

ż 8

0
dpp2ν`3 e

ip|x|

p|x|
log pÑ

1

8π2

ż 8

0
dpp2ν`εeipx

And look at the Opεq part of this expansion.

Altogether this gives:

xOpxqOpyqy « 1

|x´ y|2∆

Where I am not sure about the constant, but am sure about the x-scaling.

23. In this problem I will freely exchange p`1 and d whenever suitable. The dual current is constrained to have
scaling dimension p. Upon choosing a gauge:

Aupu, xq “ 0, ∇µAµ “ 0

We therefore have that A satisfies the differential equation:

0 “ ∇MFMN “ Bu

ˆ

1

up`2
u4u´1BuAν

˙

`
1

up`2
u4u´1BµBrµAνs

You will notice that there is an extra factor of u accompanying A in this PDE. This should be viewed as
turning µ into a Vielbein index, so that dxµ has trivial scaling properties.

The full solution Aµpu, xq is then given by:

up{2
ż

dp`1p

p2πqp`1
aµppqe

ipxKp{2ppuq, pµaµppq “ 0.

It will be nicer to write the bulk-to-boundary propagator in position space. For this, I’ll follow Witten’s
argument by putting the δ function source at u “ 8. This simplifies things since the solution must be
independent of the x variables. Take the solution A “ fpuqdxi. This gives the equations of motion for a free
field:

d ‹ dA “ Bu
1

up`2
u4f 1puq “ 0 ñ fpuq “ u∆, ∆ “ d´ 2

Doing the inversion again we have:

ud´2dxi Ñ
ud´2

pu2 ` |x|2qd´2
d

ˆ

xi

u2 ` |x|2

˙

“
ud´2

pu2 ` |x|2qd
pu2 ´ x2

i qdx
i ´

2xiu
d´1

pu2 ` |x|2qd´2
du

adding the exact term:

´
1

d´ 1
d

«

xi
u

ˆ

u

u2 ` |x|2

˙d´1
ff
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and rescaling by an overall factor of d´1
d´2 yields:

Gµipu, x; 0q “
ud´2

pu2 ` |x|2qd´1

ˆ

dxi ´ xi
du

u

˙

(100)

This does not satisfy Lorenz gauge, but as expected can be brought to satisfy it by adding appropriate pure
gauge terms

Gµipu, x;x1q Ñ Gµipu, x;x1q ` BµΛpu, x;x1q

Freedman et al have a slightly different propagator, which can be obtained from this one by gauge transform.
It takes the form:

Gµi “
Γpdq

2π
d
2 Γpd2q

ud´2

pu2 ` |x|2qd´1
Iµipxq “

Γpdq

2π
d
2 Γpd2q

ud´2

pu2 ` |x|2qd´1

´

δµi ´ 2
xµxi
x2

¯

This propagator can be seen to naturally come from the embedding space formalism.

Upon integration by parts, the action leads to only a boundary term:

1

4g2

ż

FµνF
µν Ñ

1

2g2

ż

A^ ‹F

The nonvanishing components will come from the parts of ‹F that do not involve a du. Consequently, we
only need to calculate the du parts of F . Said equivalently, the on-shell action is:

Son´shell “
1

2g2

ż

dx1dx2Jipx1qJjpx2q

ż

duddz

ud`1
Gνiu

4Br0Gνsj (101)

Computing this is straightforward, using (100):

BrµGνsi “ pd´ 2q
ud´3

pu2 ` |x|2qd´1
du^ dxi ´

ud´3

pu2 ` |x|2qd´1
dxi ^ du

´ 2pd´ 1q
ud´1

pu2 ` |x|2qd
du^ dxi ` 2pd´ 1q

ud´3xixj

pu2 ` |x|2qd
dxj ^ du

“ pd´ 1q
ud´3

pu2 ` |x|2qd´1
du^ dxi ´ 2pd´ 1q

ud´1

pu2 ` |x|2qd
du^ dxi ´ 2pd´ 1q

ud´3xixj

pu2 ` |x|2qd
du^ dxj

(102)
For the uÑ 0 limit, recall the scalar propagator for a field with dimension d´ 1 would take the form:

Γpd´ 1q

π
d
2 Γpd2 ´ 1q

ud´1

pu2 ` |x´ x1|2qd´1
“

Γpdq

2π
d
2 Γpd2q

ud´1

pu2 ` |x´ x1|2qd´1
Ñ uδpx´x1qdxi`ud´1 Γpdq

2π
d
2 Γpd2q

1

|x´ x1|2d´2
dxi

So that Gµipu, x;x1q will (up to a constant) approach δpx ´ x1qdxi in the u Ñ 0 limit. On the other hand,
(102) will approach (up to a constant):

Br0Gisj “ ud´3 1

|x12|
2d´2

˜

δij ´ 2
xi12x

j
12

|x12|
2

¸

The leading ud´3 cancels exactly against the metric-dependent terms in the integral (101). The final result
is proportional to:

1

g2

ż

dx1dx2 Jipx1qJjpx2q

˜

δij

|x12|
2d´2

´ 2
xi12x

j
12

|x12|
2d

¸

Giving a two-point correlator (after rescaling):

xJipx1qJjpx2qy “
1

|x12|
2d´2

Iijpx12q, Iijpxq “ δij ´ 2x̂ix̂j
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24. I think this is pretty direct. If a field φ0 diverges as ε∆ in the IR, it must couple with an operator O of
scaling dimension d´∆ in order for the interaction term

ş

φ0O to be conformally invariant. This situation
is generic

What more does this question ask for?

25. In what follows, there are many variables and the story becomes rapidly confusing if one does not understand
what everything stands for. I will review this. My conventions will mostly by those of Kiritsis, although
occasionally I will adopt notation from de Haro, Skenderis, and Solodukin arXiv:000223

Symbol Definition

gpu, xq Full AdS5 Metric
Rµν Ricci Curvature of g

gp2nq
The coefficient of u2n in the expansion of g about u “ 0.

Note that gp4q is undetermined by g0. Its trace and
divergence is however determined.

hp4q The coefficient of u4 log u2

ρ “ u2 Alternative coordinate, usually easier to work with.

Rij , R Ricci curvatures of g
p0q
ij only

tij Undetermined integration constant in gp4q

γpxq “ L2

ε2
gijpε, xq Induced metric on the renormalization hypersurface u “ ε

xTijy Stress tensor of varying renormalized action w.r.t. gp0q

Tijrγs Stress tensor w.r.t. metric on renormalized hypersurface

TA
ij Stress tensor of varying anomaly A w.r.t. gp0q.

The theorem of Fefferman and Graham states that a general asymptotically-AdS metric can be written as

ds2

L2
“
du2

u2
`
gij
u2
dxidxj , gijpu

2, xq “ gp0qpxq ` u2gp2qqpxq ` . . .

Einstein’s equations in this setting are:

Rµν ´
1

2
gµνR “

6

L2
gµν

It will be rather annoying to derive how this looks like in terms of g and its derivatives. Thankfully,
Henningston and Skenderis already have this formula in equation 6 of their paper, and I am happy to quote
it directly. Take ρ “ u2. Denote differentiation with respect to ρ by g1. Then we get

ρr2g2 ´ 2g1g´1g1 ` Trpg1qg1sij `Rij ´ pd´ 2qg1ij ´ Trpg1qgij “ 0 (103)

Here all traces mean TrpXq “ gabXab. At leading order in ρ, the first term is set to zero and we get for d “ 4
at u “ 0:

g
p2q
ij `

1

2
gijg

abg
p2q
ab “

1

2
Rij

Taking the ansatz:

g
p2q
ij “ αRij ` βRgij ñ gabg1ab “ pα` 4βqRñ β `

1

2
pα` 4βq “ 0 ñ β “ ´

1

6
α

We see that to get the Ricci tensor to match we need α “ 1{2. Thus we get the solution

g
p2q
ij “

1

2
Rij ´

1

12
Rgij

as required. To next order, we have:

�
��4g
p4q
ij ` 6h

p4q
ij ´ 2pgp2qg´1gp2qqij `���

���Trpgp2qqg
p2q
ij

`R
p2q
ij ´�

��4g
p4q
ij ´ 2h

p4q
ij ´ 2Trrgp4qsgij ´ Trrhp4qsgij ´���

���Trrgp2qsg
p2q
ij ` Trrgp2qgp2qsgij “ 0

ñ ´4ph
p4q
ij ` gij

1

4
Trhp4qq “ ´2gp2qg´1g

p2q
ij ´ 2Trrgp4qsg

p0q
ij `R

p2q
ij ` Trrgp2qgp2qsgij

(104)
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Note that gp4q has canceled. This is generic. In d dimensions gpdq will cancel. This is a reflection of the fact
that there are generally two solutions to the Einstein equations. We cannot determine gp4q uniquely without
an additional constraint. We can still trace over both sides and get a relation between traces. Alternatively,
this comes from the Rrr part of the Einstein equations:

Trrgp4qs “
1

4
Trrgp2qgp2qs.

The Einstein equations for Riρ give the further constraint that

0 “ ∇ipgabg1abq ´ gab∇bg1ia ñ ∇iTrg1 “ ∇jg1ij

I’m missing how to actually get gp4q in order to get agreement with Kiritsis and 0002230.
Thankfully, explicit calculation of gp4q is not necessary for anomaly analysis.

This gives the final desired result:

g
p4q
ij “

1

8
g
p0q
ij

”

pTrgp2qq2 ´ Trrpgp2qq2s
ı

`
1

2
pgp2qq2ij ´

1

4
g
p2q
ij Trpgp2qq ` tij

Consistency of divergence and trace requires:

∇itij “ 0, tii “ ´
1

4

”

pTrgp2qq2 ´ Trrpgp2qq2s
ı

Now, revisiting (104), the trace conditions Trgp4q “ Trrpgp2qq2s and Trhp4q “ 0 simplify it to:

h
p4q
ij “

1

2
pgp2qq2 `

1

8
Trrpgp2qq2sg

p0q
ij ´

1

4
R
p2q
ij

“
1

2
pgp2qq2 `

1

8
Trrpgp2qq2sg

p0q
ij `

1

8
p∇k∇igp2qjk `∇

k∇jgp2qik ´∇
2gp2q ´∇i∇jTrgp2qq

where we have used identities for the variation of the Ricci tensor from appendix C.2. This can be written
as:

hp4q “
1

8
RijklR

kl `
1

48
∇i∇jR´

1

12
∇2Rij ´

1

24
RRij `

1

32

ˆ

1

3
∇2R`

1

3
R2 ´RklR

kl

˙

g
p0q
ij

“ ´
1

a

g0

δ

δpgp0qqij

ˆ

´
1

8

„

RklR
kl ´

1

3
R2

˙

As a bonus, for d “ 2, Equation (103) gives:

Rij “ Trpg´1g1qgij ñ
1

2
R “ Trpg´1g1q

Together with ∇igij “ ∇igijTrg1 we get

g
p2q
ij “

1

2
pRg

p0q
ij ` tijq

with tij divergence-free and tii “ ´R We then get:

〈Tij〉 “
L

16πGN
“ ´

c

24π
R

This is the 2D Weyl anomaly.

26. Take:
L3

2πG5

ż

d4x

ˆ
ż

ε

du

u5

a

det gpu, xq ´
1

u4
p1´ uBuq

a

gpu, xq|u“ε

˙

(105)
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It will be useful to recall:

a

´detpg ` hq “ exp
1

2
logp´detpg ` hqq

“
a

deg g exp

„

1

2
tr logp1` g´1hq



“
a

deg g exp

„

1

2
trrg´1h´

1

2
pg´1hq2s



“
a

deg g

ˆ

1`
1

2
trpg´1hq ´

1

4
trrpg´1hq2s `

1

8
trrg´1hs2

˙

This implies

a

gpu, xq “

b

gp0q
ˆ

1`
1

2
u2Trrgp2qs `

1

2
u4Trrgp4qs `

���
���

���1

2
u4 log u2Trrhp4qs `

1

8
u4Trrgp2qs2 ´

1

4
u4Trrpgp2qq2s

˙

Again, indices are raised and lowered with gp0q.

At zeroth order we get:
L3

8πG5

1

ε4
´

L3

2πG5ε4
“ ´6

L3

16πG5

1

ε4
ñ A0 “ ´6

At second order we get:

L3

4πG5

1

2

1

ε2
Trrgp2qs ´

L3

2πG5
p1´

1

2
q
1

2
u2Trrgp2qs “ 0 ñ A2 “ 0

At fourth order only the first term of (105) contributes and we get:

´
L3

4πG5
log ε2

´1

2
Trrgp4qs`

1

8
Trrg2s2 ´

1

4
Trrpgp2qq2s

¯

“ ´
L3

16πG5
log ε2

1

2

`

Trrg2s2 ´ Trrpg2q2s
˘

ñ A4 “
1

2

`

Trrg2s2 ´ Trrpg2q2s
˘

“ A

27. In order to get the correct counterterms, we need to solve for Trgp2q,Trrpgp2qq2s in terms of the induced
metric on the renormalization surface, that is at u “ ε. I will call this γ (Kiritsis calls it h) as as not to be

confused with hp4q!. We have γ “ L2

ε2
gij . This gives:

b

gp0q “
ε4

L4

?
γ

ˆ

1´
1

2

ε2

L2
Trgp2q `

1

8

ε4

L4

´

´2Trrpgp2qq2s ` Trrgp2qs2
¯

˙

Next, recall:

g
p2q
ij “

1

2
Rij ´

1

12
Rg

p0q
ij

where Rij is taken w.r.t. gp0q This gives:

Trgp2q “
1

6
Rrgp0qs “

1

6

«

Rrgijs ´ g
p2q
ij

δRrgp0qs

δg
p0q
ij

ff

“
1

6

L2

ε2

ˆ

Rrγs `
1

2

„

RijrγsRijrγs ´
1

6
Rrγs2

˙

Finally, to leading order:

Trrpgp2qq2s “
L4

ε4
1

2
pRijrγs ´

1

6
Rrγs γijq

1

2
pRijrγs ´

1

6
Rrγs γijq “

L4

ε4
1

4
pRijrγsR

ijrγs ´
2

9
Rrγs2q

As a check, we see (up to quadratic order in the curvature):

A4 “
1

2
rTrrgp2qs2´Trrpgp2qq2ss “

L4

ε4
1

2

ˆ

1

36
Rrγs2 ´

1

4
pRijrγsR

ijrγs ´
2

9
Rrγs2q

˙

“ ´
L4

ε4
1

8

ˆ

RijrγsR
ijrγs ´

1

3
Rrγs2

˙
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All together we get

´
L3

16πG5

ż

d4x

b

gp0q
„

´
6

ε4
´ log ε2A4



“
L3

16πG5

ż

d4x
?
γ

„

6`
6

2

ε2

L2
Trgp2q ` Trrgp2qs2 ` log ε2A4 ` . . .



“
1

16πG5

ż

d4x
?
γ

„

6

L
´
L

2
Rrγs ´

L3

8
log ε2

ˆ

RijrγsR
ijrγs ´

1

3
Rrγs2

˙

Where the . . . denotes “up to finite terms”. I think Kiritsis has a mistake and it should be ´L
2R not

`. 0002230 confirms this.

28. Let’s review first. The stress tensor comes from varying the renormalized action by the initial source field
gp0q. This is given by:

xTijy “ lim
εÑ0

2
a

gijpε, xq

δ

δgijpε, xq
Srenrγs “

L2

ε2
Tijrγs

Thus, we can look at variations with respect to the induced metric γ at u “ ε and take ε Ñ 0 at the very
end.

There are two variations to consider. The first is the variation of the on-shell effective action. Generalizing
the argument giving 14.8.35 to a u-dependent metric, we get:

T sugraij “ ´
1

8πG5
pKij ´Kγijq “ ´

L3

8πG5

ˆ

´Bεgijpε, xq ` gijpε, xqTrrg´1pε, xqBεgpε, xqs ´
3

ε2
gijpε, xq

˙

Varying the counterterm action with respect to γ gives directly:

T cij “ ´
1

8πG5

„

3

L
γij ´

L

2

ˆ

Rij ´
1

2
Rγij

˙

´
L3

2
log ε2TA

ij



The next step is to write these in terms of the gp2nq, hp4q.

It is useful to note:

Rijrγs “ Rijrg0s `
1

4

ε2

L2

ˆ

RikR
k
j ´ 2RikjlR

kl ´
1

3
∇i∇jR`∇2Rij ´

1

6
∇2Rg

p0q
ij

˙

.

ñ Rrγs “ Rrg0s ´
1

4

ε2

L2
RijR

ij

where the curvatures on the RHS are those of the metric gp0q. Now we get:

xTijy “
L2

ε2
rT sugraij ` T cijs

“ ´
L3

8πG5

«

L2

ε2
p´g

p2q
ij ` g

p0qTrg
p2q
ij `

1

2
Rij ´

1

4
Rg

p0q
ij q ´ log ε2

´

2hp4q ` TA
ij

¯

´ 2gp4q ´ hp4q ´ g
p2q
ij Trgp2q ´

1

2
g
p0q
ij Trg2

´
L

8 �
�
�ε2

L2

ˆ

2RikR
k
j ´ 2RikjlR

kl ´
1

3
∇i∇jR`∇2Rij ´

1

6
∇2Rg

p0q
ij

˙

´
L

4
Rg

p2q
ij `

L

8
g
p0q
ij RijR

ij ´
1

6
∇2Rg

p0q
ij

ff

We see that the L2

ε2
and log ε2 terms vanish by 14.8.39, 14.8.43. The curvature terms combine to give yet

another two copies of ´hp4qqij , and the remaining terms cancel everything but tij from the g
p4q
ij to give:

xTijy “
L3

8πG5
r2tij ` 3h

p4q
ij s
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29. In embedding space, it is easy, using L.10 to calculate:

2σ :“ ηMN pξ ´ ξ
1qM pξ ´ ξ1qN “ ´p∆X0q2 ` p∆Xp`1q2 ` p∆Xiq2

“ ´

´

u´u1

2 ` L2`x2

2u ´ L2`x12

2u1

¯2
`

´

u´u1

2 ´ L2`x2

2u ` L2`x12

2u1

¯2
`

´

Lx
2u ´

Lx1

2u1

¯2

“ ´pu´ u1q

ˆ

L2

2u
´
L2

2u1

˙

´

ˆ

L2

u
´
L2

u1

˙

˜

x2

u
´
x12

u1

¸

` L2

ˆ

x

u
´
x1

u1

˙2

“ L2 pu´ u
1q2 ` px´ x1q2

uu1

Then η2 “ 1` σ. Now let us calculate:

´iGF “ x0|Tφpxqφpx
1q|0y “ Θpx´ x1q

ÿ

n,`

φ∆`n`pxqφ∆`n`px
1q ` pxØ x1q.

The modes of a scalar field are given by:

φ∆,`,n “ N∆,n,` sin` θ cos∆˘ θ 2F1pa, b, c; sin2 θqY`pΩpqpΩpq,

a “
1

2
p``∆˘ ´ ωLq, b “

1

2
p``∆˘ ` ωLq, c “ ``

p` 1

2
, ωL “ ∆˘ ` `` 2n

Because of the homogeneity of AdS, pick the AdS coordinate origin at x1. Then φ∆`,`,npx
1q “ 0 for ` ‰ 0.

This reduces the sum to:

Γpp`1
2 q

2π
p`1

2

e´i∆`
8
ÿ

n“0

N2
∆,n,`φ∆,0,npxqφ∆,0,np0q “

e´i∆t cos∆ θ

2π
p`1

2 Lp

8
ÿ

n“0

p
p`1

2 qnΓp∆` nq

n!Γp∆` n` p´1
2 q

2F1

ˆ

´n ∆` n
1
2pp` 1q

; sin2 θ

˙

e´2in|t|

I have started using (ascending) Pochammer symbols. Writing this in terms of a Jacobi poylnomial:

8
ÿ

n“0

Γp∆` nq

Γp∆` n` p´1
2 q

P
p´1

2
,∆´ p`1

2
n pcos 2θqe´2in|t|

Using a Jacobi polynomial identity from 45.1.4 “A table of series and products” by Eldon R. Hansen we get
the full greens function to be

Γp∆qe´i∆t cos∆ θ

2π
p`1

2 Γp∆`
1´p

2 qL
p
p1`e´2i|t|q´∆

2F1

ˆ

∆
2

∆`1
2

∆`
1´p

2

;
cos2 θ

cos2 t

˙

“
Γp∆q

2∆`1π
p`1

2 Γp∆`
1´p

2 qL
p
η´2∆

2F1

ˆ

∆
2

∆`1
2

∆`
1´p

2

;
1

η4

˙

And η2 “ cos t
cos θ is the geodesic distance. Up to a minus sign this is correct. I think Kiritsis means 2∆`1

in the denominator. Either ∆ “ ∆` or ∆ “ ∆´ works.

30. Upon taking uÑ 0, η´4 goes to zero and the 2F1 Ñ 1. What remains is (I’m including Kiritsis’ minus sign):

´
Γp∆q

2∆`1π
p`1

2 Γp∆`
1´p

2 q
p2uq∆

ˆ

u1

u12 ` x2

˙∆

“ ´
1

2p∆´
p`1

2 q

u∆Γp∆q

π
p`1

2 Γp∆´
1`p

2 q

ˆ

u1

u12 ` x2

˙∆

This is the negative of what is in Klebanov and Witten.

G∆pu, x;u1, x1qtÑ
u∆

p` 1´ 2∆
K∆px;u1, x1q

Take a source field φpu, xq in the bulk. As uÑ 0 away from the source we have φpu, xq Ñ u∆Apxq.

The expectation value xOpxqy is given by contracting the bulk source with a bulk-to-boundary propagator
going to x. On the other hand, contracting with a bulk-to-bulk propagator and taking u close to 0 gives
u∆Apxq. Thus, we see:

u∆Apxq “
u∆

p` 1´ 2∆
xOpxqy ñ Apxq “

1

p` 1´ 2∆
xOpxqy

I think the bulk-to-bulk green’s function should have a minus sign from how Kiritsis defined it.
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31. We are looking at the Opξq contribution to the 3-point correlator of φ fields. Note that at ξ “ 0 the theory
is noninteracting and the three point function vanishes. The on shell action is:

Son-shell “
M3

2

3
ÿ

i“1

ż

d5xBµp
?
gφiB

µφiq ´
M3ξ

2

ż

d5?gφ1φ2φ3

the contribution due to the cubic term has been calculated. For that, it is enough to look at the Opξ0q

solution. Now let us look at the first term. For this, we need to look at the Opξq part of the solution. Using
the regulated bulk-to-bulk propagator Gε we have:

φipu, xq “

ż

d4x2Kipu, x;x2qφi0pxq`ξ

ż

d4x1du1

u15
Gεpu, x;u1, x1q

ż

d4x1d
4x2Kjpu

1, x1;x1qKkpu
1, x1;x2qφ

j
0px1qφ

k
0px2q

Its contribution will look like

M3

2

ÿ

i

ż

d4x

u5
guu φiBuφi

ˇ

ˇ

ˇ

u“ε

“ ξ
M3

2

ÿ

i

ż

d4x

εp

»

–

ż

d4x1du1d4x2

u15

¨

˝Gεpε, x;u1, x1q
looooooomooooooon

0

BuKpu, x;x2q `Kpε, x;x2qBuGpu, x;u1, x1q

˛

‚W pu1, x1q

fi

fl

u“ε

W pu1, x1q “

ż

d4x1d
4x2Kjpu

1, x1;x1qKkpu
1, x1;x2qφ

j
0px1qφ

k
0px2q

Using L.66, the last term becomes:

´
ε∆´1´p

Lp

ż

d4x d4x2Kpε, x;x2q

ż

du1d4x1

u15
Kεpu

1, x1;xqW pu1, x1q

Taking ε Ñ 0 we can count powers to see that this scales as ε∆´1´p`∆ “ ε2∆´4 Ñ 0 for ∆ ą pp ` 1q{2.
What about outside that range?

32. This is a difficult problem in general. Hong Liu has a method of doing this using conformal partial waves.
Return

33. We can use a conformal transformation that maps the circle to a line. In this case, the minimum area surface
is just a plane in AdS5. The renormalized area of this flat plane is just zero, since there is no curvature that
would give a separation of length scales against which to do a subtraction. Thus, for a straight line we have

W rLs “ 1
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Applying a special-conformal transformation will take a line to a circle:

xi Ñ
xi ` bix2

1` 2bixi ` b2x2
, z Ñ

z

1` bixi ` b2x2

Take only b2 ‰ 0. A quick check shows that this takes the line x2, x3, x4 “ 0 to the circle x3, x4 “ 0,
b2x2 ` b

2
2px

2
1 ` x

2
2q “ 0. This is centered at x1 “ x3 “ x4 “ 0, x2 “ 1{2b2. It has radius a “ 1{2b2.

It is now quick to see that the z surface is expressible as a hemisphere in the standard coordinate system. If
r is the distance from the center we get

z “
a

a2 ´ r2 ñ r “
a

a2 ´ z2

We can thus integrate over 0 ă z ă a and θ. The induced metric on the worldsheet is:

L2

z2

`

r2dθ2 ` dz2 ` dr2
˘

“
L2

z2

ˆ

pa2 ´ z2qdθ2 `

ˆ

1`
z2

a2 ´ z2

˙

dz2

˙

“
L2

z2

ˆ

pa2 ´ z2qdθ2 `
a2

a2 ´ z2
dz2

˙

Calculating the renormalized area from the determinant of the induced metric yields:

S “
1

2π`2s
A “

L2

2π`2s

ż 8

0
dθ

ż a

ε

dz a

z2
“
L2

`2s

´a

ε
´ 1

¯

subtracting off the divergence from the area associated to a wilson loop that has a cylinder as boundary, we
effectively drop the ε´1 term. This gives a wilson loop going as

W rCs “ e´Sren “ eL
2{`2s “ e

?
4πλ

I assume that making use of this conformal transformation is what was meant by guessing the qualitative
form using symmetries.

34. The monopole-monopole static potential is the EM dual of the quark-quark potential. It is probed by a D1
brane in the bulk. The tension of a D-string is 1{gs times that of an F-string. Going through the same
steps for calculating the rectangular Wilson line gives the same potential as we got in 14.9.11 with an extra
g´1
s “ p4πqg´2

YM

´
1 4π2

b

2g2
YMN

Γp1
4q

4l
“ ´

4π2

c

2N p4πq2

g2
YM

Γp1
4q

4l

This is exactly S-duality sending g2
YM Ñ p4πq{g2

YM .

35. We derive the following

• Hawking Temperature:

In Euclidean signature, all we need to look at is the part of the metric going as:

fprq
a

Hprq
dτ2 `

a

Hprq

fprq

Now applying exercise 13.1 with F “ 1, Cprq “ fprq{
?
H we get exactly:

TH “
C 1pr0q

4π
“

r0

π
b

L̃4 ` r4
0

• Entropy

The entropy is extensive so will be proportional to the (regularized) worldvolume V3. The remainder
will be proportional to the area of the 5-sphere π3r5 around the brane. In order to get the correct
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volume factors, we take the determinant of the full metric, not including t and r, yielding
?
g “ r5H1{2.

Altogether then we get

V3π
3r5

0

c

1` L̃4

r4
0

4GN
“

V3r
5
0

c

1` L̃4

r4
0

25π3`8sg
2
s

as required.

• Chemical Potential

The chemical potential should be the value of the p-form field at r “ r0, multiplied by VpTp so as to be
extensive and proportional to the tension. From 8.8.7

VpTp
r2

0

L2

a

H3pr0q
H3prq ´ 1

H3pr0q
“

V3

p2πq3`4sgs

L2

a

r4
0 ` L

4

Checking that the 1st law is obeyed is easy-peasy-lemon-squeezy

36. We will calculate the partition function of 4D N “ 4 SYM in volume V (flat space) at temperature β. For
a single (noninteracting) bosonic field with one degree of freedom, we get:

ZBpβq “
ź

p

Zppβq “
ź

p

1

1´ e´β|p|
“ exp

„

´
V3

p2πq3

ż

d3p logp1´ e´β|p|q



Then

ñ logZBpβq “
V3

p2πq3

ż

d3p
ÿ

n

e´β|p|

n
“
V34πΓp3q

p2πβq3
ζp4q “

π2

90

V3

β3

The same argument for a single fermion gives:

ñ logZF pβq “
V3

p2πq3

ż

d3p
ÿ

n

p´1qne´β|p|

n
“
V34πΓp3q

p2πβq3
ηp4q “

7

8

π2

90

V3

β3

where η is the Dirichlet eta function, giving the alternating zeta series. We have N2p6` 2q bosonic degrees
of freedom and 8N2 fermionic degrees of freedom. Altogether this gives the partition function:

logZpβq “ 8N2p1`
7

8
q
π2

90

V3

β3
“
π2

6
N2V3

β3

The expected energy is then:

E “ ´
B

Bβ
logZ “ π2

2
N2V3T

4

The free energy is F “ β´1 logZ “ E ´ β´1S. This gives the entropy to be

S “ βE ´ logZ “ ´pβBβ ` 1q logZ “ p1
6
`

1

2
qπ2N2V3T

3 “
2

3
π2N2V3T

3
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exactly as written.

Let us further verify 14.10.10 and 14.11.11 in their entirety. First, note that for a D-brane solution

ds2 “
´fprqdt2 ` d~x ¨ d~x

a

Hprq
`
a

Hprq

ˆ

dr2

fprq
` r2dΩ2

5

˙

, Hprq “ 1`
L̃4

r4
, fprq “ 1´

r4
0

r4
.

we have shown before that the parameter N is given by

N “
L̃2

b

L̃4 ` r4
0

4πgs`4s
ñ L4 “ 4πgs`

4
sN “ L2

b

L̃4 ` r4
0

This gives the relevant AdS scale L. From previous calculations of the mass, we have

M “
V3p4L̃

4 ` 5r4
0q

27π4g2
s`

8
s

« V3

L̃2
b

L̃4 ` r4
0

4πgs`4s

1

p2πq3`4sgs
` p5´ 2q

V3r
4
0

27π4g2
s`

8
s

« NV3T3 ` 3V3
π2

8
N2T´4

H “ NV3T3 `
3

4
EYM

up to quartic corrections in the string length. Next, the chemical potential is also easy:

Φ “
V3

p2πq3gs`4s

L̃2

b

L̃4 ` r4
0

“ T3V3 ´
1

2

V3r
4
0

L̃2p2πq3gs`4s
“ T3V3 ´

1

2
π2V3N

2T 4
H .

Finally, the entropy:

S “
V3r

3
0

b

r4
0 ` L̃

4

4p2πq3g2
s`

8
s

“
1

2
π2V3T

3
HN

2 “
3

4
SYM

So remarkably, the interacting system has quantities lowered by exactly 3
4 from their free field values.

37. Let’s cut open the Wilson line at t “ 0. Then we have

L “ P exp i

ż β

0
Aµ 9xµdτ

We initially consider gauge transformations that are periodic in the time direction. That means that this
object transforms as L Ñ g´1Lg. If we consider now the gauge transformations periodic up to an element
of the center, we get L Ñ g´1Lgh. Closing the loop again, we get an additional insertion of h in the line.
Since h is central, it is equal to an Nth root of unity ζ times the identity matrix. This is just a scalar, so
inserting it to give a twisted sector gives the transformation:

LÑ ζL

as required.

38. The following diagrams will give the leading-order contributions to the scalar mass at one-loop:
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Here wiggly lines are gluons, straight lines are scalars, and straight lines with arrows are the fermions.

To extract the mass dependence, it is sufficient to allow for the external legs to go to zero momentum.

We get the thermal one-loop contribution to the mass going as
?
λT

A mass for the fermion is already generated at tree-level due to the anti-periodic identification implicit in
putting the theory at finite temperature.

Finish, ask Pavel

39. There is a typo. It should be r2dΩ2
3, not r3dΩ2

3.

As we know by now, for a hypersurface orthogonal to the coordinate system,

Kµν “
1

2
nrBrgµν

Here nρBρ is the unit vector in the r direction, whose r component is 1?
grr

. We get:

Kµν “
1

2

1
?
grr
p´g1ttprqdt

2 ` 2r3dΩ2
3q ñ

1

2

1
?
grr

ˆ

g1ttprq

gttprq
`

6

r

˙

For AdS Schwarzschild the metric is

ds2 “ ´

ˆ

1`
r2

L2
´
wM

r2

˙

dt2 `

ˆ

1`
r2

L2
´
wM

r2

˙´1

dr2 ` r2dΩ3, w “
16G5

3π2

Now, calculating K for this we get:

1

2

c

1`
r2

L2
´
wM

r2

ˆ

2r4 ` 2L2Mw

r5 ` L2r3 ´ L2Mrw
`

6

r

˙

Ñ
4

L

as r Ñ 8. This is independent of M . As r Ñ 8,
?
g on a constant-r slice approaches r

Lr
3 Ñ L´1ε´4 which

is again independent of M . Defining
?
hε “ L4

ε4
yields

K
?
h “ 4L4

?
h

Thus, the subleading terms go to zero as r Ñ 8, and so the difference in the GH term between AdS-
Schwarzschild and thermal AdS vanishes.

40. The inverse temperature β obtained from requiring no conical singularity is given by:

β “
2πL2r`

2r2
` ` L

2
ñ z “

L

β

here z is the effective dimensionless temperature. Knowing that:

r` “ L

d

´
1

2
`

1

2

c

1`
4wM

L2

let us now look at

dz

dM
“

Lw
´
b

1` 4Mw
L2 ´ 2

¯

π
b

8Mw
L2 ` 2

´

L2
´
b

1` 4Mw
L2 ´ 1

¯¯3{2

For small M , this is negative, giving negative heat capacity (ie small black holes evaporate). For large M
this is positive, giving positive heat capacity (ie large black holes are thermodynamically stable, fed by the
reflection of their radiation off of the AdS boundary).
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41. For a quantum mechanical system in 1D, there is a finite energy associated with tunneling from one minimum
to the other. As a result, instead of the field localizing to one of the minima ψ “ ψL or ψ “ ψR, there are
finite energy configurations pψL ˘ ψRq{

?
2 that can lower the Hamiltonian further. If instead we had an

infinite potential associated with crossing from one to the other, such ground states would be disallowed.

For arbitrary local field theories in finite volume, this argument generalizes to show that there can never be
a phase transition, since tunneling from one minimum to another only costs finite action (energy). Note,
however, that this argument does not commute with taking a large N limit N Ñ 8, which is what is
encountered in the text.

42.

43.

44.

45.

46.

47.

48. Newton’s constant in 10D is 16πG10 “ 2κ2
10 “ p2πq

7g2
s`

8
s. Then compactifying on T 4ˆS3 to get to 3D, with

the volume of the T 4 being p2π`sq
4V4 and the volume of the S3 being 2π2L3 we have

2κ2
3 “

2κ2
10

p2π`sq4V L32π2
ñ G3 “

p2πq3g2
s`

4
s

16π ˆ 2π2 ˆ V ˆ L3
“

g2
s`

4
s

4V L3

Using Brown-Henneaux, this further gives:

c “
3

2

L

G3
“

6V L4

g2
s`

4
s

“ 6Q1Q5

49. Because this is so crucial, I will first review the argument by Brown and Henneaux.

50. Let us first express the expectation value of the stress energy tensor in the 2D CFT in terms of the asymptotic
metric of 3D gravity. We have done this for AdS5/CFT4 in section 14.8.3. We have the equations:

Trrg´1
p0qgp2qs “ ´

`2

2
R, ∇kgp0qkj “ ∇jTrgp0q

Thus only the trace-free part of gp2q is left undetermined. This can be parameterized by hzz, hz̄,z̄.

Altogether we get:

Tzz “ ´
1

4`
hzz, Tz̄,z̄ “ ´

1

4`
hz̄z̄

Focusing on a holomorphic transformation we get:

ds2 Ñ ds2`

51. Say I had a conserved global charge for a continuous (internal) symmetry. This provides a local current Jµ

in the theory. I take this current operator near the boundary of AdS - this defines an operator in the CFT.

The corresponding boundary local operator will thus generate a global symmetry on the boundary theory.
By preceding arguments (exercise 14.10), the corresponding bulk symmetry must be gauged.

Incorporate Harlow’s argument.

52. First consider two noninteracting CFTs, CFT1 and CFT2. The stress energy tensor T decomposes into a
sum T1`T2. The corresponding geometry will be a product of two separate (noninteracting) copies of AdS5.

Thus, one graviton h1` h2 remains massless while the other h1´ h2 obtains a mass squared proportional to
1

N2L2 .
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1 Chapter 15: Applications of the Holographic Correspondence

1. Taking U “ r{`2s and g2
YM “ gsp2πq

p´2`p´3
s fixed as `s Ñ 0, we have that at the scale U ,

e2Φ “ g2
sH

p3´pq{2 ñ g2
eff “ g2

YMNU
p´3.

In the extremal case the electric field is:

Fr01...p “ ´
H 1

H2
“

gsN

Ω8´pH2

p2π`sq
7´p

r8´p

Ñ
gsN

Ω8´p

ˆ

2π`s
L2

˙7´p

r6´p “
p7´ pq2Ω8´p

p2π`sq7´pgsN
r6´p “

`2sp7´ pq
2p2πq2p´9Ω8´p

g2
YMN

U6´p

2. The original near-horizon metric is:

`2s

«

U p7´pq{2

gYM
a

dpN
p´dt2 ` dx ¨ dxq `

gYM
a

dpN

U p7´pq{2
pdU2 ` U2dΩ2

8´pq

ff

The sphere factor is direct and yields:

`2s
a

dpNU
pp´3q{2gYMdΩ2

8´p

The other factor will require our change of variables. Pulling out the same overall factor as before, we are
left with:

`2s
a

dpNU
pp´3q{2gYM

„

U5´p

g2
YMdpN

p´dt2 ` dx ¨ dxq `
dU2

U2



Upon making the substitution:

U5´p “

˜

2gYM
a

dpN

p5´ pqu

¸2

ñ
dU

U
“ ´

2

5´ p

du

u

we get:
4

p5´ pq2

„

1

u2
pdu2 ´ dt2 ` dx ¨ dxq



Exactly AdS with radius 4{p5´pq. I’m not sure how Kiritsis is absorbing the gYM - strictly speaking
the metric in 15.1.17 is off by that factor is the dΩ5 is to be unital.

3. For an extremal brane it is straightforward to get the curvature in terms of the dilaton EOM, and indeed
we’ve done this in an exercise for chapter 8, as well as having it written explicitly in 8.8.31.

Schematically:

`2sR „
`2s

rpp´3q{2Lp7´pq{2
„

1
b

gs`
p´3
s Up´3N

„
1

geff
„

d

U3´p

g2
YMN

as required.

4. Ok here the limits are subtle and worth discussing. I’m following section 13.7. There are two horizons.
Near-horizon means near the outer horizon. In order to take this limit successfully, we must take r0 ! L. In
fact, we must take r0 Ñ 0 in a controlled way. Expectedly, we must hold U0 “ r0{`

2
s fixed alongside U “ r{`2s

while taking r0, r, `
2
s to zero at the same rate.

For this reason, it is safe to replace H by L7´p{r7´p as before, and also to replace f by 1 ´
U7´p

0
U7´p in the

nonextremal solution. We then recover exactly the near-horizon extremal solution with the dt2 and dU2

terms modified by f :

ds2 “
´fprqdt2 ` dx ¨ dx

?
Hprq

`
a

Hprq

„

dr2

fprq
` r8´pdΩ8´p



Ñ `2s

«

U p7´pq{2

gYM
a

dpN
p´fpUqdt2 ` dx ¨ dxq `

gYM
a

dpN

U p7´pq{2

ˆ

dU2

fpUq
` U2dΩ8´p

˙

ff

.
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with

fpUq “ 1´
U7´p

0

U7´p
.

5. Let’s start with the Hawking temperature. From excercise 13.1 it is simply

TH “
C 1pr0q

4π
“
p7´ pqU

p5´pq{2
0

4πgYM
a

dpN

The ADM mass above extremality is given by (again, I think there must be something wrong with
equation 8.8.14)

Vp
2κ2

10

p9´ pqr7´p
0 “ Vp

2´10`2pp9´ pqπ
´13`3p

2

g4
YMΓp9´p

2 q
U7´p

0

as required.

The entropy density will come from the area of the horizon at U “ U0.

Vp
4G10

pgYM
a

dpNq
4´pU

pp7´pq{4
0 U

´p8´pqp7´pq{4
0 U8´p

0 “
Vp

25π6`8sg
2
s

By straightfoward algebra, this is equal to the messy expression that Kirtisis has.

6. Area law behavior is indicative of confinement, which is what we would qualitatively expect in
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Chapter 16: String Theory and Matrix Models

1. The Nambu-Goto action is

´T2

ż

d3ξr
a

det ĝ ` Ĉαβγε
αβγs, ĝαβ “ GµνBαX

µBβX
ν , Cαβγ “ CµνρBαX

µBβX
nuBγX

ρ

Let’s set Cαβγ “ 0. The EOM for the scalar field is quickly seen to be lX “ 0, where l is the Laplacian
from the induced metric.

In the Polyakov action, the equations of motion for γ are the vanishing the energy-momentum tensor, giving:

BαX
µBβXµ ´

1

2
γαβpγ

γδBγX
µBδXµ ´ 1q

This is harder to solve than the p “ 1 case, as we can’t just take the square root of the determinant of both
sides. Taking the ansatz that γαβ “ λBαX

µBβXµ we get:

λγαβ ´
1

2
γαβp3λ´ 1q

And we get a solution with λ “ 1. Note there is no Weyl rescaling here. Similarly, the X field must satisify

1
?
´h
Bαp
?
´hhαβBβX

µq “ 0

which agrees with lX “ 0 upon the identification of the induced and auxiliary metrics.

Note importantly that the p-brane action for p ‰ 1 requires a cosmological constant term.

2. Take the gauge γ00 “ ´det ĝij with γ0i “ 0 so that
?
´γ “ det gij . The action then becomes:

´
T2

2

?
γ
´

γ00 9X ¨ 9X ´ 1
¯

“
T2

2
p 9X ¨ 9X ` det ĝijq

Here there is a small typo in Kiritsis. Rewriting

det ĝij “ B1X
µB1X

νB2XµB2Xν ´ B1X
µB2X

νB1XµB2Xν “ ´
1

2
tXµ, XνutXµ, Xνu

We thus get total action:
T2

2

ż

d3ξ

ˆ

9Xµ 9Xµ ´
1

2
tXµ, XνutXµ, Xνu

˙

Giving equations of motion
:Xµ “ ttXµ, Xνu, Xνu

Taking now lightcone gauge X`pτ, σ1, σ2q “ τ

The transverse momenta are:

pi “
δL

δpBτXiq
“ T2

9Xi “
p`

V
9Xi

The Hamiltonian is thus

p´ 9X´ ´ L`
ż

d2ξ pi 9Xi

3. This rescaling is very straightforward once one has the hamiltonian 16.1.14. One rescales Xi Ñ

´

N
V2

¯1{4
Xi

and tÑ
´

N
4V2

¯´1{4
yielding:

T2

2

ż

d2σ 9Xi 9Xi Ñ
T2

4

N

V2

ż

d2σ
9Xi 9Xi

2
“
T2

4
Trr

9Xi 9Xi

2
s

and

T2

4

ż

d2σtXi, XjutXi, Xju Ñ ´
T2

4

N

V2

ż

d2σ
1

4
rXi, XjsrXi, Xjs “

T2

4
Tr

ˆ

´
1

4
rXi, XjsrXi, Xjs

˙
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4. For a string, imagine a rectangular spike of cross-section ε and length L. Its total energy is 2L ` ε, where
ε does not multiply L now. Therefore, taking L large will give a large energy deviation, regardless of how
small we take ε. Thus, the string is stable against decaying into these small spikes.

5. Its immediate that the Cµνρ term multiplies a Nambu bracket, by antisymmetry. Now by permutation
invariance we can write:

1

6
tXµ, Xν , XρutXµ, Xν , Xρu “ B1X

µB2X
νB3X

ρεαβγpBαXµBβXνBγXρq

Its not hard to see that this reproduces the formula for a 3x3 determinant, as we have an antisymmetric
object involving one element from every row and column multiplied together, all with unital coefficients.

The bracket is not associative show

6.
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