Solutions to Kiritsis’ String Theory in a Nutshell
Alex Atanasov

Chapter 2: Classical String Theory

1. T don’t know what this question asks exactly given that 2.1.16 is an infinitesimal diffeomorphism.

We are still allowed to assume WLOG that 7 runs from 0 to 1. For £ infinitesimal, we have de = £¢é + ée =
0-(&e). So for a general e(7) define

72(T) = (1)

—1 -1
Take L = fy dr'e(r'). Then ex(ra(r)) = (42) e(r) = (2] elr) = L.
Note that we cannot get rid of this L, since it is invariant L = Sé dre(t) = Sé droe(Ts)

2. From analytic continuation, we have the functional equation for the Riemann zeta function:

™8

((s) = 2°7° ' sin( > 5 )L = s)C(1 =) (2)

It is worth knowing that near s = 0 we have (1 —s) = —% +~and I'(1 — s) = 1 + vs. Expanding the right
hand side about s = 0 gives

() = 5 — 5 Vome Q

This gives ((0) = —3 and ¢’(0) = —3+/27. Further, ¢'(s) = — >, lc;fs".
So we get [ [ % — L2X0m ! = 720 — [ and [T n?=exp (2>, ,logn) = 2.
3. For simplicity, we will work in the action with the einbein.
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The Euler-Lagrange equations for z# is:
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This last term looks particularly annoying, and is ignored by other authors. We have total freedom in
reparameterization of e, so we can WLOG set it equal to a (metric-dependent) constant by problem 1. Then

the term drops out and we get exactly the geodesic equations.

We could have done this explicitly as well:
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And fix the parameterization so that 2> = const and the last term vanishes.

4. We get the same as before, but now cannot drop the last term. Now the dots represent time derivatives.

1
G (& + T 5i%i0) — QGW:b”&Xolog(—Gagfﬁaa}B) (6)



5. We get:

e J d7¢ —(Goodi® + 2G; % + Gy ) (7)

Taking 7 = 2° = ct gives us our result. Further, we write Gog = —1 — i—f where ¢ is the gravitational

potential. To first order then we get:

— mc? Jdt\/—(Goo + 2¢71Gpidt + ¢ 2GydiaT) & Jdt (=mc* — mg + meGoiv' + mGyjv'v?) (8)

The last two terms in brackets are positive (kinetic) while the first two are negative (potential). This
explains why there is a - sign out front of the action.

(<)

6. The Lagrangian for a special relativistic particle in an electromagnetic field is —mc?4/1 — v2/c2 —e¢ + et~ A.
This has the Lorentz invariant form: —m+/—G, 2#z" 4+ eA,x*. We get equations of motion as before: The
additional term gives the equations of motion:

e - e : (&

= (A = 0 A) = (A — A = —Fpu i (9)

don’t confuse e with the einbein.

If one coordinate is cyclic (neither the metric nor the vector potential depend on it), the corresponding
momentum is

oL G i
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7. Ignoring the cosmological constant term (which is not reparameterization invariant), we note that any term

that involves the metric G, will require at least 2 x* variables for it to be contracted with. Also, repa-

rameterization invariance requires that under dr — f/(7)dr we get £L — L/A. The simplest such term is

A/ —Gatz?. Terms with more than 2 z#s will be suppressed by powers of 1 /€%, Similarly, terms with more
derivatives w.r.t. worldsheet coordinates will be less relevant in the IR.

+eA, (10)

8. Let’s set G;9 = 0 for simplicity. The Nambu-Goto action is:

e f drdon (X - X7)2 — (X2)(X7?)

Take 7 = ct, 0 = 2 and note T = pc? with p the mass per unit length. Take X° = ¢t and @ = X" 5= X"
Appreciate that v gives us how that point of the string is moving, while u gives the direction parallel to the
string at that point (scaled according to o’s parameterization). Inside the radical:

(GooX° X" + G X' X")? — (Goo XX + G X' X7)(GooX"° X" + Gy X" X"
= C_Q(Gij“ivj)z — (Goo + C_QGijUivj)(Gijuiuj)

Take Ggg = —1 — 2¢/c%. Then the radical becomes:

7 0)2 1 1(a-7)2\)
\/ug — 22002 + ¢ 2(i - 0)2 — =222 = |u|\/1 —c2(2¢ + 02 — (“u;)) = |ul <1 —c? <_¢ + 502 -3 (uu;}) )/
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11.

12.

13.

= =2
But note that v2 — (E9° — (0 — “3@)?. This is exactly the part of v transverse to u (the string itself). So

2
u
we can write this as v, the transverse velocity.

1 1
- detda\u|(1 +c % — 0_251)%) = fdtda\u|(—(:2 — ¢+ iv%) (11)

Note that p {doju| = pLs = M;. The first term is thus —M, sc2. The second terms is exactly the mass density
of the string interacting with the gravitational field, while the third (kinetic) is the motion of the transverse
components of the string. Note that the longitudinal excitations do not contribute.

Let’s work in lightcone gauge. We have 0,0-X = 0 The vanishing of the stress-energy tensor gives us
X2+ X% =0and X-X'? =0. But at the endpoints we get X’ = 0 so that X2 = 0 and the endpoints with
Neumann boundary conditions need to move at the speed of light.
The cosmological constant term gives the equation of motion 625 = —( 4‘;f + 5 gab)\/—g. But by reparame-
terization invariance we need Ty, = 0 so that A1 must be 0.
It is quick to derive the current P* under § X¥ = ed*":
oL
= —T\/—gg®PosX 12
a(aaXu) 99 B ( )
Similarly under 6X* = eMﬁ‘,‘ng with M)“s (6>‘(55 5253‘). Then we have
oL (6760 — 6500) X5 = —T/—g9°* (X, 05X, — X,,05X,,) (13)
0(0aX /\) K a
Write:
X‘M(T O') g £2pu7. + \/7 Z —ino + O—éneina)efim—
nezZ— {O}
(14)
XH(r,0) = 2pH + Z (ne™ M 4 @, e™m?)e T
\[ neZ—{0}
Now take the Fourier series (in o) of the commutation relation:
. 0 1
XK XKL = I 15
Xy = 2 (15)
The only nonzero terms are those we get when we pair each mode with its negative (in o). Also note that
there is no 7 dependence on the right-hand side, so we need to pair each 7 mode with its negative. Let’s
look at x*, the zero mode of X. We can only pair this with the other mode p* and we necessarily have:
O pp———T (16)
’ 22T
Similarly, we can only pair a,, with a_, giving:
_ _ 2m(5 +
{aumv CY;;} + {ayna am} = Tgézvnnwj (17)
By parity symmetry, both of these brackets should be the same. We get then that:
{og, an} = {ah,, an,} = —i0m4nn™ (18)
For each coordinate on the n-torus, we have X!(7,0 + 2w) = X(7,0) + 27n;R;. Then the corresponding
momenta have difference p —p = z%niRZ— while the total momentum is quantized in multiples of p + p = Zgzi.
Therefore we have: . ) R
% S )
- D8yt 19
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14. We begin with a redefined p* — 2p* as in the book.

X/u(7_70)|0:0 — g?(pu — ") + f/%;(an _ @n)e—inr

. (20)
Y _ 92 - S — —inT
XH(1,0)|p=0 = (" + P*) + ﬁ;(an + ay)e
So then ,
X +AX = ((O0+Dp"+ 0 =D+ =Y e ™ (A+ Dan + (A= 1Day,) =0
s (A+Dp" + (A =1)p") 73 Zn] (A+1) (A—1)am)
This gives p' = 1 = 12250 and similarly o = 1—/\ n.
Further:
‘s A . . . 14+ . .
X/M(T’ U)]U:W = ﬁf(P“ )+ \7& Z(aﬁe_“m _ o_zge”m)e_”” N 2 a“ —imn _ . t s imn g —inT
. 14 . 1 + A (21)
X}L(T’ U)|J=7r _ g?(pu +ﬁu) + ﬁ;(a,ue iTn + a,uemn —inT _ Zau —imn 1 — zwn)efim-
This gives:
—imn 1+ A TN :
(14 Ne —(1—/\)1_)\6 =0=sin(mn) =0=neZ. (22)
The full equation is then
20%pH  in/204 "
XH =zt + . ip/\ + (21\{)\) ne;{o} O;L e~ (cos(om) + iXsin(on)) (23)

Clearly as A — 0 we recover Neumann boundary conditions. On the other hand as A\ — o we see that the
endpoint of the string is constrained to be unable to move and we indeed recover Dirichlet.

15. Looking at the DD solution:
X" (1,0) = wh + V20, Y ale™"7 cos(no) (24)
nez
At the endpoints the momentum flow is

wh £ V20, ) ke (25)

nez

16. In conformal gauge we have £ = 2T'0; X*0_X), = L0 + 05)XH(0r — 0,) XH =
Il =T(X) and §doTIX — £ = L {do ((X)? + (X')?) - X) as we needed.
For the closed string:

Sl

((X)2 — (X')?) so that

X _ fg(pu +§,LL> + {s Z (ane—ina + &neina)e—irw X' = Ez(p/l —D s Z (ane—ina _ aneina)e—inT

L Gpp —py) | ¢
2 V2.5 2 V2.3
Assuming no winding, we have p = p. In the hamiltonian, the only contributions that will not vanish is

when each € is paired with e=™. So we can look at this mode-by-mode. Between the two of these, the
cross terms involving o, ane 2" will cancel. We will get:

& o 1 _ - o
X 55 X 21 X Z (n—p + apa_p) X 2 = 5 Z (_pn + a_pay,) = Z (—pan + a_pay,)

2 n#0 n#0 n=1

The zero mode will contribute £ip? x 27 x T)/2 = 1€2p as required.



For NN we again have p = p

= 202pH + /24, Z a cos(no)e” "7 X' = —iv2l, Z o sin(no)e™ """
n#0 n#0

The zero mode gives 4¢%p? x m After squaring this, we can only pair cos(no) either with itself or cos(—no).

Pairing it with itself will give a2 cos?(no)e™™" which will be cancelled by the —a? sin?(no)e™"7 obtained

from multiplying sin(no) with itself. On the other hand, pairing cos(no) and sin(no) with their negative
frequency counterparts and integrating gives two factors of ma,a—, so that in total we get:

e0]
€2p2 + = Z OOy = €§p2 + Z OOl (26)
n;éO n=1

The exact same logic applies for DD except now only the difference term contributes. Instead of 2/2pH we
have w* = (y — x)* /7 which must thus give zero mode (z — y)?/(27/5)?.

Lastly, for DN we have no zero-modes at all, only:

XHo,7) =zt — V20, Z FT sin(ko) (27)

keZJrf
= XM = iv20, Zak Msin(ko), XM = -2, Zak 7 cos(ko)

By the same reason as in DD and DN, the only terms that don’t cancel is when we pair each sin(ko) with
its negative and similarly for cos. We get

0
—€2 X T X 2 X Z OOy, = Z A_pnQp = Z a_n+%an_% (28)
n=1

neZJrf neZJrf
17. ITmmediately we have {L,, L,} = 0. For {L,,, L,,} we have:

1
{Lm7 Ln} = 1 Z{O‘mfkak:a anflal}

*Zan 1am—r{ak, cr} + cm—p{om, an—itou + an_i{am—k, arfo + {oum—k, ity
ol

=-1 Z QO KOkt 4 Q0 kgt + g (m — k)0p—pq + axoq(m — k)opm—psn—i

k.l
= Z Ok Qo — kk + Oy — kan-‘rkk + Oprm—k Ok (m k) + OO — k( kz
k—)k-i—n
)
=3 Z Uk Otk + o p(m —n — k)
k
1 . 1 .
= —ig Z Om—kQpik(m —n) — —i(m — n)§ Z Omtn—kQk = —i(m —n)Ly4p

k K’

The exact same logic applies to the conjugate charges.



Chapter 3: Quantization of Bosonic Strings

1. For simplicity we will ignore the p index in our calculation first.

First consider [Ly,, Ly] with m + n # 0. Then expanding in terms of commutators: This is the same as
before, but now we must be careful about commutation:

1
[Lim, Ln] = 12[ Qp— kOl 3 & Q10 ]
k.l
Note that the indices m — k, k,n —I,1 sum to n + m, if any pairwise sum of them is equal to zero (necessary
for a nonvanishing commutator), then the other two will have sum equal to n+m. Then as long as m+n # 0

oy, there will be no normal-ordering ambiguity and we will recover the standard commutation relations as

before.
So the remaining case to consider is n = —m. Take m positive WLOG. The logic of the question from last
chapter applies, but now we must be careful about the ordering of the «; outside of the commutator.
1
[Lm7 L—m] = 1 Z[am—kaka a—m—lal]
k.l

1
=1 Z U~k KOk —m—1 + Q0 (M — k) Om kit + 1 Qn KOk 41 + gy (m — k)S4r (29)
%
1
=1 Z AUm—kQk—mk + a_gap(m — k) + a_mikQm_rk + apa_g(m — k)
%

We can split this into £ > 1 and k& < 1. The k = 0 term is already in normal order. When k > 1, the first,
third, and fourth terms of the sum are out of normal order. The first term has only m terms out of normal
order. Rearranging these gives the constant:

i 1m(m? —1)
];lk(k —m) =

The fourth term has all terms out of normal order and gives the formally infinite sum

D k(m — k)
k=1

The last term has all but the first m terms out of normal order, and so contributes the sum

B~ =

DI (m Rk ==Y (m—kk+ > (k—mk
k=m+1 k=1 k=1

The first part of this exactly cancels with the third term’s infinite contribution. The last part of this gives
exactly the same contribution as the first term.

Now, for k < —1 only the first two terms contribute. The first term contributes ), (m — k)k while the second
term contributes ), (—k)(m — k) which cancel. Thus the term left behind is exactly:
Im(m?>—1)  m(m*—1)

X1 6 T 1 (30)

Note however that in fact our oscillators carry with them a p index which we have ignored. If we incorporate
it, then each normal ordering of o'ay, will include a factor of n** which would have to be summed over. This
will add in a copy of D to our final result for the normal ordering term.

Finally, we see that the normal ordering constant a must be equal to:

1 o | S D -2 D—-2
iZaika}CHZo/,ka%+52[a}€,a’,k]=:L0:+ 5 Dk == (31)
k k=0 k>0 k

——

(-1



2. I believe that the treatment of the prior derivation of the central term was sufficiently careful, as I did not
need to use any zeta regularization to compute an infinite sum. I only used zeta regularization in calculating
the normal-ordering constant

3. Given that the Witt algebra is already given as an associative algebra, the commutator directly satisfies the
Jacobi identity, since (a — (b—¢)) + (b— (¢c—a)) + (c—(a—b)) = a+b+c=0. Adding a central term gives

1 2

[La, [Ly, Le])+ (Lo, [Le, La]] +[Le, [La, Ly]] = Eéa+b+c(a(a2—1)(b—0)—l—b(bz—l)(c—a)—c(c —1)(a—b)) (32)

This is zero by algebra.

4. For the closed string, we have:

X,u( ) £2p,u + =5 Z (aléeilng + agema)efmr
n#0

X/,M 7_ (T _ Z o _ —g zna)e—zn’r
n#O

Taking X = o + {;pT7 sets ot , @b = 0 for all n # 0.

X4 XM = 2pt 4+ V2, 2 alleTnT ginT
n#0

XH— X" = 2pt + V2, Z ateind einT
n#0

Let’s just look at the constraint (X + X’)2 = 0 and then the other constraint will give the same result for
the right-movers.

O_€4p2+\/7£3 Zp Qne —in(o+T1) +2€2 Z QU+ Qe —i(n+m)(oc+7)
n#0 n,m#0

Zal

var. . we look at the

The zero mode gives p> = 0. Noting that oy, - ay, = —afa,, — ala, +alal, = a
remaining terms of each mode individually, so:

0=4sp- ozn+\/>ZQm n m:_ﬁsp o + fﬁ +\/>Zozm nQin

at is transverse
__ V2 i _ V2 i
=a = ﬁZam_nam =77 Zam_nam : —2ady,
sP = sP m
| —
2L

5. Firstly, we see that Ly — Lo can only differ by an integer, otherwise there’s no combination of a_,,&_,, acting
on |p*) that will give a physical state. Now lets say they differ by an integer n. Then o', &' ; will be the
lowest-lying excitation at level (n+ 1,1). We see there are 24 of these that transform under SO(24), so they
must give us a massless particle. We note also that we have exactly 24 excitations at levels (n + k, k) for
1 < k < n, as the only way to get them is applying ainfkd’;lfk. On the other hand, each of these has
mass-shell condition:

0= (Lo — a)a_p_pa_j |[p"> = 2m? = 4(n + k — a)

However if this is massless for some value of k, it will be massive for k + 1, breaking Lorentz invariance.

Note that L — Lo generates translations along o so this shows that any state should be invariant under
o — 0 +cC.

6. Note that SO(25) acts on 25 x 25 traceless symmetric tensors. Note that if we restrict to a subgroup
SO(24) that leaves one of the spatial direction fixed, the SO(25) representation breaks down into two SO(24)
representations: the symmetric tensor representation (including trace) on the 24 transverse directions, and
the vector representation in those directions as well. This is exactly what we have at level two. So, we see
we can arrange these two SO(24) rep’ns into the traceless symmetric SO(25) tensor rep.



10.

11.

12.

. The generators (for the closed string) are:

21 O __
JH = TJ do(XFXY — XVXH) = ghp” —aVpt — i Z [, ol —a”, ol + (...)]
0 n=1
Upon computing the commutator [J*, JP?] the zp” — z¥pt will give no problems, and there will be no
cross terms between the right and left moving modes. So it is enough to look at the left movers. I’m gonna
pass on doing this computation...

. For NN boundary conditions, o is associated to the wavefunction cos(ko), o € [0, 7]. This has eigenvalue 1

under flip if  is even and —1 if k is odd. Thus this c, must transform identically: Qo Q! = (-1)kay,. For
DD boundary conditions, we have sin(ko), which has opposite eigenvalues, so instead we get (—1)*+!

. This is a Lie algebra of dimension n(n — 1)/2, which already looks promising. In the case of all §; equal, we

can pick basis so that the R;; are all 1. This is clearly so (n). Now, take a diagonal unitary matrix v (note
7T = ). Tt clear that Aij = 71/2)\ij'y_1/2 gives the right structure under transposition:

AT 771/2)\T,yl/2 _ _771/2)\71/2 — Xy

But since S\ij is just a conjugation action on the \;;, we will still have that the Lie algebra structure is
preserved, and maintain so(n).

For the second part, again when all the 8; = 0, this is just the definition of the symplectic group and we have
A = —wATw™! = wATw for w the canonical symplectic written in the (1, p1, ¥, pa, . .. ) basis. Now note that
the new symplectic form ~ can be written as o2wo=Y? with o = diag(ewl,ewl, etz ¢if2 ). Then define
X = 0~ Y2)01/2 and note that

N = G12\T5=12 = 1 2 wo /2 = —7:\7
as required. Again, conjugation action will preserve the Lie algebra structure, so this will remain sp(2n).

In the symmetric case, we have AT = ), so these are symmetric matrices of N indices. Naturally SO(N)
acts on these, and we see that they can be written as F ® F for F the fundamental representation. This can
be decomposed as the trivial representation and the traceless symmetric representation.

In the anti-symmetric case with N even, I know that the symplectic group acts on RY. T’ll call this the
fundamental rep, and then note that tensoring it with its dual again gives an antisymmetric N x N matrix
on which Sp(N) can act. This can be decomposed into the singlet and the skew-traceless antisymmetric
matrix.

Traceless means that any pair of indices contracted with n*¥ gives zero. Locally, we can pick the metric so

that only 74— = n_4 = 1 is nonzero. This means that 7;, ;, = 0 if any one ¢ is set to + with the other set
to —. Thus we can have only 7% ..., and 7_..._ nonzero.
The round metric is
9 4dzdz
ds* = ————
(14 22)2
The Lie derivative is:
EXgab = Xcacgab + gacabXC + gcbaa)(C (33)

Working with z,z we get: .
ﬁngz = 2922(92XZ =0

£ngz = 2gz25zX2 =0 (34)
EngZ = (Xzaz + Xzai)gzi = )‘(27 2)922
The first two equation shows us that X?, X* must be holomorphic and anti-holomorphic respectively. We

want the function A\ to be well-defined on the entire Riemann sphere and so the last equation gives us:

(X?z2+ X%2) _
- 2—1 - Az, Z) (35)

8
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14.

15.

2 32

We see that X7, X* cannot have any poles. Further, they cannot grow faster than 22, z* respectively as
2z — o0 otherwise A will blow up at the north pole. So our solutions space is spanned by 0., 20,, 220, and
their conjugates.

Next, right away we can see that the only nonzero Christoffel symbols in the round metric are I'Z, and I'Z;.
Second, because T is traceless, by the previous problem we see it has only two components: T,, and T3s.
Now looking at VﬁTag we see that this gives two equations:

gZZVZTzz = aZirzz

i} (36)
gZZvZTEE = 0,T%

Note that there can be no Christoffel contribution. This simply asks for globally-defined holomorphic 2-
forms. Let’s look at T,,. Around z = 0, it must be a polynomial to avoid poles. Transforming to w =
1/z,dw = —dz/2* = j—; = 22 = —w™? we get Tyw(w) = (C%)ZTZZ(w). Note that the right hand side will
only have poles at least as bad as w™2 so we cannot have any global section of this vector bundle. Thus,

there are no Teichmuller parameters.

We can think of the torus as C/A. Note that scaling and rotation preserve the complex structure of the
fundamental parallelogram so WLOG we can pick A = Z-span{1, 7} with 7 € H. Thus we need vector fields
on C that respect the translation-invariance under A. Any translation-invariant holomorphic function is
zero, we can only have the constant vector fields 0., 0s.

[

We now look for holomorphic and anti-holomorphic traceless tensors. Again, T, and T3; be translation-
invariant w.r.t the lattice, so again they must be constants. We get dz®dz and dZ®dz as our two Teichmuller
deformations. As real tensors these are:

1 0 01
(0 _1)—d:(:®da:—dy®dy, (1 0)—2dx®dy,

Not sure exactly how they want us to calculate this. Let’s assume they are OK with Gauss-Bonnet. For the
disk with the flat metric, we have right away that the curvature R vanishes. The geodesic curvature at the
boundary is a constant, and is easily seen to be 1. Integrating this over the boundary of the disk gives 27 so
that y = 1.

Using the round metric, it is quick to see that the only contribution to R,, = R?, + Rizy is for RZ, ; =

nzv 22Z
—0:I'Z, and R%Z;, = 0.1'Z; giving R,z = Tracing this gives R = 1. Integrating this over half the

2
1+]2[2) "
sphere gives 27. The geodesic curvature v(aIJlri|s£()es on the great circle by symmetry, and we get x = 1 again.
Any such surface can be decomposed as a sphere with 2n holes connected to n handles. Let’s integrate the
scalar curvature over each piece individually. First the curvature integrated on the sphere with 2n disks
removed is equal to the curvature integrated on the Riemann sphere: 47 minus the curvature integrated on
2n disks. We have just done this in the previous problem, and we get 2w x 2n. Lastly, the curvature on the
handles is just the same as the curvature on the sphere with two holes cut out, which we have just calculated
is 4m — 2 x 2w = 0. Thus the total curvature is just 27w(2 — 2n), giving us y = 2 — 2n as required.

A

4

\

(-\%
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16. Our point particle action is Sy = {dre(e™2(d,x)* — m?). Let’s look at:

DX™De

6750 ~ JDXDGDZ)DC e*SQ*Sb((SF)C*iSBF(e)
Vgauge

Note we don’t need an « index on B, b, ¢ because they just parameterize the continuous symmetry with no
discrete parameters:

(O 7)(7) = 6(7 = m1)

Using Polchinski’s convention for coordinate transformation (he also has —By of Kiritsis),
0 X(7) = —0(r —71)0-X,  dne(r) = —0r(d(T —1)e(r))
and
[0r07,](T) = —(0(7—71)070(T—T2)—0(T—T2)070(T—T1)) Or = f13, = 0(13—T1)07,0(73—T2) =0 (73—72)0ry 6 (T3—71)

Then the BRST transformation is given by:

8 X = iecX

dee = ie(cX)
5:b = €eBa (37)
deC = lece

0B =0

Now let’s take F'(e) = e — 1. Then we get a ghost action
bact 0o F'* — fd7’1dTQb(7'1)0(7'2)(5T2 (1 —e(m))
_ f drb(r1)on J drac(ra)[6(r — m)e(r)] = — J drbe
We enforce this constraint by integrating over B. Now we will have d.e = 0 and 6.b = ie(TX +T9"). Because

we are in Euclidean signature, we have p = ;X = iX and similarly p = —ic (—i because the real time
Lagrangian has term —ibc). Then the BRST current (equal to charge because we're in 1D) is:

. 1. 1 . 1. 1 1
Qp = px0pX + ppdgb = —cX? — z'cz'(—iX + §m2 —be) = —C§X + §m2 = c§(p2 +m?) = cH.
Clearly Q% = 0. As before, the ghosts generate a two-state system. Our set of states is given by

k", 1), |k, ). Following convention, ¢ raises and b lowers. Qp |k, |) = 3(k? + m?) |k, 1) so all states of
the form |k, 1) with k? + m? # 0 are BRST exact. Similarly all states |k, 1) are BRST closed along with
all states of the form |k, |) with k% + m? = 0. So the closed states that are not exact are |k, |), |k, 1) with
k% + m? = 0. We take only the states with b|¢)) = 0. The reason is that all states |k, 1) are physical, and
so we would need amplitudes between such states to be proportional to §(k? + m?) in order for the states
to decouple, but amplitudes cannot have such extreme singularities Don’t understand this. Appreciate
it, and its relation to Siegel gauge..

17. T believe these variations have Kiritsis taking ¢ — —ic in his formalism. They also follow directly from
Polchinski’s formalism. Under a diffeomorphism (55’£-X = —£0X — £0X. These are two copies of the repa-
rameterization algebra developed in the previous problem, and so the commutation relations are the same.
We get, again in Polchinski’s formalism

85X =ie(coX + edX)
Scc = ie(cdc + o) (38)
5cb = ie(TX +T9")
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18.

19.

20.

I see no problem with Q2B giving zero when acting on the X and c fields.
6p(co0X + edX) = ie(c(2ey0X + c(eey0X — cd(eéX + ¢dcX ) — co(eéX + coeX))
and the remaining terms die by the equations of motion. The ¢ variation will always die because we’ve

already shown the transformations satisfy a Lie algebra with Bianchi identity.

It looks like the b field will be nontrivial. If one of the equations of motion is the TX + T9" = 0 then this
will be zero right away. Otherwise, we want to compute (WLOG in the holomorphic sector):

Sp(TX+T9") = 63($(6X)2+2b60+0bc) = ie[%&X&(c&X)+2(TX+T9h)0c+2b d(coc)+0(TX +T9")dc+0b coc]
The purely bc terms cancel. I'm left with

2

Z[(0X)%0c + 0X* X ¢]

o
I don’t know how to get rid of this. I can write it as a total derivative less something proportional to (0X)2dc
and perhaps note that this is just dc times the stress tensor, which perhaps vanishes classically? At any rate,
there is no need to use d = 26 here.

Integrating over o will as usual pick out the zero mode. For T this gives us

Z(2nb,n+mcn +n 4+ me_pbpim) = Z(m —n) : bprmCon

n n
and similarly for the right-movers. To get the central charge we’ll have to proceed as before, noting that
only [Ly,, L_p,] can give a nonzero central term. As before, we expect only a finite part of the infinite sum
to contribute to this. We thus take out the only terms of the sum with m,n having the same sign:

m m
Z m + n m—nCn, Z —2m + n nc—m+n
n=1 n=1
Then our commutators of these finite terms give:
Z(m + k)(—2m + k')[bm,kck, b—k’c—m-i-k’] = (m + k)(—2m + k/)(bmfkcm-i-k’ - b—k’ck)ék—k’
kK kK

I
NgE

(m + k)(=2m + k) (by—kCm+r — b—rcr)

x>
Il
-

Looking at the non-normal-ordered part, this leaves:

(m + k) (k — 2m) — %(m —13m®)

NgE

S bt (m + k) (k = 2m) —

k=1 =
We have
. oL oL _ 2 9 1 < - N 1 "
I8 = 363 X T 380 90¢ T gy XVt Jhede = eI A bede = T + 5T

I don’t understand how other references include a %820.

Let’s do this for the open string, so we are then just calculating the holomorphic sector. We have:

ee}
Logn
Q= > (LY, + iLim — adm,0)Cm
m=—0o0
Note that the a is just from the X component of the theory since by definition @ contains the term : ¢T9" :

already in normal order.
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21.

22.

We now need to consider the total BRST charge Q + Q. Then:
Q% = DL LX] + [L88, LI + (m — n) Lk 1, + (m — n) L, + 20mm40)C—mCim
n,m

This will vanish only if the commutators give no anomalous term. From previous exercises we see this is
only if:
d(m3—m)  (m—13m3)
12 * 6
This happens exactly when d = 26 and a = 1.

+2am =0

We now have Q + @Q that we need to be zero on states. Again, each of Q,Q will no change the level, so their
sum will not either, and we have a (double) grading on the space which they will preserve.

Q = Qo + 1, Qo =co(Ly —1), Q1=c1Ly +e1 LX) + co(b-1e1 + c—1b1)
and @ is the conjugate of this.

At level zero we will again have Q0 = coLé( + 50I/5( . We now have two copies of the Clifford algebra and our
Siegel gauge condition will make it so that we only consider states ||, |,p,p). Now we need ((Lo — 1)co +
_ — — — — 2,2 252
(Lo—1)a) [, 1,p.5) = (Lo— 1) |1, 1,p, 5y + (Lo — 1) |1, T,p, ) s0 we need - = &= — 1 je. the total mass
is m? = —4. We thus have the tachyon state.
Also because by [1p) = 0 for any physical state, we will have {Q,bo}|Y) = 0 = (Lo — a) [¢)) so we have
Ly —1= Lo—1=0 and this gives us the level-matching condition. So the next level we can have a state is
at (1,1).
As in the open string treatment, the most general such state has nine terms:
1) = (C-a1C- @1+ Cap - @—1b-1 + Cac - 163
+ b-1Cha - @—1 + Epb-1b-1 + Epcb—1C1
+ ¢ 1Ceq - 1 + Epc_1b_1 + fccc—lé—l) |l7 lap>

2 ~2
Let’s act on this with Qg + Q1. First lets look at QJg. On the aa term it will give eigenvalue CO% + EOO;—O

while something like the (g pab term it will give eigenvalue co%g + 50(%8 —1). This will be compensated by
the action of the ¢y(b_1¢1) (from Q1) on (gpa—1b—1. The exact same argument can be applied to any of
those four terms - there will always be one the four bc terms of Q1 + Q1 that will give us the extra factor of
1 from its commutation relation with that term in |¢1) (it commutes with everything else).

2,2
So we get a term cq ésf |41 which then gives the p?> = 0 constraint. The remaining term comes from the

c,lL{( + clL)_(l + c.c. action. The c_1L; + c;L_; will each annihilate everything except six terms, giving

¢-pe1C-a—1+Cap peiboy + Cac - pe1ty

+p- a1 A1+ Epp - a1b oy + Eep - a1C +

and the conjugate of this will contribute the conjugate terms. For this to all be zero we need each of the
(i - p =0 as well as their conjugates. We also need &y, = & = € = 0. We also see that (pq = (ap = 0.

On the other hand the general form of an exact state is also given by for the (; and &; arbitrary. Thus
all the terms involving ¢ and/or ¢ are exact and so upon quotienting we get (4e = (pe = &ee = 0. Lastly we
get the relation that we should identify (;¢; = (;; +piC]’- + (/p ie we project out any tensor of the form p®(’

(39)

or ¢’ ® p. This is equivalent to identifying ¢ = ¢’ + &p and identically for C.

So we have eliminated everything except for ¢, (, each of which must be transverse to p and we identify ¢
differing by a longitudinal p component. This is 24 x 24 parameters, as required.

If T have the Clifford algebra C?¢(2), any vector v will have an orbit generated by 1, by, cg, byco, so there can
be no irreducible representation of dimension greater than 4. Further, there is a vector vy annihilated by
b. Consider v1 = cvy and assume it is distinct. Now bv; = bevg = vg — cbvg = vg. So vy and vg span the
irreducible representation meaning that any irrep in fact has dimension 2. Thus, any higher dimensional
generalization would only be (probably direct or semidirect) extensions of this and the trivial irrep, and give
us no new information.

12



Chapter 4: Conformal Field Theory

1. We’ll do this directly. First observe:

limoe 1 (2) = 0
d i v
Tlemoe 3 I f(2) = —wla,
4
d —itD . . (40)
%\tzoe f(z) = x - 0f(x) annoying that there is no -
d

£|t=06_itK“f(a:) = _($25u —2x,(x-0))f(x)

The last one is exactly the first-order expansion of % Note the dilatation and special conformal

generators are the negative of Di Francesco’s (SO ANNOYING OGM).

Now let’s do the commutator

[Juw p] =—0 ( dy — 0,0 ) = _(nupau - 77Vpau) = _i(nupau - Uupau)

[Py, K] = —0,(2%0, — 22,2 - 0) = — (22,0, — 20,a™ 0\ — 22,0,05) = 20Ty, — 2in, D
[Juvs Jpo | = —i(Mppdve — Nuodvp — Mupdue + Mvedup) < Everyone has done this one like 20 times
(s Kp] = (WpK — NwpKyp)

[D,K,] = 2" 0,220, — 22,(2"0))] — [220,, — 2z,2 - O]20)

=Zm xlﬁ“ — 20"y (x - 0) — 22, 42=0) — 220, + 2020 =
[D,P,] = —0,2%0) = —0, = —iP,
[Juw, D] =0

The way we did the [J, K| commutator is by noting it should look the same as [J, P], since P is just
translation about the point at co. The [J, D] commutator follows because rotation is scale invariant.

2. We see immediately that the J,, can be mapped to the M,, corresponding to a SO(p,q) subgroup of
SO(p + 1,q+ 1). The full group has:

[M;wy M ] = i(n,upMucr - nuaM nupM + nuchup) (41)
Note the commutation relations of J with P and K gives us:

1 . 1 1
[Js 5 (Kp &+ Pp)] = —i (Wp2(K £ Py — iy (K & P)“>

Writing these as M, 441 and M, 4 respectively, we see that we get the second and fourth terms nonzero and
we get exactly . Note at this stage I didn’t need to do such linear combinations of K and P. That is
important for appreciating that we want:

[(Mua; Myay1] = —inuw Maar1 = —inuwMaar1 = i, D
and we get exactly this:

S0 = Py (5 + P = (8o ) = [Py Ko ) = i D

We needed that combination so that .J,,, wouldn’t appear. As required [Ju,, D] = [Myy, Mgq+1] = 0 for
pe0...d—1. I’m getting the wrong sign. Perhaps our friend’s convention is off.
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3. This comes from noting that for f = z + €(z)

<Z§>A (Z)A —1= (140021 + (_96)A —1 = Ade + Aode
= ®(2)(1 — (Ade + Ade)) = ®'(f(2), f(2)) = (1 + €0 + €0)P'(2)
= (1— (Aﬁe—l—Aée—i—e@—l—Eé)) (2) = ®'(2)

= O(2) — ?'(2) = (Ade + €0 + Ade + €0)®(2)
How weird... think about this in terms of active/passive. Contrast with Di Francesco.

4. As in the 2-point greens function case, note that:

N
oGN =0=> (Z €(2i)0z; + Ai0e(2;) + C-C-> G =
i=1

We can WLOG look at just the holomorphic sector (set € = 0) Now first set e(z) = 1. This directly gives
3. 0;GN =0, as we wanted. Next, take €(z) = 2. This gives >;(2:0; + A;)GY = 0. Finally, take € = 22 to
get 2..(220; + 22,4;,)GY = 0 as desired. Note in all these cases, we are exactly performing the global SL(2)
transformations, so these Ward identities will always hold.

5. The first Ward identity tells us that the function can only depend on z19, z93. Then the next two can be
written as:

(2101 + 2202 + 2303 + BA;) f(212, 023) = ((21 — 22)012 + (w2 — 23)023 + LA;) f =0
(x%& + x%@g + $§83 + 222, A;) f (212, 223) = ((x% — $%)512 + (m% — x%)@gg + EQaziAi) f=0

We can subtract out da3 to get the differential equation:

X1 + X2 2x;
0= -1 0 —1)A; — 0 A Ay — A
<x2 + 2 ) r12012 + Z <x2 T+ s > i (12 + 223)T12012 + (12 + T12 + 223) A1 + T23(A 3)

= 0= (.%%2812 + Jjggl‘lgalg + 2$12A12 + $23(A1 + AQ — Ag)f)

Now write f(x12,x23) = €9(u, xe3) with u = logz12. This substitution gives the ODE:

logziz  9A.eu A Ao — A
(" + 223) g (u) + 2A1€" + 293(A1 + Ay — Ag) = 0 = g(u) = f du22Le 113622(+ ;-i- 2 3)
" 23

This integral can be done and gives:

C C

T12 + T23)

A1+A2—A3 A1 +A2—A - A1+A2—As Aj+Az—As
T1o ( O R T T13

We can do the same for do3 and get the general form:

A123
A1+A2—A3 A1+A3—-Az As+A3—Aq
T12 T13 a3

X c.C.

for A123, A123 undetermined constants (call their product Cia3).

6. Again specialize to the holomorphic part. We see GV depends only on relative positions 12, 213, x14. We
can WLOG take G@ to have the form:

f(z1, 22, 23, 24)
A12 A13 A14 A2z _NAos A3zg
212 %13 *14 23 R24 <34

G(4) (Zb 22,23, Z4)
Here, because f is arbitrary, we have not made any assumptions. The Ward identities imply the following:
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e f depends only on the relative positions z;;
° Zz’<j Ai]‘ = A with A = Zz A; and Zz zi0;f =0
o Ao+ Aoy +Azy =241, Apz+Ap+Az =202 Ap+A+Ay =243 Ap+Az+An =24
and Y, 220,f =0
These give 4 constraints for the 6 A;;, so the system is underdetermined. The most symmetric solution is
given by:

Az‘j:Ai—FA]‘—%A

It remains to find the general form of f.

e The first ward identity gives us that it can only depend on the z; through z;;.

e Further, it must transform trivially under dilatation, so we see that it can only depend on ratios of the
zi; with an equal number of each z;; in the numerator and denominator.

e Under special conformal transformations, each such ratio will transform as =< o 2z 4 2z — 2k — 21),
and more generally
[ 2 = [ 2 x S, + 5, — 0~ 2)
o “kala a “kala g

The third Ward identity shows that f must transform trivially under these, and so f can only depend
on ratios where each z; appears an equal number of times in the numerator and denominator.

In total: we need ratios of z;; with an equal number of z;; in the numerator and denominator, and each z;
appears the same number of times in the numerator and denominator. All such ratios can be obtained as

rational functions of:
212234 %4724

)
213224 213%24

But we see that y = 1 —x so in fact the most general such function is any function of x alone, as was required.

7. With conformal invariance (rescaling in particular), an infinite cylinder has no moduli, so you can set its
radius to be whatever you like and get the same theory.

8. Let’s perform the OPE within the correlator:

(By(21)®;(22) D1 (23)) = 2212 TR TR O (y(2) Bi(23))

By the orthonormality assumption of the OPE, we then have

Se Cijk(212)
(Py(22)Pr(23)) = ToAn oA, (Pi(21)®;(22)Pi(23)) = 9p 2R, Dt AN AR, Ay
Z23 %23 %93 %23 " ?12 212

9. We assume that u « 1/r. The integral is in fact real, and we can approximate it by

cos prcos pdpe 3 (preos(0 due™ 1 JQW 99 9
d? do o~ =—| dor 0
R e e L R L P el
It is known that I'(0,e) = —y — loge so up to a constant (that can be absorbed into the redefinition of )
we get;
;1 2 & 2 2
—75(2ﬂ) log (o — y[*) = =7 log(i*lz — y*)

10. By Stokes’ theorem its clear. Let ) be any disk enclosing the origin:

f d?2001og |2|* = zf dz A dz00log |z|* = —i 45 dzdlog|z|> = —i ¢ — =27
“ @ Q2 oQ

15



Alternatively we could put in a regulator and evaluate this directly:

2
— z 'LL
d?zodlog(|z|? + p?) = f d?20—5— = J 27—
j@ o P+ Joo (2P +p2)?
As p — 0 this approaches 0 everywhere except for the origin. Taking |z| = r and integrating in polar
coordinates (note d?z = 2dxdy = 2rdrdf):
o 2
2T x 2 % f % =27
o (r*+p?)

as required.

. We have:
1 dr 68 1 1
*E=g 90X X = Ty = ————— — — | 0 XX — Zgap0cX0°X
47T€§ J "g g9 0Oq b = Lap \/jg5gab £§ < a b 2gab c )
This is clearly traceless. Let’s specialize to the holomorphic sector to get T'(z) = —%2 : 0X0X : and of course

this is the non-singular part of the 0X(2)0X (w) OPE as z — w.

. The scaling dimensions of conserved currents don’t change.

For a current to be conserved, we must that the surface operator ﬁ §dzJ(z) is topological (independent of
contour). Applying dilatation z — z/\ on this does not change the operator, so long as it does not pass any
operator insertions. So we have:

1 1 Z _
— P dzJ(z) +cc. = o fﬁd)\J (z/A, Z/A) + c.c.

21

And thus we get J(z,2) = A"1J(2/A, 2/)), and we get J has scaling dimension 1.

On the other hand for T#”, we have the conserved charge:
P, = fl; dn*T,,
Applying dilatation, we see from exponentiating the commutation relation for [D, P,] that P, = P,/ so

1 (dn*_, _ ,
P, = ¢dn'T,, +cc. = X TTW(z/)\, Z/A\) 4+ c.c. = P,/\

-
)

giving us that
Ty (2,2) = X215, (2/X, 2/N)

so T properly has scaling dimension 2.

N —
<H 6ipX(Z’2)> = JDXe_%rleESdQ'Z&X&XHSdQZX(Z) > pid? (z—2;)
n=1

_ 27”5(21%)6—% §d*0d?c’ J(0)J (/)G (o0") _ 27”5(21%)6_% 321 pipi (X (20) X (25))

Appreciate both the UV divergence (from coincident points in the correlator) and the IR divergence (from
the correlator going as a logarithm) will cancel (think Kosterlitz-Thouless/Mermin Wagner stuff here):

02 2
(2% Ep)* 25 Xt

Momentum conservation removes the IR, and if we normal-order the vertex operators within the product we
will not get the UV divergence.
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14.

15.

16.

17.

By explicit calculation:

N —3a(0X)?(w)  4(0X)*

T(2)[(0X)*](w) G o)t Goop T
—2« 2 w 2 2 w
TP X)) ~ s + 4(‘9(); ‘ fj){f ) 4 4<(i fzug )
—o 2 w 2 w 2 2 w
T(2)[* X 0X](w) ~ - _3w)6 N 6Ej?f)w()4) N 6(8()5(3 i)); ) 6((62 )_()w)(2 ) .

where + ... are terms that are O((z —w)~!) or higher powers, which will not affect the non-primary terms.

We see that the combination: 3
ox) + Sdxox — =
( ) + 2 4o

(0°X)?

gives a primary operator of dimension 4. Along the way I noticed that there are no primary operators of
dimension 2 or 3 that are finite sums of products of derivatives of 0.X.

I can’t help but think that this might have something to do with the Schwarzian.

We look at:
° S n=0 .
\/§ 0O [z n (ip)2 :X(w)n—l : top 1 .
_ZZZ(_)EZ—U} n! _ﬁz_va(w)-kﬁmte

3
Il
=}

Directly:

Z (mz:lf::)m XM (z) s XM (w) -

First lets look at when n = m and say we contract everything. Then we need to contract all n X(z) with
all n X(w). There are n! ways to do this, and each produces a factor of —% log |z — w|?. The diagonal
components thus give the sum:

1 [ abl? "
2 <a Slogz—wP) =\z—w\ab£§/z

n 2
n

Now a more general term, say : X (z)" :: X (w)™ : where we want to contract k < n,m of them we must

choose k X (z) and kX (w) to contract the X(z) with and then figure out the order to contract those k

amongst themselves (k!), so we have (Z) X (’]’;) x k!l = % ways to do this. The contraction again
;yn—k (;pym—k

gives the log® term as before, and now we have a remaining factor of % X ()R X (w)m R

For each k-contracted set which gives the log® term, we should therefore multiply it by:

0 : \n—k(:p\m—k ) )
Z ((Tja_) k)'((:j;) k)' :X(Z)n_k . X(w)m—k — ezaX(z)+sz(w)
m,n=k ’ R
So the OPE is:

. piaX(2) .. giaX(w) ._ 2 — w’abZZ/QeiaX(z)+ibX(w)

Directly: X ;

We have no ﬁ term, as would otherwise be required
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18.

19.

The stress energy tensor is:

T(z) = —%  (2)0(2) 1= T(2)H(w) = ——h(2)(—) + 10y(2)

1 1 oY (w)
2 (z—w)Q) 2z—w 2(z—w)

s¢(w) +

so this shows that ¢ is primary with weight 1/2.

I'll instead have the notation w = g o f(z). For T(z) = (f')2T(f) + {f, z} consider h = go f. Then we have:
T(z) = (f')’T(f) + C(f) = (f)?((¢)*T(go f) + Clg o f)) + C(f) = (W)*T(h) + (f)*Clg) + C(f)
So we get the desired cocycle property:
C(h) = (f)*Clg) + C(f)
Now, we need C(f) to have units of [2] 2. The most naive guess is to let C'(h) = h”, but this gives:
W= (f)g" + "9

If that last factor of ¢’ were not there, we would be done. Instead we must think more deeply. We also need
the Schwarzian to include a term linear in the third derivative, and the only such term is a constant times
f"/f". Let us look at how this transforms:

h/// n " N "
h/ g/ g/ f/

Now what stops us is the cross-term. The only terms that we can add to f”/f’ that involve less than third
derivatives in € are f”, (') (f"/f")>2.

There is one last term we could have built out of terms of order < 3 that would give units of [2]72: (f"/f")?,
however in the limit of an infinitesimal transformation z + €(z), this would give (€”/¢”)? which is nonlinear
in €, so this term cannot contribute. .

(k)2 = (f'g’)? has none of the properties we’d like, and adding it would break the term that (f’)? multiplies
being proportional to C(g). Similarly, adding f” would break the term that (f’)? doesn’t multiply being

proportional to C(f). What is left is (J;—l,/) This transforms as:
B 2 g// 2 f// 2 2f”g”
(- (G %
g S g
The cross term is exactly of the form of the cross term in f”/f’, and so by appropriately subtracting:
W3 (N (903 (SN LB (1Y
h! 2\ - g/ 9 g/ f/ 9 f/

Another way to do this is to first look at the general nth derivative of the global conformal transformations
(the Mobius transformations). Note that:

_az+b (2) = ad —bc 1 Lo n!(—c)" !
“erad TVT (cz+d)?2  (cz+d)? =9 = (cz + d)ntt
In particular:
—2c 6¢c2
" _ m _
= Grar ¢ Gy

n

The simplest combination of ¢/, ¢”, and ¢” that can give zero is:

2

(g")? - 39" (2)d'(2)
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20.

21.

22.

We want this to have units of [¢g]/[2]? and to behave as €”(z) to leading order when g = z + ¢(z). The only
way to do this (which fixes overall normalization and all) is to divide through by —2/3(¢(2))? and get:

9" 3 (g
g 2\9)
It is easy to check that this satisfies the cocycle property for composition, namely:

(922

{z3,21} = <621> {23, 22} + {22, 21} (42)

Since for h = g o f we get:

" " " " el N N3 m /) N2 1 2
(Y = Dol R 8 (P URSN oy 37— (g P 100

h/ h/ f/ f/ f/g/ 2 f/g/
I will use shorthand ( ) for %—ZZ and ( ) for 2 02 , also T will just write I'Z,, g.5, 9% as I', g, g~ ! respectively.
Now )
/
F=glog = U=gVagd=ygo(( )e)=()r-()(°
z z z zz
So

N 2\ 2 9 N\ AN TA
M~ = I —2r
o= (2 - (G) () (2) ()
z z N2/ 2\ 2 N2/ \2/2\? AN
T = 0 I — = o' - T + 2 —
2! 2! 2! 22z 2! 2! Z2Zz 2! zZz 2! 222
To cancel out the T’ term we look at 20T — I'2. We see this transforms as:

20T —T"° = (j/)z(zar ~T?) +3 (Z/>4 (j;) . 2(2)3 (ZZZ/Z) - (Z/>2(20r —T? - 2(2,2})

So that
.- S@or-r? - (7 2(T VR A S S Y S 2(T — S (20T -1%)
DY "\ VT 12V Tt T L ) VT gy

So indeed 7%, = T, — 57 (201 — I'2) transforms as a tensor.

We have:
—VT.z = V1., = g76T = —ﬂgzgé[%(g‘l@g) —(97199)%] = 204 *[200(g~"0g) — 2(g~ ' 0g)d(g~ " 09)]
We can recognize this as:
2z _ 2z — i — i — _é
ﬂz (ORz» —TZ,Rz,) = 242 ViR = 5 VR = 2453_ 2aR

so we have A = —¢/12

The first part of the action is truly invariant. Let us look at how R changes under Weyl rescaling:
—2e Xg71o(eXg  0(eXg)) = e X(R — 297 100x) = e X(R — 200%)

Consequently: /—gR — /—g(R — 2V?Y)

So the action part will transform as:
1 1 a
S1(9ape, ®) = SL(9ap:0) = 15— | P*E/GOVX = S1(905,0) + 5~ | d*63/99°7 CadbOsX
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23. The most general variation of the effective action is:

1 1
SlogZ = —— f d*¢\/g(a1R + a2)6p — — | dé(az + as K + aznV,)d¢ (43)
47'(' » 47'(' on

The counterterms that we can introduce are:

| @evabn+ [ dea+rmo) (44)
> 0

and the variation of the counterterm action:
1
f de\/§515w + j d&(ba + b3n0,4)ow
5 2 Jox

So we can use this to set a9, as, a5 = 0. Further, we know the bulk integral’s variation is in fact:

c

SlogZ = —6Sepp = — fd /G Tapdg™ = —— Jd%\rTaaqa = d*¢ \JgROp = a1 = I3

Now let’s start with a flat metric and do two changes:

55,8, log Z = —i f d2€,/G 5oV 20y — % fdg\/§5¢2n“8a5¢1

= 4 42 /G % $30a0 b1 + (— - —) f dE /G dpan®Oad by
Note that the second term is not symmetric under é¢, <> d4,, and so we must have the counterterm 7= = 5.
A variation of this argument can be used to show that c¢ is truly a constant, independent of any worldsheet
coordinates.

24. Take the map 5= L 1og 2, mapping the plane to the cylinder of circumference L. We get:

. 9l 27r 9 . c 1 L\? omz\ 2 . c

So the zero mode of T is modified. By T has the expansion D L,e 2™ 50 we see Ly gets modified
by —o7

Because Lg is a codimension 1 operator, it will get modified the same way, whether on the cylinder or torus.

O dnlFy W
£ dofon

= e

Ny

1
—— e ——

T

e <

3

25. Each raising operator L_,, acts by raising the level by n, and so assuming each one gives a unique state not
expressible in terms of the action of the other L_j, we get that it will contribute:

l+q"+¢"+- =

1—qgn
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26.

27.

28.

to the partition function. All together these give

A—c/24
1 Tr[GZWiT(Afc/24)] _ q /

- = = —=—"—""H-¢C.

[Too (1 —gm) [T (1 —a™)
This also shows that at level n there will generically be as many states as there are partitions of the number
n.

Consider a nontrivial state |h) so that L, |h) = 0 for some n sufficiently positive. Then:
2
-1
0= (H L ) = (bl (Ve 20m) 1)

If ¢ = 0 we get a contradiction unless either |0) is null (and thus decouples) or otherwise h = 0, and so we
get a vacuum state.

I think we need to add the assumption of irreducibility to have a unique ground state (ie a counterexample
would be TQFTs with multiple ground states).

It is enough to show that Li and Lo acting on this state give zero, since then all other L,, can be obtained
by commutators of these two. Indeed:

Ly(L—2— *L2 1) [1/2) = (3L - Z(2LOL71 +2L1L0))[1/2) = 3Ly — z(%ﬂ +4L_1Lo))[1/2) =0

2(22 - 1)

Lo(L- 2—*L2 1) 11/2) = (4Lo + 12

¢ = 23(Lala + LL 1)) [1/2) = (4Lo + 1 — o Lo)) [1/2) = 0

The null state’s field must satisfy:

2
(62— 3£2,) o T ) = [Z (o~ o) - f’ljw] WolTow) — 9)

7

For the three-point function (holomorphic sector) this gives:

[ 1/2 1 1/2 1 ‘82_362} A _

01 + + -
(w — wy)? + w— wj; ! (w—w2)?  w—w; (w — w1) V2 (w1 — we) V2 (wy — w)Y/2

This gives:
N (w—w)?
16 (w — w1)5/2(w2 - w)5/2 B

which gives A = 0. We could have inferred this from fermion parity.

Next, for the four-point function, first note that all the i) have the same scaling dimension, so WLOG we
can write this as:

p(21) Y (22) 0 (23)0(24)) = 1 h<zl2234>

212734  \ 213224
plugging this into gives a complicated-looking differential equation, but this can be simplified substan-
tially by taking z; = 2,20 = 0,23 = 00,24 = 0. Notice then that z here is indeed the cross ratio. We then
get the simpler differential equation:

229(2) + 2(1 = 2%)g/(2) = 32(1 = 2)%¢"(2) = 0

This can be solved in terms of known functions (we should more specifically give boundary conditions by
specifying residues of g(z) at z = 0,1,00). All in all we get:

22—z+41

9(2) = ——
Thus 1 1 1
W(2)Y(21)Y(22)Y(23)) = + _

212234 214223 213224

exactly as we would get for Wick contraction.
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29.

30.

31.

Assume it is not primary - then it is a descendant. By positivity of scaling dimensions, it must be a descendant
of a field of scaling dimension 0, but as we have shown two exercises ago, the only such field is the vacuum
|0>. The vacuum is translation invariant 0,1 = 0 and so it has no descendants of scaling dimension 1. (It
does have T as a descendant of scaling dimension 2 under 021).

Assume z > w. On one hand,

F[T(2), TP (w)] i= T (2) T (w) = > [T, Jole ™ e

m,n
On the other
Gab ZfabJC WA T
by b,—2 - rab —-m—1_-1
JY2)J’(z) = (z—w)2 o ZmG“ ( > + Z if I w2 (;)
_ ZmGab —1ym—1 + Z Zfabjc (m— n)flzfnfl
_ Z <m5m+nGabw—m—l —n—1 —I—Zfab m+nw—m—lz—n—l>
m,n
so we get:
[T erz] = MOy 1nG? + ifgbjr(:rL+n
Rewrite the first part of the action as _W §d?¢ Tr[(g~09)?]. Now note:

§(g~'0g) =g 'osg—g g9 'og

Then we can write the variation of the action as:

1

—53z | P (97" 0u0g — g7 b9 97 )9 9] =

d*€Tr | 69 | 9! 0"gg™") + 9 0ugg™ 099"

g~ tougor(9~1)

222

2 -1 -1
2)\2jd£Tr 596“( 0 g)]
So we see that we must have g_} 0ug be a conserved current if we only had the first part of the action. In
2, % com:edinates we have 0J% + 0J7 = 0. We would like both J = J? and J = J? to be separately conserved
0J = 0J = 0. However, this is equivalent to also having €#¥J, conserved. However 0,,.J, — 0,J, = —[J,, J,/]
gives that 0, J, = —e'J,J, # 0 for nonabelian algebras.

On the other hand, the second term has variation:

ik

& d Eeapy Tr [(9‘10“59 —9‘1599‘15"9)(g‘léﬂg)(g‘lmg)] + perms.

this will all vanish identically as an action on B, since Tr(A A A A A) is already closed for our 1-form
A = g7'dg. On the other hand, the first term in parenthesis contributes a boundary term when « is
transverse

ik L _ ik - _
8f d*€ep,Tr(g 699~ 0%g(g 1 07g)) = —5 | d%€epyTr [9 1590 (g 167g)]
T JoB T JoB

Appreciate the difference between this and the factor of 3 in Di Francesco. I believe we only account for 1 of
the 3 terms, since only 1 of the 3 indices will give a transverse direction.

This gives a total equation of motion of:

B ik e
ﬁa“( 18#9) - 8771_5111/6”(9 18 g) =0 (46)
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32.

33.

34.

Taking the basis z, z, 0% = 20z, €,z = /2, we get:

ik\2

_ _ ) _ _ ) _ kA2 _ kA2 _
[0:(g7 " 0:.9)+0-(g 1829)]—7 [i0:(g7"0.9)g™" —i0.(9 " 0z9)] = (1 + 47T> o=(g 1azg)+<1 - 47T> 0.(g " 0:g)

When A\? = 47/k (meaning k& must be positive) the second term goes away and we get the conservation law
0J,. Taking the conjugate of this equation gives the other conservation law.

d(g~'dg) =0— —0d(dgg™") =0

In particular the classical solutions factorize into the form g(z,2) = f(2)f(2). It is also quick to show that
9(2,2) — Q(2)g(z, 2)Q(2) (for Q, Q two independent matrices valued in the same rep’n of G) keeps the action
invariant, and so we see that the G x G classical invariance of the action is enhanced to a full G(z) x G(z)
invariance. This is the real power of WZW models, and should be appreciated.

Importantly, the 3D action does not have any metric dependence. For the 2D boundary we have:

e | AEVeg" Trlg " 0ug 97 0]

this gives a stress tensor:

. L g s
TMV = )\2 <TI'[ (7Mgg 15Vg]— igul/g BTr[g 150&99 1{},89])

we see that this is traceless. The holomorphic part is:
2 k a ja
_ﬁT r[J*] = J J
the constant out front can have a field strength renormalization from its classical value (because the J are
not free fields), and so we would not expect it to agree with the one given in the definition of 7T'.

Give another reason for this discrepancy. Try to account for it.

This one is direct. Take z > w

[J9( ZJ“ "R (w) = Y2 (%)"Tinj(w)

n

and so we get:
I8 Ry (w) = w™ TS Ry (1)

1
2(k + h) ;ﬂ

Appropriately shifting, we see that L,, =

We have:

l\z

—2—(n+m) . Ja Ja . ZLme%rm
k

m * Jmind—pn 1 as required. The only term here that doesn’t
give zero when acting on a WZW primary is J,J§ which acts as Jil’lg and this terms appears twice, so
we get that

Ixi) = (L—10s5 — ot BTZJE Ly

is null. But we also have that:

{(J2R(z1))R(22) ... R(z2n)) = L dz JY2)R(z1)R(z2) ... R(2n)

2m zZ— 2

—— Z fﬁ “ZRE)RG) - SR . R(w)

T omi Z fﬁ Z— 212 — 2% R(z1)R(22) ... TR (21) - .. R(2)

k#1;

Tinj( k)
kel ST Rk
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35.

Here we chose to do this with R(z;), but we could have picked arbitrary z;. This means that correlators

must satisfy:
N N
1 TrTY
0z — = : J R =

where T} acts on the ith primary field in the correlator.

I think its instructive to do this one out in detail. First let’s take a look at just Tiz(2z) acting on any current
J%(w). We want the singular terms:

— " _ 1 1 dx 1 “ "
m(Jbe)(Z)J (w) = 2(k+h)27ri§;x— z(‘]b(‘r)‘]b(z)‘] (w) + Tz )Jb( ) J% ()
__ b1 fde G ifer e (w)
_M%iffx—z[((x—wﬁ—i_ T —w >Jb(z)+‘]b($)(z‘—’$)]
_ 1 G“"Jb( ) Ly St + I w)
- (Gup 2 o )

but note that last term will have

2G* . 2i fepaJ(w)

J(w)JP(2) + JP(2)J¢(w) = - + (JCT) (w) + (JPT) (w)

(z —w) w—z

The first term will cancel when multiplied by the anti-symmetric fabe, as will the last (regular) term. The
second term will give fopefevda = — fabefdbe = 2hdqq, by the definition of dual coxeter number. On the other
hand we have Gu, = kdyp so altogether we get:

1 (k:+ﬁ)J“(z)_ J(w) +(3J“(w)
E+h (z—w)? (z—w)?  (z—w)

as we wished. Note we could have run this logic in reverse, and demanded that a stress tensor must its OPE
make second term involving 0.J% have coefficient 1, giving the required normalization of (2(k + h))~!. Now
note that if we define TH(z) := m Yacr (J*J)(2), then as long as we are taking the OPE with J* for
a € H, we see that the singular terms are exactly the same. Indeed, we get the same factor of kdy, from the
quadratic OPE term, and the sum over fup.fape restricts b and ¢ to be in H by the subgroup property, so we
get hy. Thus (Tg — Ty)J® = T/ J® is regular for a € H.

For the next step, again lets first just look at the singular terms in the ToTe OPE:

1 1 dx
T(2)T(w) = a(z).J
()T (w) (k+m2m§ T(2)J" (). ()
1 1 x aJ“( )
= J¢ J¢ >
2(k + h) 2772 w[(z—x z—x ) (w) + T (@) (w x)]
_ 1 1 kdim G 0J%(x) J*(w)
- 2(k+h) 27m [z—x )2+ z—x + (W a)
/2 N 2T (w N T (w)
w2 ) (Z—w)
here we have ¢ = k‘; BG as required. The same logic applies to the Ty (2)TH(w) OPE, where we would get:

z—w)? (z—-w)? (z—w)’ CH:k+BH
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36.

37.

Now it remains to evaluate:

To(e)Tu(w) = 5 sami o 2, T @)
1 1

dx J*(x) 0J%z)\ .. w RV
2(kz+f_lH)2m'§;x—w[<(z—x)2+z—x)J( )+ T (=) )]
1 1 dz kdim H 0J*(x) J*(w)

2(k+hH)27riff;a:—w[(Z_x)2(x_w)2+ o + (w x)]

_ cr/2 2Ty (w) N 0Ty (w)

(z—w)t (z-w)*  (z-w)
so indeed Tg(2)Th(w) — Ty (2)Tu(w) = Te/a(2)Th(w) has a regular OPE. This further gives us that
T m(2)Ta/r(w) has singular part coming from Tg/q(2)Te(w) = Ta(2)Te(w) — Ta(2)Ta(w), which gives:
(cc —cm)/2  2Tgm(w) N Tg/m(w)
(z —w)? (z —w)? z—w

So a G theory can be re-written as a set of “decoupled” CFTs with stress tensors Ty and T/ . Now take
G = SU(2),, x SU(2);. This theory have total level m + 1. So now take the diagonal subgroup SU(2),,1.

We see that the G/H theory has central charge:

m—+1+2 m+2 m+3  (m+2)(m+3)

e mx3 1x3 _(m+1)><3_1+ 3m 3(m+1) 6
G T ma2 T 142 B

exactly coincident with the prescribed formula for the minimal models. So, we expect at m = 1 to get the
Ising CFT.

We have ' . 4 ' o
V(=) = Y e T s @l (w)y = Y Wiy 2 R

n n,mez

0

= 2 Wty z T R

m=0

& S wym 1
| 5]
dij z4+w

- 2\/zw z —w
the 1/2 comes from the zero-mode Clifford algebra {1§, wg} = 64,

We can get this directly from the Ward identity:
0 0 A A 1 A
2y B4 5 + 2> =
Z1 — %9 Z1 — 23 (21 — 22) (Zl — 23) (

(T(21)d()0(23)) = (

_ 2A T 2 2 2A-2"
23 — 23) Z12%13%23

Next, we can write:
X|1 XY = lim w22 (0| X (1/w T(z) X(0)]0) = lim L_ZA = —

Finally, let’s look at the O(N) fermion. We have that T'(z) = —3 vazl o’ : so we get:

oy . w1 1 N, 1. N/6
— 22N lim | 0y - y——— L
SIT1S) ZEzzleI’Llu ¢ <2«/zwz—w> ¢ (z —w) 2( 8w2) w?
—

Normal ordering constant

as required.
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38. This is direct:
DyX = (8p + 00.) (X +i0%¢ + 100 + 00F) = it) + 00X + OF + 000, DX = ith + 00X + OF + 000

Now we only want the 86 terms of (DpX)(DzX) as everything else will vanish in the Berezin integral. This
gives:

L 7 Jd%fdéde 00(0X0X — F? + ipoyp + inporp) =

2 JdQZ (0XOX + 0 + inpov))

2702
we have dropped F? because it has no dynamics or interactions with X, whatsoever.

39. Expanding A o
P X = eipu(XHHiOYH+iOYE+OOFN) _ (1+i0p - ) (1 +ifp- ) (1 + 60p - F)eipX

Imposting EOM’s gives F' = 0 right away. Now for the rest:
Dy X" DXV ePX |5 = [(0XFOXY + ipHd” + ih” OH) + (10X YM)p - b + (10X " )p - X
again using the equations of motion we get rid of the 04, di) terms. Now we get:
[0XHOXY + (10X H)p - o + (10X " )p - PP ™ = (0X* +i(p - P)*)(0X" +i(p- )y )X
40. Following the same logic as the NV = (2,0) case, we can now compute in the R sector:

- 4k 1

for this to be positive we need:
20A —k/4) = 0= A > k/4.

In the NS sector, we have a positivity condition on
(G210 Gy} = —2085J5 + 20%° L
The positivity condition on this operator translates to the matrix:
2A1 — 2025
being positive semidefinite. But the determinant of this matrix is given by
A2—|J‘2:A2—j2
So for this to be = 0, given that A > 0, we need A —j >0

41. This calculation is also direct:

—L(0X)2(w) 0(—%(0X)*(w)
T(2)T(w) = 7 1_/3})4 49 fgz —7 + ( 4; — )
0 Q 2 0 Q -2 @ -6
TR e T N Rt w228 )t

_ 1201+ 3322) N 2T (w) N oT (w)

(z —w) (z—w)? z—w

we thus get a central charge equal to 1 + 3Q? as required.
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42.

43.

44.

The integral over the zero mode will give no contribution from the dX0X term in the action and instead

will just:
JDX exp (— fd%\/ﬁ <47T£Q\/§R(2) — inZﬁQ(z — zz)) X(z))

This is a d-functional on the p;. We have:

Q .
1) [WR(Q) — z;pi(SQ(Z — zz)]

but this can only happen if, after integrating over z, we get:
Q : :
— Y =1 = /20 ;= .
NG E pi s % pi = Qx

Give an interpretation of the vertex operators as “contributing curvature”.

Note that: 4
(L, J—n] =nd_pm—n + §m(m — 1)dmn

Take (m +n) = 0 and look at the central term. We see that we cannot simply identify L, = L_p,, JI = J_n
because then the commutation relation above has a central term —mA off from the correct central term. This
can be corrected by redefining just the zero mode Jg = Jo + A. We see that then the hermitian conjugates
satisfy the same algebra. We see sufficiency. Is this necessary?

We now show that we cannot change the algebra in any other way and keep the commutation relations.
Firstly, we cannot add a (necessarily zero weight) central term to any other J,L = J_,, relation since only
Jo transforms with 0 weight. In fact we cannot form any linear combination J,, of the J,, and expect the
commutation relations to hold, since each J,, has different eigenvalue under Ly. We can thus only rescale
the J,,- and applying [L1, Jp,] shows that to keep the commutation relation, this rescaling must be the same
for all J,,, - but this would necessarily modify the central term by changing the charge A.

The same logic applies to the Ljn. We cannot mix Ly, for different m to define Ljn since they have different
weight under Lg. There is also no consistent way to rescale all of them and keep the commutation relations
the same. The only possibility is adding a central term to the relation L(T) = Lg, but any redefinition of this
will modify the central charge of the conjugate theory.

Noting that

b2 cl) = e(2)bu) =
0b(z)c(w) = de(z)b(w) = _(Z_lw)Q
ob(z)0c(w) = dc(z)0b(w) = _(Z_Q,w)g

we can just directly compute the TT OPE:
T(2)T(w) = (=Ab(2)0c(z) + (1 — X\)db(z)c(2)) (—Ab(w)dc(w)

(w) +
= M(boc)(2)(boc)(w) + A\ — 1) [(bdc) (2)(be) (w) + (0be)(2)(bdc)(w)] + (1 — X)?(dbe)(2)(0be) (w)
0 )
2

—_ o~

_ RN DA R (b)) + b)) | (L= A@b(E)e(w) — o(2)ob(w))
(z —w)? (z —w) (z — w)?
A1) ﬁc(z)ﬁb(wz jzb(z)ﬁc(w) —oA(A-1) b(z)c(é)_+£§§)b(w)

The first term on the last line will die since we can take z — w and ignore first-order terms capturing the
differences. The second term in the last line will become:

ob(w)c(w) + de(w)b(w)
2

?b(w)c(w) + d%c(w)b(w)

—2A(A—1) )

—AN—1)

G- (47)
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45.

the second two terms in the first line contribute a (z — w)~2 term of:
N2 (20c(w)b(w)) + (1 — A)2(23b(w)e(w)
this will combine with the (z — w)~2 terms in to give:
2 [Adc(w)b(w) + (1 — N)db(w)c(w)] = 2T (w)

as required. Finally, the (z — w)~! terms all collected give coefficient (dropping the w dependence, as it is
understood):

N2(—=0bdc + 0%cb)) + (1 — N\)2(8%be — dcob) — M\ — 1)(%be + 02ch)
= —\?(QbdeA+-0cdb) — 2M0bobe + 10bdc + [A? + A(1 — N)](0%¢b) + [(1 — A + (1 — N)](0%be)
= Xo%ch + (1 — N)@%be + (1 — 2\)obdc = T

as required. So altogether we get exactly the stress tensor OPE needed to satisfy the Virasoro algebra with
central charge:

2N+ (1=N)2 440N —1)) = —2(6)2 =61 +1) =1-3Q%* Q= (1-2)
The BRST current is:
JjB(z) = C(Z)TX(Z) + (bcoc)(z)
There are several OPEs to do. Let’s start with the easier ones:

cX/2 2T (w) 0T (w)
(z —w)4 * (z —w)? * z—w]

(CTX)(CTX) ~ ¢(2)e(w) [

o0 n X
--3 E P cwponetu) | 22+ 2 T (15)
o %CX c(w)dc(w) B }%CX c(w)o?c(w) B lécX c(w)d3c(w) 2T (w)e(w)de(w)
(z —w)? 2 (z—w)? 6 z—w z—w
Next:
(%) (bede) + (bedc)(e1) ~ T 2)eIow) | cl2)oe(:)T7 (w)
N 2T(wZ)c($5c(w) o (49)

This exactly cancels the last term in the previous expression. Now the hard one. Being careful of fermion
minus signs, I'll underline the contractions that will give them:

(bedc)(bede) = (bedc)(bede) + (bede)(bede) + (é%céc) + (é%é@c)

+ (bede) (bede) + (bede)(bedc) + (bede)tede) + (bedelthedc)

the last two terms are canceled because they contribute only (z — w)~! singularities multiplying c(z)dc(w)
which is O(z — w) and so only contributes finite terms. The remaining terms give:

_c(z)e(w) | c(z)dc(w)  de(z)e(w)  de(z)de(w) | c(z)de(z)b(w)c(w)  b(2)e(z)c(w)de(w)
(z —w)4 * (z —w)3 (z —w)3 * (z —w)? * (z —w)? * (z —w)? (51)

1

(50)

The last two terms will cancel, as they contribute a (z —w)~! singularity with numerator co?cbc 4 dcdcbe +
boccoc + dbecde. All of these terms are evaluated at w, so all are zero. Now we have (all evaluated at w)

—0cc + coc — Oce —%6206 + dcde — 0%ce + dcoe N —%6366 + %62086 — %5366 + 0%¢coc

(z —w)3 * (z —w)? z—w
3 2 2 3 3 92 (52)
3e(w)de(w) N se(w)oc(w) N se(w)oc(w) + 50°c(w)dc(w)
(z —w)3 (z —w)? z—w
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46.

Combining Equations , and we get:
X

in@atw) = SN | Qs | (= Sdalfeu) £3Pedn) ()

Now for Q% = 0, we need to look at jg(z)jp(w) residue as z — w as a function of w and ensure that this
has no residue in w. First we just need to look at the (z — w)~! term and reduce it all to the integral:

% =5 dw{@‘i) c<w>a%<w>+§a2c<w>ac<w>} . dw<13 <

-5 T 12> c(w)d3e(w)

This will vanish exactly when ¢X = 26 as required.

NB in Polchinski, there is an additional cd®c term in the definition of jp that contributes to this OPE (which
makes Equation look nicer), but the conclusion about D = 26 is still the same.

This is the type of question with a two-line answer that depends on a lot of conceptual build up. It is
instructive to go through some of the details. Here I will set 2 = 2. First lets start with the system of two
Majorana-Weyl fermions 1',42. This has central charge ¢ = 1. Moreover, we can compute everything in
terms of

_L 1 7;2 7:L 1_,L-2

Note both 1(z) and v(z) are in the holomorphic sector. The anti-holomorphic fields, if we considered them,
can be labeled as in polchinski by 1/;(2), ¥(2). These fields give OPE:

b(2)Y(w) = O(z —w), P(2)Y(w) =0z —w) Y(2)y(w) = + i (w) + Oz — w) (54)

z—w
Now J(z) =: ¢ : () can be seen to have scaling dimension 1 by OPE, so it is a conserved current (and
necessarily a primary operator in a unitary theory). Indeed J.J = (z — w)~2 and J¢ = (2 —w)~, Jo
(2 —w)~! s0 9,1 have charge +1 under J. From extending equation to terms of order (z — w) the
stress energy tensor T = —% POyt = %JQ.

Now note that this shares everything in common with the free scalar theory. The central charge ¢ = 1. The
u(1) currents there are J = id¢ and have the same OPE. The analogues of the fermions 1, are then the
operators et*?(2) respectively. Indeed these have charge +1 under J. But it would be surprising if these
operators anti-commuted, being built out of bosons and all. In fact they do! By Baker-Campbell-Hausdorftf:

(i0(2) gid(2) _ o~ [B().8(] id() gid(2) _ _gid(#) gid(2)

since [¢(2), p(w)] = —log =2 = —im The anti-commutation property comes out of the non-locality of the
vertex operators in terms of ¢. We can make the exact same argument for ¢/¢(*)e=() or any combination

thereof. So all of these fields are in fact fermionic. They have the same OPEs as the fermions above:

1

Z—w

TR titw) — O(x — ), TR FiRw) L
Note also the OPE

L e1P(2) 1 pib(w) L exp {— fdz’dw' log(z' — w’)5¢(zl)(5¢(w/)] : e10(2) gmid(w)

o w(l +i0p(w)(z — w) + O(z — w)?)
L idd(w) + Oz — )

as required.
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We can actually perform this procedure to the bc ghosts as well, for any value of A\. The trick is to note that
we have performed it for A = 1/2, and now the stress-energy tensor changes to:

T = T2 (A= 1/2)0(: be 2)
If we still take b = e®, ¢ = e then : bc := i0¢ and so the stress-energy tensor looks like:

1
T = = (09)* —i(A = 1/2)0%
which is just the Coloumb gas model with @ = —i(2)\ — 1). The central charge is 1 + 3Q? = 1 — 3(2\ — 1),
exactly as we want. The conformal weights are k?/2 + iQk/2 — 5 + (A — 1/2) at the lowest level, and this
is exactly A and 1 — X\ as desired. Note that b and ¢ are hermitian, so we need ¢ to be anti-hermitian.
Equivalently we can write ¢ = ip for p hermitian. Then

b=e"? c=¢eP, J = —adp.

Note p has opposite OPE from ¢ so that dp(z) dp(w) ~ ﬁ
Now lets look at the bosonic 5y theory. Can we bosonize this too? For one, the charge is J = —f~ which
has opposite sign OPE J(z)J(w) = —Z_lw, so we will now need p to have the regular-sign OPE (ie the

same as ¢). We'll just call this hermitian field ¢. Let’s take 8 = e ®,¢ = e? as before and J = —0d¢.
Already there is an issue. If ¢ satisfies the standard OPE then  and « will be anticommute. Further,
By = e ?We?(2) = O(z —w) while by the same logic 38 ~ vy ~ (z —w)~'. We want 88 = O((z—w)°),yy =
O((z —w)?), By ~ =(z —w) ", B ~ (z —w) .

Another way to see that we are missing something: we can try to write a Coulomb gas model for the 8y

theory:

1

T = TA=12 (A= 1/2)0(8v) = —5.]2 — <; - A) 0J = —%(&z))? +

1—-2A

2
28¢>

notice the — sign in front of %J 2 as we want. We have a coulomb gas model with Q = 1 — 2). This gives
a central charge 1 4+ 3Q% = 4 — 6\ + 12)%2. On the other hand, the 37 theory should have central charge
—1 + 3Q?%. We are off by 2.

All of this indicates that we need to add an uncoupled ¢ = —2 including fermions—namely the bc fermi theory
at A = 1- and redefine 87 in terms of ¢ to incorporate this. Take 7, £ of scaling dimensions 1,0 and charges
F1 respectively. Then define

B=e%0¢, el
We now have the OPE:

Blay(w) = (2~ w) x ——— = ——— y(2)B(w) = —

(z —w) z—w z—w

This is 4.15.2. Further because nm = O(z — w) and 0£0¢ = O(z — w) we get B8 = O((z — w)?) and likewise
for 4y as needed. We also know how to interpolate between NS and R sectors by taking ¢ — ¢/2 etc.
The total current — : 87 : stays the same because we look for the constant term in the expansion:
1 1
B(z)y(w) = *me_(b(z)@(ﬁ(w) T Gow? ((z —w) = 0p(w)(z — w)?) = dp(w) = J = —0¢(w)
so we identify : B~ : with d¢, which are both —J. This is 14.15.10. Writing out the full stress tensor now
gives:
1 1—2\ _
—5(00)? + —==0% — nog = TA=Y2 + (1/2 = N)a(57)
It remains to show that TA=1/2 = —%ﬁ&v + %é’ﬁ’y = %(2657 — d(87)). Now looking at the 5y OPE to order
z —w we get:

e 0E(2)e?n(w) = 06 (2)(w)e )

= (it o) (G- oo+ 5 - w0 - 20))

z—w)
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47.

NOTE I had to assume that while &,7 and e?,e~? separately anticommute with their partners, the e?
fields commute with the &, fields. Give an interpretation/example in condensed matter of this.

The order z — w term here is:

ogn: —5 (09 - P9)

So this is the normal ordered product of d3~. The d(3y) = 0?¢ term will cancel the 0?¢ term there and
we’ll get the stress tensor

—nig - 5 (00)* = TV

which is 4.15.8 as desired.

We can also bosonize the 7, £ theory in terms of an auxiliary bosonic field x, but this was not necessary for
the exercise.

We are looking at DN boundary conditions. Let us do this directly from definitions:

. ‘s e
X(1,0) =z — /2L, 2 %e_lhsin(ka)zm—i—i— Z %(zk—ik)

keZ+1/2 \/§ keZ+1/2
2
S (X)X (o) = -2 Akl g
2 kl
kl€Z+1/2
5 S 1 w k+1/2 w k+1/2 w\ k+1/2 o k12
:ZICZ_()k+1/2[(z> HO RO

Now we have

o k+1/2 ® 2kl
Z i 2 Z W) 2arctanh(/z) = —(log(1 — +/z) —log(1 + 4/x)).

Our convention on the square root branch cut is along the negative real axis. We get:

2

5 [toa(L — V/2) — loa(1 + V/2) ~ log(1 — V/in/2) + log(1 — v/i]2) + e

so the final result gives us:

2
-2 [log 11— /w/2|? —log|1 + /w/2|? —log |1 — \/w/2|? + log |1 + \/w/z|2] .
We can simplify this to:

2 f f \f f

For ND boundary conditions, the — between the two logs becomes a +.

og | V2~V \2+logw+m2]

Interpret this in terms of image charges

s
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48. Firstly, 0X0X requires no normal ordering constant to be added ordinarily, since it has a wick contraction

of zero. Now to go from the plane from the disk we have x = 2. Vice versa is z = zl+‘” This gives
2
log|z — w|* = log|z — y|? + log | ———|?
(1—2)(1-y)
2
log|z — w|* = log|1 — 27> + log | ————|?
(1-=z)(1-y)

So for NN and DD boundary conditions we get:
_ _ e _
Kwn (@, ) Xnn (Y, 9)) = =5 (log |z — y[* +log [1 — zg|* — 2log|(1 — 2)(1 - y)[* + 41og2)
_ _ I _
Xpp (e, 1) Xpp(y,7) = — (log | — yf? ~ log 1 — ) .

So NN boundary conditions correspond to putting an image charge of the same sign at 1/x* while DD
boundary conditions correspond to putting an image charge of opposite sign at 1/z* as well as a neutralizing
charge of the opposite sign at 1—corresponding to o in the H setting. Interpret this.

Differentiating the above with ﬁxéy shows that in either case only the log(1 — zg) term contributes:

2
X)X () = §
OXppl@3Xpp () = 2
2 (1-ap)*
This will become singular only as z approaches the boundary of the unit circle. We encounter the divergence
i%ﬁ in the NN and DD cases respectively and so we can define
“OX(2)2X (@) = OX (2)aX () F 5L
* * 2 (1 —2w)?
On the other hand for 0X 0X we get the normal ordering constant:
21

10X (2)0X (w); = 0X (2)0X (w) + 2 Gow?

We have X (1/w) = T X (w) so consequently 0X (w) = +01/5X (1/w). Now its a quick check (being careful
to keep subscripts on ¢ so we know what we're differentiating w.r.t.):

2
10X (2)05 X (1))} = 0X(2)00X (1/0) F %(1 - i/u_))2
2
= 10X (2)01/p X (1/0); = 0X(2)01/5 X (1/0) F (_w_Q)%(l - i/w)z
2
= 10X (2)0X (w)y = 0X(2)0X (w) + é(zlw)z

where the extra minus sign in the Dirichlet boundary condition case removes any sign ambiguity in the last
line. Thus, we see that indeed ¥0X (2)0X (w)} = + 30X (2)0X (1/w)} for Neumann and Dirichlet boundary
conditions respectively.

xoY
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49.

50.

51.

52.

Using the doubling trick we have 1)(2) = ¢(2*). So z; = We can compute the correlator by Wick contraction:

m 2n—m n n
Qe [T 0@ = Jow) =5 3 senm][-————— =Pf|
Jj=1 i=1

i=1 ' 7€Son i=1 Um(2i—1) — Wr(21)

—1 ]
(1 ’LUj
where w; = z; for z=1...m and Witm = Zl* forz=1—-2n—-m

I feel that this has already been done in 2.3.31. Rotating to euclidean signature, the most general solution

for X is
2 2

SE+pT+S e ™7 4

0z
X(r,0)=at+ =

iko
5 )

S(p— pa+z— ape

k;éO

The first boundary condition X=0atoc=0 gives:
oap=—ag, p+p=0
while the second boundary condition X’ = 0 at o = 7 gives:
sinfkn) =0=keZ+1/2 p—p=0

Thus we have neither momentum nor winding-number. So for the mode expansion is:

X(1,0) =z — /2L, Z %e_’” sin(ko) = = + Z\f Z —z7k

keZ+1/2 keZ+1/2
as desired. This gives:
- 14
0X apz Pl 0X =i—2 apz k1
Y e
€Z+1/2 keZ+1/2

We have N scalars with 0X?(z) = OY0X7(2) on the real axis. Because the conformal group includes the
translation group, O must be translationally invariant, ie it cannot depend on z. Further because X' is a
scalar 0 + ¢ and @ — @ both act on it in an invariant way. These are the two boundary conditions we can
set on each X?. So we see that O can definitely be a diagonal matrix of +1s. However, because all the
scalars are identical we can also transform X (z,2) = R! X?(z, z), with R any orthogonal matrix (not just
special orthogonal) and still get a valid boundary condition. So O is any orbit of the matrix of +1s under
the conjugation action of the orthogonal group O — PTOP. This can be easily appreciated as boundary
conditions for an open string along the various coordinate directions being either Neumann or Dirichlet.

Its surprising that O can’t vary on the real axis - corresponding to the D-brane changing which X' live on it.
Think about this more.

Everything is in the NS sector. Let’s first evaluate (¢)nn(2)Ynn(w)). We have

0
_ 1
E (0] bn+1/2bm+1/2 0) 2" E z

n,m n=0
dn—fm 1

—w

For the NS sector we have the following cases:
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53.

54.

® NN: b,q1p0 + Bn+1/2 =0

e DD: bn+1/2 - bn+1/2 =0
e DN: b, +b, =0

so we see that (¢ (z)y(w)) will add an extra minus sign in the NN case. It will not do so in the in the DD
case. Collecting our results.

1 - _ 1
W () onn(w)) = ——,  Wyv (v (@) = ———
1 - _ 1
Wpp(2)¥pp(w)) = ——, pp(2)Ypp(@) = ——
Lastly, for the DN case, 1) now takes integer values and so:
_ —n—1/2, —m—1/2 _ —n—1/2, n—1/2_  + —1/2, ~1/2 _
o (2)YpNn(w)) =Y (0l bubm [0) 2 w Zoz w 5 2w e
n,m 5 :7 n= ——
n=mm zero mode
Because b,, = —b,, we then also have
- z+w
WpN(2)YDpN (W) = — =

2y/zw(z — )
On to the R sector.
e NN: b, —b, =0
e DD: b, + b, =0
® DN: by yqy2 — Bn+1/2 =0

Let’s again evaluate (¢ yn(2)¥nN(w)). The calculation is exactly the same as the DN calculation above.
Using the above relations between the b and b in the different sectors we’ll get:

NN ()N (w)) = 2\/%?;0_10), NN (2) NN (D)) = 2\/2%;{;5_70)
Wpp(2)Ypp(W)) = 2\/%;“}_10), &pp(2)¢pp(0)) = —2\/2%1%
Wpn(2)YpN(w)) = ﬁ7 (ppn(2)pn (@) = - _1 -

There are several ways to do this. One way is directly by using the identity relating an expectation of an
exponential to the exponential of an expectation:

aX(z iaX(z) —iaX(z a2 (5 a2£§ = 1
<€ X( )>R]P’2 _ <€ X( )e X( )>CP1 OCGXp (2 X 2<X(Z)X(Z)>> = exp (—210g(1 =+ ZZ)) = W.

It is not clear that we haven’t omitted a proportionality constant. Another way to compute this is to note
2
that : X(2,2)X(2,2) ) = —%5 log |1 + 2z|? and so expanding out:

0 4.

eiaX _ Z (7“0’)
|

oy n:

n

(X(2,2)").

Now we do wick contractions. For each even term we need to put 2n elements in to n pairs. There are
(2n —1)(2n — 3)...(3)(1) ways to do this. Simplifying we get:

0 2 n
—1)"(a)?" 62
Z (7 Q),n(l) < ) logn |1 ZZ| = exp <log |1 + zz\“ 68/2) = ( ’ ‘2)02523/2

n! 2 + |z

n=0
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56.

This doesn’t look right. If instead we had:

_ L (ia % o’ : '
(X (@)mieX(D) _ Y (ia)"™ (—ia)™ ) X ()X (5)™ ;>—2Mf <_£810g(1+z2)> o 1

winto ™ 2 T+ [P)aP

as required.

In doing this problem, I needed to consider the e'®Xe~"@X correlator rather than the e*X+X) correlator -
otherwise I would get an ill-defined one-point function that blows up as z — o (ie is not a globally-defined
differential). Perhaps this comes from boundary conditions in the case of RP?, since H; = Zy and so we can
enforce anti-periodic boundary conditions that would be consistent with a negative charge vertex operator

being placed a —1/Z.

For the non-supersymmetric theory, we have the action (on the sphere, with \/—gR? = 1):

1 Q 1 Q
=— | &? By XosX J d? @) x J d?20X0X d’z X
S I J 2+/99°7 0o X 0 X + P z2\/9R =g £2 z + PG z

this gives a stress-energy tensor:

T = ——0X2 L9 2y

& (V2

Now for A/ = 1 we might expect an action of the form:

1 Q 1 = Q
= d*2,/gg*P0a X 05X + —— f d @x = d*20X0X d*z X
S 47 l? =Vag e Amlsn/2 “Valt 2ml3 : ! Amlsy/2 ’
This gives:
Q 1 2 .
T=——0X0X +—=0*X — = = i——1p0X —iQ0
625 0 +£ fa 2¢6¢, G Zﬁs o 1Q0Y

The TT OPE will give central charge 2 5 + 3Q?. G remains primary, so we’ll have TG = % (ZG_(%Q + aZG_(g).

Finally, GG will give V3 V3
1 2Q* 7 QOX — FQoX T

(z—w)3+(z—w)3+%—w)2 R—

so we get é = 1 4 2Q? as desired.

Now for N = 2, following the same example, we still get get same 7T OPE and GT remains primary, so we
have the TG* OPE staying the same. The GG OPE will have ¢ = 1 + 2Q? as before and J will have to be
modified to include 92X so as to remain primary under 7.

For X a compact scalar valued in S! of radius R we have the solutions X = 27 R(no1 + mos), which have
vanishing Laplacian. The action of these instanton solutions is:

1 (! 1 1 TR2
S=——14d dos—|101 X — 05X |? = — ml?
471'@? fo UIJ;) 027_2 ’7‘ 1 2 ‘ E%TQ ‘TLT m\

Expanding X = X + x, we get no cross-terms in the action. We now do the path integral over the y with
periodic conditions around both cycles. x separates into the zero mode yo + dx and §x can be expanded
in terms of eigenfunctions of the laplacian on periodic functions. These are precisely e2i(m101+m202) with

2
eigenvalues %hﬂﬂ — mg|?. They form an orthonormal basis. The contribution to the action is then
2
Z Amims | Amims |

The measure on the space of functions comes from the norm of §.X

1 Amm 2 WRdX
loxlF = - [ oyt = 3 el o [y - [T

mi,msg s

dAm, mo

s

m1 ,ma#{0,0}
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Note the difference with Kiritsis. This is crucial to get the right factors of 27 in the end. This then gives:

Am1 mgAmimg ‘
a2

2mR 27TR 27 27rR V&
Dye 500 = 2271 | | A _ H 1 V12
J xe v, f ddmn (2mls)? 8 Ly x(det 27r)

® m1maeZ2 \{0,0} Amam

Henceforth a primed sum or product means that we omit the origin 0 or {0,0} and sum over the integers. It

remains to evaluate
H —exp (—Z log ( ]m+n7'|2>>

Notice that this sum can be obtained by explicitly calculating the Eisenstein series
T2\ / 1
0~ (2) S
() 27 Z |m + nr|?
m,n
and evaluating $G'(0). Let’s do that. First note:
/ 1 / 1
92 -
ISR UCH NS 30 W
m,n n o m
The derivative of 2((2s) at s = 0 yields —2log(27). On the other hand 2¢(0) is —1, which multiplies the

order s factor in the expansion of (%)s (none of the subsequent terms will have an O(s”) term to multiply
this). This gives log(27/72). Together these contribute

1
—3 log(277s)

to 1G(0).

Note also because this is a periodic function of 7 of period one, we can represent it as a Fourier series in 7

1
2mipn —2mipt 2mipn
Z s Tlf dite™2™ Z Z s le t(t2 _|_n27_22)3

peZ meZ pEZ — P

v~

Z T 2s
|m n |
m

((m +t)? +n2

combine ) with 3},

Using a clever Gamma function manipulation (following Di Francesco here):

o0
: 24,2 2 ;
dt 2mip(nT1 t)IS 1o z(t?+n272 dl‘ 5~ 3/2 zn?r2—m2p /:1:+27mpn7—1‘

dre

Now at p = 0 this reduces to

VAl(s —1/2)

O T(s)
o V/TL(s=1/2)

Summing this over n gives #C (2s — 1). We have explicit series formulae for these at s = 0.

| T |1—25

Extracting the first-order term (this is in fact finite at s = 0) gives 32.

Now let’s evaluate the sum over p # 0. I'll directly take s = 3/2 here. We get a sum over an integral that is

now solvable:

ﬁr(s - 1/2) Z e—27ripn71 joo —3/2 —an?r—n2p?/x _ fs Z \F —27rzpn (T1+i712) + e—?ﬂ'ipn(n—im))

F(S> p>0 0 p>0

We see that the contribution to G’(0) from this will be:

UNE
2y 2 (q+a) =-2) log(1 = —2log(e & [n(r)[*) = ~2log(In(r)[*) — 5~
n>0 p n>0
:Zn/
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o7.

we see that the p = 0 term cancels this last part and we are left with £G’(0) = —log(+/752m) — log(|n|?),
and so:

\m n7'|2
Z(R = E g 42
(R,7) = L 1/72\77 e

m,n

While we're at it, let’s simplify this even further by applying Poisson summation. We have the 1D case for

the Gaussian:
Ze—wan2+7rlm _ Z -z n+z
n neZ

Performing this over the m variable we get

2nTy
7TR2 2 — 2 e 2 2 7r[37‘2 R nTq 2
Z e_fgfz(m —m(nT+nT)+n |72 ) \/7'2 Z |7 e— 72 m+i Tar
m,n

2
mlg
_ es\/ T2 Z e—ﬂ%?’LQTQ— R2 m2m—2mimnT
R <

/ 2 2
s/T2 Z e7r(i7'1—7'2)%<%7h+£n> e”(-iﬁ—ﬁ)(%ﬁl—%n)
R n,n

2 2
= es\éﬁ Z qPTL qPTR
with Pr, = %(m[s/R +nR/ls), P T(mZS/R —nR/ls). We then get a simple form for the partition
function:
Pi PR
q24q?:?
Z(R,T) = —
~ [n(r)?
We follow Polchinski Vol 2 on advanced CFT. The following operator product arises when we calculate

correlation functions of the energy-momentum tensor:
—TO = -T.2(z,2) gfd2w¢A7A(w, w)

We get:

8Tz, 2)p(w, w) = - [

A N Ow
2 z—w

] d(w,w) = (—21A0,0(z —w) + 27w (z — w) 0y ) P(w, W)

(z — w)
Where the last line was obtained using basic delta-function identities. Integrating over w gives:
—0:TO = 271g(A —1)0¢

Thus, unless A = 1 we get that T" gains an anti-holomorphic part. The exact same equation (with z — 2)
holds for T'. Further, the conservation equation dT,, + 01,z = 0 gives us that

T,z = 27Tg(1 - A)(b

There cannot be an overall constant, since this is zero when ¢ = 0. Here we will define 3(g) by:
/
[(2,2) = =21 B(9)Oi(2, 2)

where the sum runs over operators of dimension < d. The trace is T? = 2T,z = —4wg(1 — A)¢ so under this
deformation 8 = (2 — 2A)g. We now want to go to second order. The next contribution will come from:

71007 - ~1..(:)%;

51 JdedZw d(w, w)p(w', w'")
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58.

59.

60.

Doing an OPE we get to leading order:

C
pa.a(w, D)paa(w', @) ~ mﬁbA,A(w/a w')

where here C is the coefficient of the ¢a A 3-point function. We can now preform the w,w’ integrals and
get:

d
21 C'¢? J TQAir—l X de/qﬁ(w’, w')

Assuming A = 1 we get a log term that must be regulated in the UV and IR. Regulation in the UV gives a
scale that breaks conformal invariance. Rescaling by 1 + € increases the log by e. Equivalently we get

8g = —2nCeg?

This gives a second-order contribution to the beta function of C¢? as required. If the operator is not exactly
marginal, the second order term will still have this form, plus higher-order corrections in A — 1 and g.

Generalizing the preceding analysis to a deformation by a family of marginal operators g,¢f,, for the
deformation to be marginal at second order in g we need the three-point function to satisfy A, gag, = 0 so
that the second order term does not contribute the 1/r integral and thus does not break conformal invariance.
In this case that means that we require

Aab aa Gpp = 0-

Again, we work from the same chapter of Polchinski. For a general 2D QFT with a stress tensor, we can
define the quantities

F(r?) = 21 (T.(2,2)T22(0,0))

G(r?) = 42°2(T..(2,2)T.2(0,0))

H(r?) = 162272 (T.2(2, 2)T.2(0,0))

2 = |z|?. The conservation law 0T, + 0T,z = 0 gives

From rotational invariance, these can only depend on r
us that:

4F+G—-3G=0, 4G—-4G+H—-2H =0

where F, G indicates the operator %rﬁr (ie differentiation wrt logr?). Note subtracting 3/4 of the second
one from the first gives:

. . 3. 3
4F —2G—-H =——-H
4 2
Define C' = 2F — G — %H. Note that in a CFT, where G = H = 0, C is exactly the central charge c.
Further, from this definition we get that in the general setting C' = —%H . But note that an exactly marginal

perturbation does not give the stress-energy tensor a trace, so C = 0 and the central charge will remain
fixed.

This technology wasn’t developed in Kiritsis. I’'m unsure how he would have wanted us to
show this.

Note under 7 — 7 + 1 the n function is invariant and we our constraint comes from:
L o 2 ij ki k
i(PL_PR) eZ=G@G mJszG ny = mgn €7

as required. So in particular we have Pj% — P}% € 27Z. We can interpret (Pr, Pr) as being a vector lying in an
even, Lorentzian lattice, with signature (N, N). Note in the 1D case then get that

i . i . )(En/ - gsml)} = (mn +nm’)eZ

P'.P?:= PLP} - PLPR = = | (5-n+ —=m)(5n' + =m/) — (;n o’ =
S

(R, 4
2 |\, T R TR " R™
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61.
62.

63.

Going to higher dimensions and turning on G and B gives us the same result (take ¢35 = 1 for simplicity
here). All terms will cancel except the ones given by the relative minus sign of G on the second term

1 . . o o
! [mmn +niml + M] €7
The last term cancels by antisymmetry. Here n’,m; € Z (note the index convention, different from Kiritsis).

Under 7 — —1/7 the 7 function is a modular form of weight 1/2, so ()" is a modular form of weight N /2
and |n(7)|*N = |7|7N|n(—=1/7)|*". Let us now look at the remaining part

o) = > qTiglh
P=(Py,,Pg)el’
is also a modular form of this weight. Let’s show this. We can use the Poisson resummation formula to
write:
Y- = % = ) = Y )
p'el’ p’el'* pel qu*

here V_ is the covolume of I'. Taking f = " TPL—inTP} and doing a 2N-dimensional Fourier transform, we
see that f(q) = e |Ne*“rQ 1/7HimQR/T We can use this to write:

1 1 1
= (TP} — 7P} = —xr D (—2Q2 + ~02
O(r) Perexp [m(T =T R)] TNV Qer*exp [m( TQL+TQR)]

Now as long as I' = I'*, that is, " is an even, Lorentzian, self-dual lattice. Then Vr = 1 and the sum over
Q@ € I'* is the same as the sum over P € I'. So we get

o(r) = [r|~Me(-1/7)

which is the exact same transformation law as the |7|?" in the denominator, and so we get that Z(R) is

indeed modular invariant.
We have in fact done this in the first part exercise 46.

Certainly this is an order 2 involution, just like R — 1/R. Now we know V,,, , = V;;, _,, under this involution,
SO

[HY] ~ 3 O [Vanzm] + C* 27 [Vany1 2m] = %([HO] [H°] + [H7] - [Hx]]) + [H°] - [H7]

n,m

(™) [H™) ~ 3 CP M Vi ] — CF 2 Vi o] = () - [H°) + (7] [Alx]) + () - [H7)

n,m

(Y] [HO%] ~ 3 O 2 Vi 1] — S [HY) ~ [H7) - [H7))

n,m

the only consistent transformation with these OPEs is exactly:

H" 1 (1 1)\ (H°

H™) 2 \1 —-1)\H~
Define the orbifold partition function as

Tl
+[] :(+|:|+‘|:|++|:|+‘|:|>
¥ 2 ¥ ¥ - -

Note that the orbifolded theory itself has a Zs symmetry obtained by taking all the states in the Zo twisted

sectors to minus themselves:
S I I I [ S
N 7 -
+ + — —
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64.

65.

I can now orbifold again by this symmetry, defining (as before):
|
O-1(-0+ 00+ 0)
¥ 2 ¥ ¥ - -
|
O-}(-0-0-0-0)
Then forming the new partition function of this double orbifold theory I see that almost everything cancels:

;<+‘;|/+_ |;|/++ |;|/+‘ |;|/> —+[]

+

Note first that at R/¢ = 1/4/2 we get

n n
Pr = —,Pr=m— —
'L m+2,R m 5

So we are summing over these lattice values in the numerator © of Z(R). On the other hand, we have:

1 1 n+my . tn2 _1m
S0 163 + 647) = 3 (500 + (g

n,m

This is a sum over all lattice points whose sum is an even integer union with the set of all half-lattice points,
but only half of the half-lattice points are counted in the sum. This agree exactly with the standard weighting
for the lattice generated by (1,1) and %(1, —1) which is exactly the original theta function numerator in the
untwisted Z(R) at R/ls = 1/+/2.

Squaring the Ising model theta function then gives:

0503 + |650,] + |06 1 1 1
1020] + 1604 +16204] [ 1 1 g0 1oup 4 10,P) = 22(R) + 2

1 Il Il Inl >
+ - T
4in|? 4 |n|? 2 2 <\92\ 03] |04]

(R)

=

exactly as we wanted.

Take ¢5 = 1 here. The partition function will still have 1 twisted sector and a single projection. So we
need to consider 4 terms. We have Z [8] = Z(R1, Ry) = Z(R1)Z(R3). Our vertex operators are labelled by
(my,n1,me,n2), and g acts as (my,n1, mag,n2) — (—1)m2(—mq, —ny, ma, n2). And so:

Xl-—x1
1_10 1 2 2
2ZL} = Tri[g qLO*C/M(jLO*E/M] = 0% e Z (=1)™exp {”27 (R% + nRg) — ? (Rﬂ — nRg) ]
m,n
X2—>)};+7rR2
11 /94 Lz n 1 - 2 2
22{0} = Try[gqho™ gk = 0.l m Z exp {12 (R% +(n+ %)R2) -5 (R% —(n+ %)R2> ]
m,n
1 1 - ~Lo—¢ n 1 (T 2 i T 2
2[] = mlgatrghe ) | L S e [ (2 + 0+ D) - (- 0+ Da)'|
m,n

it is clear that the sum of all these is modular invariant. I am unsure if I should try to simplify this further.
Certainly (unlike the freely-acting orbifold case) this doesn’t look trivial. This is the CFT of fields valued in
the Klein bottle.
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66.

67.

68.

Take ¢5 = 1 here. The symmetry interchanges |m1,n1, ma, no)y — |ma, na, my,n;y We have Z[g] = Z(R)2.
In the g-trace, we will need m; = mo,n1 = ny. Then, excitations around this state must have equal mode

. . 1p2 _1p2
number in m;, ms and ni, ny to contribute to the g-trace so for each factor of 27z §2F we have

0 o m2T [ 2 w27 ., 2 1 1
ZH=((JQ) 2/24;6XP[ 5 (g +nR) —— (R_”R)]Hl_qwnl_qm

n' m/

1 ; m 4 pR)? —in7 (™ — nR)* =—2
ﬂmzaw%e’{p[m(ﬂ ) (%~ )’ rn<7>|re[é]<7>\2‘”

On the other hand, the twisted sector we have boundary conditions X!(c+27) = X?(0), X%(c+27) = X (o).
Applying 7 — —1/7 on the preceding we get:

1 1 ITT o ATT 2
Z[]: exp[ 2 4+nR)"—— (% —nR ]

o) = e 2 o G e
Taking 7 — 7 + 1 gives

1:; Z 1) ex ﬂm n 2_@ m_ . 2'
ZH e p[ 7 (e — = (R R)]

Let us check if this is modular invariant. Clearly Z [8] maps to itself under both S and 7. Under T,
Z [(1)] maps to itself, and Z [(1)] and Z [ﬂ get exchanged by the properties of theta functions. Further, under

T—>—-1/1Z [(1)] and Z [(1)] map to one another. However, Z H] does not map to itself under S, and we are led
to conclude that this Zs symmetry is anomalous.

If we orbifold the single free scalar by acting as |m,n) — (—1)"*" |m,n) we have Z[g] = Z(R) as before,
but now:

7i| = Sevm e[ Gonn)? -7 g ny]

m,n

Taking 7 — —1/7 gives that both m and n shift by 1/2

1 4 _1 2l 2
7]g] = Sew [ ("5 + (0= ) -5 (52 - (- i)
Then doing 7 — 7 + 1 gives:

Zm TR [2 (" + 00— DR) - 5 ("h — (- ;mﬂ

m,n

this already looks a little weird. Out front we don’t necessarily have a +1. Further, doing 7 — 7 + 1 again
does not get us back to Z[(l)], we need 7 — 7 + 3.

In the untwisted sector we have our vacuum state |0), with A = A = 0 as required. Now consider the
kth twisted sector. We have creation and annihilation operators a4/ n satisfying the same commutation
relations [a;, as] = r0,4s. However as X is a complex boson, the «, are complex numbers and so we have
two sets of them (which we can call «,, &, following previous convention). From commuting them across,
we get:

1 i wWAT w (g)’f/L
(X (2)0X(w))y =2x — — ] =2x &2~
w r=min(1,k/N) o Fow
Then, differentiating with respect to z gives:
2 w\ k/N
(0X(2)0X (w)) = _m <;> (1— %(1 - 2))

41



69.

Taking the finite part of this —% of expression as w — z gives us:

=220

as required.
We have the scalar propagator written in terms of the eigen-modes as:

[2

! 1 2mi(mo1+no2)
(X(2)X(0) = — mZ s

Rather than trying to massage this into our appropriate logarithm of theta functions, let’s appreciate what
properties we want our correlator to have. For z — 0, the small-distance behavior of the correlator should
reproduce the CP! result, so we namely need it to go as:

& 2
- log |z + O(2)

Further, the only singularity on the torus is at z — 0, nowhere else. Thus we should be able to write our

correlator as )

—%logG(z,E)

where G must be a doubly-periodic harmonic function with a single zero at z = 0 on the torus and no
poles. There are no such holomorphic functions since all non-constant elliptic functions need to have an
equal number of zeros and poles (and also more than one zero, since the coefficients of all zeros must sum
to 0). In other words, instead of looking at an elliptic function we should be looking at a section of a line
bundle over the torus with a single zero.

We see that the theta functions give us exactly this- and moreover rational functions of the theta functions
generate all such sections. The constraint of a single zero at z = 0 together with modular invariance singles
out 0[}] uniquely. To give it the appropriate coefficient of the zero, we must have:

0[1](z,7)

G(z) = 2.0[1](0,7)

x (1+0(z))

The problem is that this is a quasi-periodic foundtion in z. Under z — z + 7 we get that logG — log G +
2
on®2
277y + 4wlm(z). This can be remedied by adding e T2 to G.

Also, under 7 — 1/7, z — z/7 from the ratio we pick up a factor of | exp(irz2/7)|? = e~2™™(=*/7) But this
Imz?2

is exactly the same factor as is picked up by e , so adding this term fixes modular invariance as well.
Our final result is then:

(Imz)2
—og (Im2)”

9[}] (z,7)
2.0[1](0, )

So we now have an explicit formula for A(z — w,7) on the torus. The Klein bottle is given by identifying
z =~ —z + 7/2. Then we expect the propagator to be

G(z) =

Ak, (z —w) = Az — w, 2it) + A(z + w + it, 2it)
Next, for the cylinder we have the involution z ~ —1/Z so we have the propagator:
Ao, (z —w) = A(z — w,it) + A(z + w, it)
Finally, for the M&bius strip, we have two involutions and get

Ang (2 —w) = Az — w, 2it) + Az + @, 2it) + Az — w — 2m(it + 1), 2it) + A(z + @ + 27 (—it + ), 2it)
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70. We already know how to calculate Tryg/g( (+1)F quc)yl) for the free fermion. € acts by sending a left-moving
state to a right-moving one and vice-versa. Only states that are left-right symmetric survive. First lets do
the NS sector. There is a single vacuum and we get:

7 = 63(2it
Teys[Qe2ri(boLo—c/12)] _ 2rt/24 [ (1 4 ~2ntx2(n-1/2) 3(21t)

e n(2it)
_ _ 05 (2it)
Traea [ —1)F e—27t(Lo+Lo— c/12) 27rt/24 2t x2(n—1/2) 3

Note that these two are the same, since only sectors with an equal number of left movers and right-movers
contribute, and this necessarily forces F' to be even. Then, for the Ramond sector we have

o0 .
Trg [Qe27tLo+Lo—c/12)] _ | /3~2mt(1/16-1/48) [T(1+e2mx2n) = 62(2it)
n=1

TrR[Q(_1)FqLofc/24q[_/075/24] — 0

where the last one is zero as before, since for any state, there is a corresponding one with opposite (—1)F

eigenvalue, related by zero-modes.
~ @ Z )
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Chapter 5: Scattering Amplitudes and Vertex Operators

0. A worthwhile exercise (that is not in the book) is to show that we have the correct Regge behavior of
the Virasoro-Shapiro amplitude at large s, fixed ¢t. From Stirling’s approximation for large s, we have

I'(a+s a— .
ey ~ o
Su(s.t.10) D(—1—Gt/4) (=1 = Gs/NTB + L5t/4 + £35/4)  T(=1—=L3t/4) 1,24 T(=1—1£5s/4)
ASEUW S TP 2t/ T(2 + 2s/AT(—2 — Ct/4— 2s/4)  T(2+ 2tjd) ~ T(—2 — (2t/4 — 25/4)
_ T(—1—02t/4) 81+€3t/4r(3 + 2t/4 + 25/4) sin(£2(s + t)/4)
- T(2 + £2t/4) [(2 + (2s/4) sin(¢2s/4)

D(=1—£3t/4) sin(Zu/4) oo
T(2 + £2t/4) sin((2s/4)"

Using the same argument, in the large s, ¢, u limit, we get the following soft behavior:

—1—02s/4,—1—02t/4, —1—02u/4 2
s s/ sty s/ -~ e—%((s+3)logs+(t+3) log t+(u+3) log u)

4
5'4(37 t, u) ~ - (slog s+tlogt+ulogu)

G2+ 25/4y2+ 2t /1,2+ 2 u/4 —e€

1. Note that we need 3 more ¢ ghosts than b ghosts since the difference of the zero modes must be three.
Now, c¢ has scaling dimension 1 and b has scaling dimension —2 so the total scaling of the correlator
<]—[?:13 c(z) H?:l b(w;)y will be 3 —n. Thus, viewed in the complex plane, we expect it to be a homogenous
rational function of degree exactly 3 — n.

We will have n contractions of the bs and cs with 3 cs left over. This gives:

n+3

) = W) = (Zn+1 - Zn+2)(zn+1 - Zn+3)(zn+2 - Zn+3) % cc erms
ﬂc(z’)ﬂb( ) R . + perms,

where each permutations will pick up a sign for every odd combined permutation of the z;,w;. Another way
to do it is as follows:

As stated before, the correlator when viewed in the complex plane will be a homogenous rational function of
degree exactly 3 —n. That way, it will be finite at infinity. We also know that this function is antisymmetric
upon swapping any of the z;, any of the w;, or any of the z; with the w;. Further, if any of the z; = z; or

w; = wj, this function will vanish. On the other hand, if z; = w;, we expect a contribution of a pole Zi—le.

There is only one such homogenous rational function:

This is indeed of degree 3 — n, as desired.

2. It is clear from plugging things in that when z; — 0, 20 — 1, 23 — 00, the 4-point tachyon amplitude becomes:

lim %gg 526(2p)\Z3]2\Z3 _ 1|2 Jd2z4’z4‘f§p1~p4’1 _ 24‘53192-194’24 _ 23’@193-174 1€§p1~pz‘z3’4§p1~p3‘z3 _ Hfﬁpzm
zZ3—00 s

here § = 27§. Note all the terms that go to infinity cancel, since £2p3 - (p1 + pa + p3) = —¢2p3 = —4 which

cancels with the two powers of two outside the integral. Next, £2p; - py = %(Pl + p4)? — %(ﬁgp% — 2p2) =

—2t/2 — 4 etc so we get:
8
/2

S

] _24/9_ —2u/o—
g2526(2p)fd2z4|z4| 05t)2 4‘1—Z4| CZu/2—4

as required.
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3. For a conformal transformation we have \x;j|2 = Q(z;)Qx;)|xij|* where Q(z;) is the local scale factor
det 02 /0z evaluated at x;. Then, the N-point tachyon amplitude will pick up Q(z1)%Q(x2)2Q(x3)? from the
three terms outside of the integral. The terms inside the integral can be written as:

[ Tazterer?

1<j
S0 z; in this term will pick up a power of Z#i Cp; - pj/2 = —€§pj2»/2 = —2 on its scale factor. This exactly
cancels for 21, 29, z3. For the other z;, we note that d?z; will pick up the factor (z;)? upon transformation.

Another way to do this is directly from noting that each §d?z;V,, (2;, z;) for i > 3 is invariant under conformal
transformation, and c¢(z;)¢(Z;)Vp, (%, Zi) has scaling dimension zero, so transforms trivially under SLy(C)
transformations.

4. Note that the three-point tachyon amplitude is very simple and independent of momenta aside from a delta
function: S(k1, ke, k3) = %gcﬁ%(Ek).

PUESS

Let’s now consider the limit of a nearly on-shell particle of momenta k. From elementary field theory we get:

d*k Sg2(k1, k2, k)Ss, (=, k3, ka) _ (& i 2526(§3k4)——444}4444*
(27)26 —k2 +4/02 + i€ ) % Vs AL + e

S(khka,k$k04)~/ij

This has a pole when —(k; + kg)? = s = —4/¢2. We see that (ignoring the § term) this gives a residue of

- 6472 2
-t Iz 9c

On the other hand we have from 5.2.5 a residue of:

87i o 4 6472
S S

S

exactly consistent with unitarity. Note we needed every constant to be as it was so that we could get such
agreement.

5. The massless state corresponds to ¢, 0X*0X" e”X We don’t have to integrate.

Let’s calculate the correlator

(OX (1)3X ()X e (aXen) ihoX Gy X, 20(5p) [ g (—1) (22 + f) (=) (2 + )

212 213 Z12 Z13
i<j
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with the ghost correlator this gives:

4 Lo
ICHCH 8 () [ Tl ™% (2 + ) (B2 + &)

Z12 213 Z12 Z13

1<j

Now k% =0=k1-ko+ k1-ks. On the other hand —4/£§=—k§ =ko-ks+ ki ko =—k§=k2‘k3+k)1'k3.
Solving this gives k; - ko = k1 - k3 = 0 while kg - k3 = —4/¢2. Then, taking z; — 0,2 — 1,23 — o0 gives:

02 y
—is C3CEF™ (Sp)Gu kS K

Further, we have that k) = Cu (k2 + k3)* = 0 so we can rewrite this symmetrically as

iml?
2

. gé v v
—i C§20§? $70(Sp) v kbskby = ——2 9.8 (Sp) Cu kb3 kbs.
T

=8 /(3

The overall constants can be determined from unitarity. The pole of the Veneziano amplitude at s = 0 has
residue (using that s = 0,s + ¢ + u = —16/¢2) that is a delta function times:

2

(5 (t—u))?
87 4 T(=1— 2t/ (3 + £2t/4) (4m)? , 4 TS 99
I N ST Tt ey e e X gy BT = i

S

(t_SU)Q (55)

On the other hand, factorization of this into amplitudes with massless states yields a delta function times:

1

S N (w=1°
(k1 + k2)? + ie

; v 3.0 . 1 .
ZC%ptZ CuvCopkiokiahS kG, = chpt(kfm k3a)? x s 2032pt (56)
¢

where we have used that, just as the sum over intermediate photon polarizations €,e;, can be replaced by just
Nuv, the sum over intermediate polarizations ¢, (,s be replaced by %(nﬂpnyg + NuoMyp). Comparing equations
and We the get O = —mige. Equivalently, g, = 2g./¢2.

. This problem is so nasty - I'm pretty sure Kiritsis meant for us to just look at scattering 4 open string states
- which in and of itself is nasty enough.

We have already determined the normalization in the previous question. It is also simple to check that it
is correct to attach ¢/ to each vertex operator in the 3-point and 4-point functions by considering first the
2 tachyon — 2 massless state scattering in the ¢ and u channels, which relates the 3-point scatterings of
tachyons and massless states to one another, and then use the 2 — 2 tachyon to tachyon scattering to express
its normalization in terms of the 3-point tachyon amplitude. All of this equates to taking g. = 2g./¢>.

As a warm-up lets do the three-point massless amplitude. We compute the correlator
G OX%(21)ePiX ) 10X P (29)ePiX(32) 11 9X 7 (23)ePiX () xee)

In the holomorphic part, there are two types of contribution: One where each X contracts with an exponen-
tial and one where two of the 0X contract with one another and the last one contracts with an exponential.
Further, we see that p; - p; = 0, so the [],_; \zij\égpi'pj is unity. The first contribution gives:

AN R A I AN T 2\* 1
=) (2B ) (2 B ) [+ 2 ) i 2) Sk — k)Y (ke — k3)%(ks — kp)P
Z<2> <z12+z13> <221+223) (231+232) Z(2> 22(1 2) " (k2 — k3)® (ks — k1)

The second contribution gives
2
AN L AN . AW .
2 22 z z 22 z z 22 z z
12 31 32 23 12 13 13 21 23
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Multiplying this by the ¢ contribution 212293213 X c.c. and setting z; = 0,22 = 1, 23 = 00 we get the 3-point
amplitude:

. 557 &
Tige CtaaCa 5337 T T, TP = Pk, + 0P ks + kg + ?kkk%k&. (57)

Now let’s do the four-point amplitude. First, I will work with the open string (no CP indices, so U(1) gauge
symmetry) and use some tricks at the end to get the closed string amplitude. For the open string, there are
six possible orderings of the y1,y2,y3,y4. In three of these cases we can send y; — 0,y2 — 1,3 — o0 and
vary y4. In the other three, cases we switch yo and ys. This amounts to swapping s & t. HOWEVER for
Polchinski’s trick, I only need to consider one of these siz. WLOG I set y4 to be between yq,¥y2 in 0,1. T’ll
also absorb £2 in the definition of s,¢,u. So we have,

[T lyssl e — gl 71 =y~ o [yl 71—y~
i<j

We now get three types of contributions: If all the 0X® contract with each other (3 terms), if two of the
0X* contract with each other (6 terms) and the remaining two contract with one of the e?*X  or if they all
contract with the e X (1 term).

In the first case we get:

o/ 1 1 1 2 L
(28)" (o + iyt o ) = (28)° (7 + sy +
Y12Y34  Y13Y24  Y14Y23 (1-y) Y

Integrating y from 0 to 1 gives

ig2g%o r1—-Hrd—u) TA-HI(-1—-u) T(=1—-I(1 —u)
401 @ﬁy< CESS T(s) * T(s) >

(58)

Now the annoying on Define K; =, # o Note:
K koM g ﬁ+kf K 1+ 9k —yk] — k], K @+@
1= ) 2 = ) 3 — Yy -y - ) 4 = — .
2=, A 1 2 — Ry y y—1

We can now write the (/)3 contribution as Zg"’x (202)3 times:

KsKy .5 KiKo KK,y KoKs 5 KoKy .. K Ks
(n P b == b — = = ™ +—i2n55>

3/%2 Y34 Yas 3/14 Y13 Y24

k's k5 o o o k5 k.(S
o [ =+ )]+ + R+ e — g+ G+ Bt — g + B 4 e

K2 K\ kS k) \ o o 79
— (6] + ) (1 + y)k] + kg + k)T + (R + ) (5 + 5 + (ks + xu+yw7+wﬂ+kﬂ(yy]

Now we use shorthand k;;; = k; + k;. Looking at the first of the six terms above, we get the order (o )3

to our scattering amplitude to be %gﬁ(%z)?’ multiplying:

1
aﬁfo dy (k?[ _1k¥+4 + k] o] + E[(y — 1)_1k¥+4 +y(y — 1)_1k¥+2]> ly| 71—yl

o (Kb O+ M — R P — e

+ 5 perms.
(59)

"Wasted all of 1/17/20 on this. Not worth it
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Now for the order (a/)* term. This is given by contracting each 0X against an exponential, yielding
KOKPKJKS. Again we have y in [0,1]

) /{:5

i(g)) Cp2#° (242)4fdy ke M) (184 ki (kﬂ + yk] ) Moy B e -yt
o D s 0 2 y 1 17y 1+4 1+2 y yfl

This gives a 2* = 16 terms. Its not terrible. The (o/)* term is %;;ﬁ(%g)‘l times:

KSKY K] kS B(—u, 1 — ) + kSKY k] kS B(1 — w, —t) + kSK k] ok B(1 — u, 1 — 1) + kSkV K] ok B(2 — u, —t)
+RSED R K B(—u, —t) + kSkS ] S B(1 — u, —1 — ) + kSEI K] ok{ B(1 — u, —t) + kS k], ok3 B(2 — u, —1 — t)
FESEV R R B(—1 = u, 1 — 1) + kShV K] kS B(—u, —t) + k§KV k] ok B(—u, 1 — t) + k§KY k] kS B(1 — u, —t)

(—1- u, —t)

+kSEL K KB u, —t) + k§ky k] kS B(—u, —1 — t) + k§ky k] o kS B(—u,

(60)

The open string amplitude is then given by summing equations , and and multiplying that

result by %. Call this A" (s,t,u,0,,g,). Using Polchinski 6.6.23 we can write the closed string

amplitude as:

Tig2l? ~3sF
Ac(s,t,u,ﬁs,gc) Cl OtaC2 55(3,77(4 56 zc 893 Sln(ﬂ-ggt)AgB’ya(svta U,fs/Q,go) [AgﬂWé(t’u’ 5765/2790)]*

o

where ¢ are our 242 closed string polarization vectors.

If we had not determined the relationship between ¢, and g, from the prior problem, we could have determined
it by using the KLT relation of the above formula from Polchsinski and specialized to relating ¢/ and g,.
Then, we would only have needed to look at the (nice) leading order (a)? term in this calculation and
observed the pole structure at s = 0 corresponding to massless exchange. Making this agree with the square
of the 3-point amplitude would then be sufficient. We illustrate the open string case with CP factors in
exercise 11

. There are three types of propagators to consider: bulk-bulk, bulk-boundary, and boundary-boundary. Using
shorthand X; = X (z;, 2;), X7 = X (wy), from 4.7.9 we have:

<H X H Xy — §26(3p 4 Bq) eXp[ > pipy (XiX) — Epzqf XXy =D s <XIXJ>]
i=1 I=1 1<j I<J

Using the form of the propagators

62
(XiX;) = —58(1%' |2i — 2| + log |2 — 7%

& 2 2
(XiXp) = —7 (loglwr — zi|” + logfwr — z[%)
(XrXp) = —£31og lwr —wy|?

we get

_ 2 _ 20 m 2 _ 2.,
F(Sp + ) | [ lai — 2| 5P/2 H |(zi = 2)(zi = Z)| PP | ] fwr = wy P59 T T | (wr = 2i) (wr = 2) [P
7

1<j I<J I

Note an additional term which I believe Kiritsis dropped. The extension to RP? is no more difficult. We
2
now have no boundary and the (X;X;) propagator is —%(log(zi — zj) + log(1 + zZ;)) so we get:

F2%(Sp + Xq) H|1+zz\£sp/21—[| zi —z)(1 + 22 )]esp/Q

1<j
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8.

10.

11.

Forgetting c ghosts here, I can just integrate over all of H. The massless closed-string state of zero momentum
is given by 0X(2)0X (z). Note that H = PSLy(R)/SO(2), so that:

 Lge 1 f 1 e 1 J dedy ¢ VolH)  wl?
2g3 Vol(PSL2(R)) Ju H -

dy—— s — s Y\
F—Z2 T T8 VOl(PSLo(R)) Ju 42 8 Vol(PSLy(R)) 2

Note that this answer is finite and invariant under conformal transformation. This gives an amplitude of

—5§%(0).

. Let p; be the momentum of the closed-string tachyon, and p2, ps the the momenta of the open string tachyons.

We get 2py - p3 = p? — p3 — ph = 2/02 = py - p3 = 1/02, 2py-py =p3 —p3 —p} = —4/02 = p1 - py = —2/02

o

"N

I no longer have enough freedom to fix all three points. I can send one to o0 on the real line, and fix the
position of the closed string to be ¢ € H. The remaining open string insertion can be anywhere on the real
line, so we must integrate over this. The ghost and vertex operator correlator gives:

(21 — 21) (21 — ws) (21 — ws) |21 — 21|55P1/% |2y — ws|2EP1 P8 f dwy |wy — ws| 2P P8 wy — 2, |2EP1P2 §(Sp)
R

2
s

Setting z; = i, w3 — o0 has momentum conservation and p3 = 1/¢2, p? = 4/(2 getting the ws factors to drop

out. We are left with

N(—%+2
2; 262r1/2 J dw (w? + 1)5P1P2 §(Sp) = 8in/m M5 +2) F?Q) ),5(2p) — 4mif(p)
R
This gives a scattering amplitude of:
_47793626(2 )
2 b

The conformal Killing group is now SO(3). Again, we can fix one operator to be at z = 0, but the other one
can be at any value of |z| € [0,1] (we have control over the phase). So we must integrate over the modulus.
We do this on the disk using the RP? propagator. We insert one vertex operator at 0 and the other z. The
integral gives a delta function times:

1 1
f d|za]e(21)e(Z1)e(z2) (1 + |21 2) 5P 2 (1 + |20)2) 5P 2| (21 — 20)(1 + 21 52)| 67" — f rdr r= B0 (1 + r2)60%/2
0 0

For the closed string tachyon, we have p? = 4/f2. The integral is divergent, coming from the (z — w)™*
singularity as the two tachyons approach one another. If we had the milder (z — w)™! singularity of the
open-string tachyon, this could be fixed. REVISIT

To simplify this problem, as Polchinski asks in his problem 6.9, I will look at the terms that contribute to the

e1 - e e3 - e4 amplitude, which comes from contracting 0X*(y1)0X? (o) and 0X7(y3)0X°(y4). There are six
- 14

possible orderings for the trace in the 4-point amplitude. We get % F20(Xp) x (26?)2 multiplying a sum of six

integrals. Using s := —£2(py +p2)? = —2p1 -pa, t := —L2(p1 +p3)? = —2p1 -p3,u 1= —L2(p1 +p1)? = —2p1 - pa
and the shorthand [1234] for Tr(A#1 AF2 3 \H4) | we get:

[[1234] foo +[1423] Jl [1243] fo] ([ ~]1 — w|~*)duw

0

+ [[1324] f_ooo 1 [1432] Jl +[1342] fe] (]~ [1 = w|~*)dw

0
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- _J C>
Note the second triplet of integrals swaps 2 with 3 so equivalently swaps s and t. We get the amplitude

;g;;el “eges - e4526(2p)[ ([1234] + [1432]))B(1 — u, —1 — )

+ ([1423] + [1324])B(1 — £, 1 — w)
+ ([1243] + [1342))B(1 — t, —1 — s)]

Now in the s channel, the first and third Beta functions give us poles at s = 0 with residues —t and —u =t
respectively. This gives:

198 126 t—u
= 273;5 (Sper - ez es - eq([1234] + [2143] — [1243] — [2134]) x — (61)

On the other hand, the 3-point vertex (again just the leading order of the two terms, compare with ) for
massless bosons comes from the correlator

Z(gO) |w12w13w23\ <: oXHt (wl)ele(wl 10X M2 (wg)e‘kQX(w) 1 OX M8 (wg)BZkSX(wS) :>

9343
ild')3 3 13

N (.20)2 (—2'253)(—26?) ( 51 + 52 + 2perms.> ’w12|2£§p1'p2—1|w13’2€§p1~p3—1’w23‘2€§p2~p3—1
953 WiaW1z — WigW23

2 1
= —igo\[(n’““2 519’13’ + 2 perms.)

S

using ¢/, = go/(v/2¢s). Adding CP factors gives:

ig
_Tiz ("#2pys + 0t Heps + nfHophs) ([123] — [321])
—_—
5 f123
We care about the e; - es e3 - e4 term which means we only look at the pis - ps4 = t — u contribution in the s
channel.

d26k‘ S(k‘l ]{22 k‘)S(*k‘ k?g k‘4) gg 26 t—u 12
. ; ’ ) ’ _, _;J0 » 5 534
ZJ (2m)26 —k2 + ie 12@5 (2p) P g (277

Lastly, note that the factors in equation give Tr(f122\, f34°)\), and with suitable normalization, this
gives Yo f125 534 exactly as desired.

We thus see that the amplitude indeed factorizes, respecting the structure of the U(N) gauge group.

12. We have p? + m? = Z%Lo for the open string.
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13.

14.

From 5.3.1 (and consequently 5.3.3) this gives:

transverse only

3 VQG JOO dt Tl“/[€_27rtm2] :i V26 Jw dt Tr,[e_Qngyl] _ 3 V26 foo dtNlNQT](it)2
2 (47T)26 $13+1 2 (167T2€§)13 $13+1 2 (1671’253)13 0 t13+177(it)26
All together this gives:
. IN1 N, V- Joo dt L
7 _
PEREE0 ) o (8m2ezt) 3y (it)2A

as required.

We already know the form of our propagators on the torus from exercise 4.69. Take

2

9[1] (Z —w, T) 727r(Imz)2/7'2.

1

Gz w) = 2.6[1(0,7)

This gives us

<H esz ZiyZi) >* ZZ 526 EI{Z H’G Zz |€ ki-k;/2

7,<]

where Zp2 which is equal to the partition function of the torus Z(7) that we have also computed in the last
chapter. The amplitude is then:

26 9ge )| (ahicks 2
4 @’“)(ws)%f 7 HJ dai| [16G 2"

i<j

We need to calculate the form of the propagators (X*(z)X"(w)) on the cylinder with NN boundary condi-
tions. Let’s use the image charge method. The finite cylinder can be thought of as the fundamental domain
of the quotient of the upper half plane by the action z — Az for A a real number corresponding to the
modulus of the cylinder. For X at z where 1 < |z| < A we place images at each A"z in the upper half plane
as well as at A"z on the lower half plane.

2
(X(2)X(w)) = —% Z (log A2 — X202 4+ log N2z — )\"/QU_}]Q)

nez

This gives
<H ePiX > JD Ep Hl_[| )\ n/2 )\n/Q )()\ n/2 /\n/2 )‘Kspl Dj

n 1<j
For open strings (operators inserted at the boundary) we must apply boundary normal ordering. We’ll get:

<H* quX*> th Eq H 1_[ | A~ n/2,w1 )\n/Q )|2£2q1-qJ

n I<J

Lastly, for the correlations between boundary and bulk operators we’ll get:

H H |>\ n/2 )\n/2z ‘Mspz qr

n 4,1

Taking the product of the above three equations (with only a single momentum-conserving delta function)
gives us the X correlator on the cylinder. The CKG here is simply the compact SO(2) so it is best to ignore
ghosts, integrate the insertions over the whole cylinder and divide at the end by the volume of the SO(2)
action: A.

There is a cleaner way to do this. From exercise 4.69 we know the cylinder propagator can be written in
terms of the torus propagator as an involution:

Acy(z —w) = Az —w, it) + Az + w, it)
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15.

Here A = —% log G(z, %) from the problem above. This will then give us for m closed string and n open

string tachyons:

- . . i . . gmgn oe] dt 1 m n
( L etPiX (2i) *e’q’X(w’)*> zwgD(Ep + Xq) =2 J — - f dz; f dwr
1:[ L] (27€s)0 Jo 2t (215)1377(215)24H c H ac

I 0

x H[G(Zz —zj T = 1t)G(z + Zj5T = ﬂf)]egp"'pj/2 H Glwr—wy;T= it)ggql'qj

1< I<J
x H[G(’wl — 27 = it)Gwy + ;7 = it)] P
3,1

Here I assume Kiritsis meant €. = 1, since equation 3.4.3 refers specifically to closed string ground states.
The open string constraint €, = 1 comes from consistency of interactions stemming from the Jacobi identity
for Lie algebras. The one-loop contribution for the unoriented closed string comes from the cylinder + Klein
bottle + Mobius strip amplitude. As before, the only nonzero contributions come from states with an equal
number of left and right movers. All that this gives is an overall factor of €. in this amplitude:

1 _ Fo_ iVQG d26p 677%3@2 . V266 0 dt
VA = ZTY[O 2nt(Lo+Lo—c/12)] _ J A _ c J
Ka 1= 5 TG =57 | @mys iz = M = igriys |, i, i
And working in the transverse channel ¢t = 7/2¢ gives massless contribution:
. Vo f *
€220 x Ui—— =2 dal
¢ 47 (24/2785)%6 )y
Similarly, the Mobius strip amplitude is given by
S VA 26 27tl2p? . 0
Zy, = 1Tro[Qe’zﬂ(LO*c/M)] = e f d7p CJ.VG - = Ay, =0 VaoG ¥ - dt. -
2 2 (2m)13 (n(2it)03(2it))12 (2ml5)26 )y 2(2t)1+13(0(2it)n(2it))12

In the transverse channel with 2¢ = 7/2¢ now:

V 0
(N2 24'26f dl
¢ Z47T(2\/§7T€5)26 0

This gives a tadpole cancelation condition of:
€226 — 21N + N2 =0

We have N is a positive integer. Further, we have that ¢ is a sign. If ( = —1 then € must be negative, and
so by unitarity it is —1, but there are no integer solutions N to 226 = 2N + N2, Thus we need ¢ = 1 and
consequently e = —1, N = 213,
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Chapter 6: Strings in Background Fields

Note this chapter is specific to closed oriented strings. As such, we will not consider the effects of the boundary.

0. This is not a required problem but it certainly should be H Let’s calculate the B-functions of the nonlinear
sigma model. Here, 1 will borrow diagrams from the very nice set of TASI lecture notes of Callan and
Thorlacius

First, it is worth using a normal coordinate system for the X* (one in which all of the I' symbols vanish
and all higher symmetrized I" symbols also vanish). We want to look at radiative corrections to (T’ ), since
they have integrals that are easier to handle than those for (T;_). From conservation this will give us the
trace anomaly for (T _). We will first look at how G, B affect the trace on a flat worldsheet.

For the graviton contribution to 3%, we have only only one diagram

B4n'den’ Ryijs X0)0a XLB*XE n'ni

This contributes an anomalous trace of

]' a v
<T+_> = ZRMV aanﬁ XO

For the B contribution to 57, we have two such diagrams:

P H,i0. XY 8yn'n)
O4n'Oyn’
B4n'O4n’ 1%V Hyy(X0)0a X3 O XY n'n?
P H,i;0a XY Oun'n?

These contribute anomalous traces of:

1 1
—EHHPUH,,M Ou X B XY, gvAHweabaanabxg

respectively.

The dilaton contribution also affects the trace on the flat world sheet (even though it does not couple at
R = 0), by affecting the stress energy tensor as it is defined by varying the action w.r.t. the metric. Kiritsis
has worked this out before and shown that the dilaton contributes (0,0, — gap[1)P to the stress energy tensor,
from which we get a dilaton contribution of [Je®(X (£)) to the trace. Using covariant expressions for the
D’alambertian we arrive at a contribution

1
V.V, ®(Xo) 0 X5 0" XY — §V’\<I>(X0)HWA(Xo)aanﬁone“b

Combining all of this together, we see that we will get the S-functions:

1

G _ _
B _R;w 4

1
H,po HY +4V,V, 0, B5 = —§VAH>\W — 2V O H, .
As pointed out, these are not quite that RG beta functions (for example compare 37 to the correct form
in Kiritsis), but around the fixed point, they capture the correct first order behavior. In particular their
vanishing will mean that we have no Weyl anomaly.

2 After seeing the details of this calculation, I can understand why it was omitted.
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Now we need to account for the effects of a curved worldsheet geometry. We can account for this by looking
at a (T'y_T,_) correlator:

1) 1
56(&) (T4-(0))ees,, = s (T4-(§T+-(0))s,, (62)

Again we can get this by first looking at (T T ; ) and appealing to conservation. The Weyl anomaly comes
from this diagram:

840 O4n’ NN

This gives (T4 _T4_) = %55(2) (&€). Here we have a factor of D coming from each degree of freedom. This
can be used to integrate equation to yield:

D D
Ty-) = _Z8D¢ = QWR

Note that the ghosts (which are otherwise decoupled) will here contribute their factor of —26.

We also now need to consider two-loop contributions of G, B to the T'T' correlator. The following diagrams
contribute:

Rijun’n*8%n' dan'

O4n'dyn’ O4n'oen’

€*Hiju ' 8an? Oyn*
04n'O4n’ O4n'O4n'
©*Hiju ' an’ dun*

z“'ll,ﬂn'[ﬁ.u’i’.q' t'hll,,.q'a.q’a.r“

40040’ B4n'O4n’

The calculations here are very involved, but will precisely give us

« H?

—(—R+ﬁ)

Finally, the dilaton both modifies the energy-momentum tensor, giving rise to a tree-level propagator con-
tribution to the two-point function:

V.e0X! @—————_g) V.P0Xy

This contributes (T¥ T = 7o/ (V®)2[16?) (€) which will integrate to give a factor of %(V@)z VIR

Also, the dilaton gives a loop-contribution to the unmodified energy-momentum tensor:

B4n'd4n’ ViV, 8 040 O4n’
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Which contributes the term (T3 T = —7a/TI®16() (¢) which will integrate to give a factor of —%D@ﬁR.
Altogether this gives:

3 1
B® =D —26+ 5o/ [4(vq>)2 — 400 - R+ 12H2] .
as required.

. Each g-function of a coupling constant G, B, ® as given in 6.1.5, 6.1.6, 6.1.7 is % of that coupling constant,

since our scaling p = e? = log 1 = ¢. Since

(2 €] B
T¢ = ER ) 4+ @(ﬁwgaﬁ +BE,e7)0aX 05X
The change in effective action under an infinitesimal Weyl transformation §¢®% = —g®?§¢ is

_ _ 2 a _ 2 G ab B _ab
Slog Z — —65 — fd NI J 42 [ 5 VIR + 5 T (BW\@ g + BB e )aaxabx} 56
We can integrate this to get the change after a finite conformal transformation:

i 2 P (2) _1 ab i B ab

47rfd€[\/§ﬁ (R 6= 30"VadV10 ) + 5 (B + B ) GX X

this vanishes, of course, when all beta functions are zero. When 8, 82 are zero we can show (exercise 3)
that A% is a constant, and we recover the Liouville action from before.

. First write G explicitly in the action:

1 26— D
S = dP /= det Ge2® [R + 4GPV, 0V 5P — GMGBEGVC Hopy Hsee + 25— }
2K2 302
The classical equations of motion from varying the action with respect to G give
R variation (V®)?2 variation
0= Ry + 2V, V,® — 4V, 89,8 — 2G,,, 000 + 4G, (VP)® + 4V, 9V, ®
1 1 1 2
= Hupo HY =5 G <R +4(VD)? - ﬁH2 + @(26 D)>
LT y (63)
H? variation +v/— det GG variation
1 1 1 26 — D
= Ry + 2V, Vo ® = S Hypo HY” =2 G (R —4(V®)? + 4000 — EH2 +255 )
/ S
1=5€u
With respect to B we get:
1 IBP o o IBP
—56_24)(2(53;“/ (0aBgy + 2 perms.))HY) ~= STH e 2 (VO Hoyp) ™= —ZVQ(G_Q(I)HQW) =0

~

::BEV
Finally, with respect to ® we get:

26 —
302

0=-2 <R +4(VP)? — 1—12H2 +2 D> —8[1P—16(VP)? = —2 (R —4(V®)? + 4010 — %fﬂ 1920 D)

302

The term in parentheses is the same as the term in parentheses the bottom line of . This agrees with
Polchinski 3.7.21 (With appropriate conventions adopted)

08 = =5 | dPrvV/—det Ge* [5GW (5 —;GMV:%)B‘I’) +5BW55,,+25<1>§5‘1>]
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3. Let’s look at -2 V3%, We get:

32
8V, OV, V'® — 40V, & — V, R + é(VMHagv)Ha'BV
The contracted Bianchi identity V,R = 2V”R,, together with the vanishing of ﬁfy gives:
V,R=2V'R,, = %V”(HWUHﬁ") —40v,e

which in turn gives
1 1
8V, OV, VYO — DV (Hyupo HY) + E(VHHQBV)HQBV
The fact that H is exact gives us dH = 0 so JjoHgy5) = 0. The symmetry properties of H imply that

summing over the four cyclic permutations of this gives zero. Contracting with the metric then implies a
contracted Bianchi-type identity for H, namely that V¢H,g, = 0.

Using 2 = 0 together with the Bianchi identity, we have 0 = VPH,,, = 2VP® H,,,,. So we have that H is
divergence-free, and V*® dotted with any component of H is zero. This lets us rewrite:

1 v 1 v
5V Uy HET) = =3 H7, Hype

1 1 1
gv#(hr(m)lﬁfaﬂ7 = ngaﬁv (Vs = VgHyap + Vo Hap) = = H7V Hypo
1 ] v 1 v po 1 v 1 v
= @VMB = VZ,CDV“V P — EV (HH«PU‘HI/ ) = —iv (DRMV - EV Hl‘”’

One last step. I am missing something.

This gives that V#Bq’ = 0 as required. So 8% = ¢ is a constant.

. We get a linear dilaton giving rise to a Liouville action with @ = 0. This is our familiar free massless boson
in 2D with 1D target space. So we get a string propagating in a single dimension.

. Note that the only relevant parameters are £5, with units of length, and whatever length scales there are on
the manifold, all of which depend on its volume (since its compact) as VYD In particular ¢ = 8% depends
on f, as

c=D+O2/V¥D).
I think this is correct, though it is different from Kiristis’ equation.

. Note that a nonzero total flux of H over any closed 3-manifold is incompatible with H = dB for a single-
valued B. We can write:

LSNH

i B
02 )Y = e2m2

eQ‘rr
where M is the 2D manifold corresponding to the embedding of the world-sheet into the target space and
N is any manifold whose boundary is M. We need this to be independent of IV, so for any three-cycle M3
we need:

1 1
— He2nZ = —— HeZ
271'63 Ms € omh = 47T2£g M3 ©
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7.

8.

(a) We have
9 2 2
H = 2R sin? psin0dep A df adp— | = TR B

- €7
s ez TR

(b) The dilaton is ® = 0. Using Mathematica, the Ricci tensor is:
R, = diag(2,2 sin? 1, 2sin? 1 sin? 9)

Which gives a Ricci scalar of 6/R?. From the previous part, His3 = 2R?sin?1)sin 6. From the metric
being diagonal, we get that H}, := H,,c HL is diagonal. We have

1
H?, = diag(8,8sin’ ¢, 8sin® ¢ sin® ) = B = Ry, — ZHﬁV =0
as desired. Next, 65,/ = —%VO‘(H uwa). To take a contravariant divergence we divide by the volume
element and differentiate, but the volume element is sin?+) sin § which will give H/ \/9 is a constant, so
B will vanish.
Lastly, H? = (2R?)?2/R% = 2/R% so that —R + %HQ = —%. Ignoring ghosts, this gives a central charge

of:
2

gs 4\ 9 4
D~ 675 +0(th) = D=2 +0(¢})

as desired.

(c) Without using coordinates, the isometry of S3 is G = SO(4) = [SU(2) x SU(2)]/Zs. TO see that
equivalence, think of of S* as the unit quaternions, and take SU(2) x SU(2) act as unit quaternions on
the left and right. We get a right G-action by: z — a~'zb. Note the kernel is the set of (a,b) € G
ax = xb for all . In particular, for x = 1 we get a = b so the kernel lies in the diagonal subgroup.
To act trivially on all quaternions, ¢ must be in the center, and for the unit quaternions this is exactly
+1. So this is an injection ¢ : [SU(2) x SU(2)]/Z2 — SO(4). Since SO(4) is compact and connected,
it is generated by the image of exponentiating s0(4), and so surjectivity of ¢ at the level of the Lie
algebras (which is true by dimension-counting) implies surjectivity and hence equivalence at the level
of Lie groups.

So we see that so(4) acting on S® is just a simultaneous left and right copt of su(2) acting on SU(2).
Thus, we view this as the CFT of a nonlinear sigma model with target space G = SU(2) and the left,
right copies of the su(2) action correspond to currents J = g~'dg and J = dgg~!

We indeed get the central charge ¢ = k?’—fQ which has the large k expansion 3 — 6/k + O(1/k?). Since k
in a non-negative integer in WZW models, except for the case k = 0 corresponding to the trivial CFT,

we must have k£ > 1, where we get R > (.

Here the metric has three degrees of freedom and B,,,, ® both have only one degree of freedom (which can
be spatially varying). H, being a 3-index antisymmetric tensor, must vanish in 1+ 1D, and so we will always
have % = 0. The other two constraints become:

1 3
0=85 = 3B +2V, Vi@, 0= B = —24 + 563 [4(V®)? — 400® — R]
Translational isometry implies that R, g depend on only the time variable t. The x variable can therefore

parameterize either S' or R endowed with constant metric.

Now taking the trace of the first equation implies R(t) = —2[]®(x,t). Then the second equation will give:

%S = 4(VO(z,1))? — 2(0P)(1)

s

The only way for this to work is for R = [J® = 0 so that V® can be a constant. We then have ® = ax + St
so that a? + 82 = 4/£2, and g is Ricci flat everywhere (so we can pick it to be constant). In the case of either
a, 8 =0, we can also safely take x,t respectively to be periodic without having ® be multi-valued.
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9.

10.

11.

We still have 35 = 0, but 8¢ = R, — V,V,® while 3% = D — 26 + 2/2(4(V®)? — 4010 — R)
This can be recast in terms of a new 4D Ricci flat metric ds? = F(¢)d¢? + ¢R?dQ3.

Using Mathematica again to take the trace of this gives R;; for i = j > 1 proportional to R2pF'(¢) +
8¢F(¢)? — R?F(¢). Solving this differential equation for F' gives

R%p

F(e) = 402 + R%c

Setting ¢; = 0, F(¢) = R%/4¢ will also make Rop vanish. Then we can take the dilaton to be zero ®(¢) = 0.

As stated in the problem, upon gauging the adapted compact U(1) : § — 6 + ¢, which has radius 27, we
modify our derivative operator to act as 0,0 — 0,0 + Ay, where A, gives our connection on the U(1)
principal bundle associated with gauging the Killing symmetry. The action gets modified:

2 2
u j|692—> R f|89+A|2
Tl

o =
52 4 A l?

This is a new theory, but we can return to the old one by enforcing that A be pure gauge as follows: introduce
an auxiliary field ¢ and add to S the term

L aBy A :_ij A
2wJ¢€ 0aAp 5 d¢ A A.

Integrating out ¢ gives exactly a d-function enforcing e*? 0aAp = 0. This gives that A is closed, but it need
not be exact if our manifold has nontrivial topology. Going around any cycle, { A can pick up a factor of
2mn.

For a closed, genus g Riemann surface, there are 2g cycles labeled by a;, b;, 1 < ¢ < g coming from viewing
it as a 2g-gon. we have Riemann’s bilinear identity, namely for two closed 1-forms wi,wo,

o= $ (Lo L))

Now take wi; = A, wy = d¢. Now gives us that % §d¢ A A will not be zero in general, but in the path
integral, it suffices to have it be an integral multiple of 27, since then the nontrivial holonomies will have no
contribution to the action. We have that A can have winding 27Z, so the only solution is to have ¢ have
winding 277Z. This will exactly leave over a factor of 27Z. So we return to our original action by introducing
the field ¢ of period 27. (NB if I had kept the fields dimensionful, then ¢ would have period 27/R when 6
has period 27R)

In this new, equivalent action, we can gauge-fix § = 0 (do I need ghosts? No because this is abelian U(1))

and integrate out A. We get:
G/R [ o 2
i | e

so we have obtained the same action but now on a circle of radius ¢2/R instead of R.

In doing this path integral we get a determinant factor of 4/472¢2/R? = 27fs/R for each mode. Using zeta
function regularization this is equal to y/R/2w(, which we can understand as adding a —3 log(R/27(,) term
to the action that will couple to the curvature R (Show why), this shifting the dilaton as required.

We can simplify things by using the conventions of the next problem to do this one. Here, we have a single
compact coordinate 6. In our convention:

A < Goo GooA;

; 1
G = GooAi gij + GooAiAj> + By = Bid0 ~ da’ + AiBjbijdu ndrj, ¢ = 4 log det Goo
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12.

13.

14.

From formula F.3 specialized to this case, we get that the metric and dilaton terms become

~ . _ B 1 1
f 4Py~ det G [ R+ 45,07 = J dPLz\/— detge 2 [R FA(Gu0) + {0,Gon? G 4G00(ij)2}
R R (65)
where F,, = 0,A, — 0, A, and R corresponds to the original G, while R corresponds to g;;. Further G =

From F.6-F.9, the antisymmetric tensor changes as:

1 R . o 1 L 1 A A
-5 dP\/ —det G e P H;jp H* = — | P12y /—det ge™? {mHl-ij”k + 4Hij0H”0] (66)

Here where H;jo = H;jo and Hyjp, = Hyjp, — (AiHoji + 3perms.). Here Hyjy, is defined so that it is invariant
under T-duality (TYSM Kiritsis for pre-organizing these terms for me) . Further, under T-duality
Goo — Gaol =G0 = 8#G008“G00 invariant
9ij — Gij = R invariant
Ai— B (67)

1
d— P — 3 log Goo = ¢ — ¢ = (0,¢) invariant.

We see that the /—det ge 2? as well as first three terms of equation . We have that Flﬁ, — 0uB, —
OBy, =: F fu and Fl]f = H;jp. The last term of will therefore become swap with the last term of
and we are done.

This one is quick. We have
ds® = Goodf? + 2Goo Aida'da® + Gijdx'dr?, B = B;d a da? + (bij + A;Bj)dx' A da?

Certainly we have Gy = 1/Goo, B, = GooAi/Goo. Then A; = B, is consistent both for the 7,0 components
of the line element and the dz? A da/ components of the B-field as long as we keep b;; = b;; and g;; = gij.
Finally, the dilaton must be shifted by ® = ® — %log Goo-

The N commuting isometries correspond to a fibration by N-dimensional tori over each point in the base
space. As we have seen before (for strings valued in a N-dimensional torus target space), we have that modes
are described by two momenta pr,pr that Lie on an integral lattice. Naively, we can rotate pr,pr by any
GL(N) transformation, but the integrality condition restricts us to GL(N,Z). Now GL(N) acts separately
on the left and the right momenta, but we are allowed to exchange between these two by applying T-duality,
which still preserves our Lorentzian norm, so the T-duality group gets enhanced to O(N, N, Z).

This is clear, since orientation reversal acts trivially on g“bGW&aX "0, X" while it acts with a minus sign on
e“bBWé’aX "0, X"Y. The corresponding vertex operators are:
: aX“;?XMeikX o 1 GuoXrtoXY:, R: eFX

kX

If we assume the tachyon : e*¥X : is negative under parity then so are the dilaton and graviton.

This is incompatible with 6.1.10, as then parity will flip the sign of the dilaton in the exponential, substan-
tially changing the action of the theory.
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Chapter 7: Superstrings and Supersymmetry

1. We already know that TT" will have the desired OPE, since the bosons and fermions are uncoupled and we
already have shown their own respective stress tensor OPEs. Next

G(2)Gw) = ~ (20X (2 (w) X (w)

2
2 (£§ /- (z —w) : 0Py, (w) :> (_£S %jt 1 0X,,0X,(w) :>

Nz z—w 2 (z—w)
D — 30X 0X " (w) — Ut oy (w)
 (z—w)3 * z—w
_ ¢ 2T (w)
 (z—w)3 T
Finally
T(2)G(w) = —% <; X, 0X"(2) : +;¢“a¢u(2)) if%ax'/(w)
VB[ BaXRw) P X w) e —w)  CgoXiw) B OuaX (w)
- K‘é<_2 (z —w)? 2 (z—w)? +(_)§ (z —w) >

G(w) N 0G(w)

(z—w)?  z—w

_3
)

2. We will take the OPE of jz(z)jp(w), but just look at the (z —w)~! term as a function of w, as this, when
integrated around the origin in w will give @%. This is an extension of exercise 4.45, and there is nothing
conceptually further, except for some 8y manipulation. There are altogether 16 terms to consider, and we
will get ¢ = 15. The algebra is heavy, so I will skip this. An alternative is to do this as in Polchinski 4.3.

To do it this way, note the following OPEs:

Joept) ~ D) s (he(e) + §0400) ) + g (h0ete) + G059 - G002 )
=+ > _1 w [Tmatter(z) —db C(w) - 2bac(w) - %65’7@(}) B ;ﬁay(w)}
-y Tmatter(w) + Tgh(w) - {QB,bn} _ Ln

zZ—Ww

Similarly
Gmatter(w) + Ggh(w) -
Z— W

JB(2)B(w) =+ + (@B, Bn] = Gn

Now note that the Jacobi identity on Qp reads:

(m_n)bm+n Ly
{[Q37 Lm]; bn} - { [Lm, bn] 7QB} - [{brm QB}a Lm] =0= {[QB, Lm]a bn} = (m - n>Lm+n - [Lm; Ln]

So if the total central charge is zero we'll get {[@QpB, L], bn} = 0, implying that [Qp, Ly,] is independent of
the ¢ ghost. But on the other hand this operator has ghost number 1, so it must therefore vanish. Further,
the Jacobi identity also yields

{@pB,QB},bn] = —2[{bn, @B}, @B] = 2[@B, Ly]

since we just showed that this last term vanishes, we must have @), @ p is also independent of ¢, but again
since QzB has positive ghost number, we get that it is in fact zero. We can do the same argument with g and
G and get that the superstring BRST operator is zero, as long as the total central charge vanishes. This was
much cleaner than the OPE way.
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3. First a lemma: An abelian p-form field A has (D ;2) on shell DOF. To prove this, note that we have a gauge
symmetry of A — A+ dA which has (p? 1) parameters. Next, the Euler-Lagrange equations give us that the
components A%1+—1 are non-propagating. We thus get (Dgl) massless propagating off-shell d.o.f. which

have (1; :12) gauge symmetries left over. These can be used to enforce Coulomb gauge conditions which allow
for there to be no polarizations along one of the spatial directions. We thus get (D ;1) — (l; :12) = (D ;2)
massless on-shell degrees of freedom. For A, this is D — 2 and for B,,, this is (D —2)(D — 3)/2.

The metric has %D(D — 3) on-shell degrees of freedom. There are two ways to see this, first, that the

dynamically allowed variation §g may on-shell be described by a symmetric traceless tensor in dimension
D — 2 which gives

D—-1)(D-2 1

( >2( )1=2D(D3)

or by noting that since we are gauging translation symmetry locally, each translation makes 2 polarizations
unphysical and so we get:

D(D +1 1
<2+)—2D=2D(D—3)

as required.
We now consider the R-R, R-NS, NS-R, NS-NS sectors together. For NS-NS we have the scalar = 1 both on-

shell and off-shell, the antisymmetric two-form, which has only transverse degrees of freedom = 8 % 7/2 = 28
and the gravity, = 10 = 7/2 = 35 altogether we get 64 on-shell degrees of freedom.

In both the R-NS and NS-R sector, we have a Weyl representation of dimension 2°~! = 16. There are
however only 8 on-shell degrees of freedom. Similarly, we only consider the on-shell 1" 12 acting on the NS
part of the vacuum which gives another factor of 8. This gives 64 fermionic variables in each sector for a
grand total of 128.

In R-R for ITA we have a 0, 2, and self-dual 4-form. This gives:

()40

For IIB we have a 1 and 3-form. This gives
8 8
=64
(1) ()

so in either case we have 64 on-shell degrees of freedom here. This is consistent with each |S) state having 8
on-shell degrees of freedom giving 8 x 8 = 64. All together, we have the same number of on-shell fermionic
and bosonic degrees of freedom.

Now for the massive case. In the NS sector you might expect the next excitations come from the bosons a1,
but this gets projected out by GSO, so in fact the next states come from 1/1’_3/2, Cijk¢2—1/2¢]_1/21/’ﬁ1/2 and

C’ijd)i_l /20/; 1- These have dimensions 8 + 56 + 64 = 128, which decomposes as the traceless symmetric 44

and three-index antisymmetric 84 representation of SO(9). In the R sector, we must look at a’ ; |S,) and
Yt |Cy) for S, C, suitably chosen so that the state satisfies Go = 0. This constraint gives a factor of two
reduction for the dimension of the space of candidate S,. Consequently, we get 8, ® 8; D 8, ® 8 which has
dimension 128. This indeed turns out to be a spinor representation of SO(9), and it comes from looking at
the tensor product of the fundamental spinor representation with the vector representation 165 ® 9,. This
turns must decompose as a sum of two spinor representations 165 ® 128;. One is again the fundamental,
while the other is the required 128.

For the massive states in the type IIA and type IIB, we must tensor we wish to look at the lowest-level
masses. Note we must match massive states with massive states. In this case, we match 2/« on both sides
to get massive states of mass 4/a. Since the particles already organize into representations of SO(9) on each
side, the closed string massive spectrum will again clearly organize intro representations of SO(9). Also since
fermionic and bosonic degrees of freedom already were equal on each side, they will be equal in the closed
string as well. We will have 2 x 1282 = 32768 bosonic and fermionic degrees of freedom.

61



4. In terms of theta functions:

Xo =5

<. )
. <ﬁ93<ui>+ﬁe4<w>>
(1)

|

N | —

XS =

N | —

Xc =

N |

We'll take v; = 0 here (I assume this is what I’m supposed to do) and so 6; =0 = x5 = xc-.
For IIB we look at

—_

v —xcl? _ " gy 4[“]

(V/Tom7)8 fznn P2 <

Under modular transformations 7 — 7 + 1 94[(1)] - 94[8], 94[(1)] — —94[(1)] while n'? — —n'2. In the
holomorphic and anti-holomorphic parts separately, each term in the sum picks up a minus sign that is

cancelled by the minus sign in the n*.
Under 7 — —1/7, the (fm?)

94[8] — (—i7)294[8], 64 [1] — (—i7)%6% [0]’ 94[0] — (—17)294[(1)]. These are exactly compensated by the 7
transformations in the denominator, and no overall sign is picked up

—=—5 out front is invariant. On the other hand, the 6 functions transform as

For ITA we have similarly

_ _ 1 g4 1 4 [a
(xv — xco)(xv *XS) _ 1 Z a+b [a] % 1 Z (_1)a+5+a50 [%]
18 )E 2
(V/T2117) \f Ton)® 2 A 2 =
Again, the holomorphic part transforms as before and as we have set the v; to zero, we have the same
partition function. Using D.18, we see that each of the four above sums are zero since they are equal to a
product of 61 = 0.

5. Again, these are identical if I set the v; = 0 (am I not supposed to be doing this? What do the v; represent
physically?). They are equal to

(\FW?—MMW+ |9 + |9§|3 + |‘93 2)

We have 03 and 04 swapping under 7 — 7 + 1, generating no signs in this case, while the denominator looks
like |n|?* and also doesn’t generate a sign. Then, under 7 — —1/7 we have  and 64 swapping generating a
|7|*, identical to what is generated by the (n7)*.

6. The partition function is

1)a+b+ab+ag+bh+gh 0 [b] ZES [h} _ 1 Z(_1)79+6h 0° [}]
’ 8

ZE
het 8
ZS(e)(lﬁ xSO(16) Z 727777 8 5 Z( 7 g
h V

7,6

First look at Zg,. Under modular transformations 7 — —1/7 we get Zp, [Z] — Zgg|}]- Under 7 — 7 + 1,
we get Zp, [’;] — (=1)~ 2/3ZE8[ ,]- With this, we can look at ZSO(16)XSO(16) under 7 — —1/7

> 2
1 Z %1 Z( 1)a+b+ab+ag+bh+gh 0 [a]
p (v/T2m7)® 2 n
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Under relabeling of a <> b, g <> h, this is the same. Next, under 7 — 7 + 1:

—4/3 7 2 4
1 Z ZES [g+h] 1 Z( 1)a+b+ab+ag+bh+gh (=1)°0 [a+Z—1]
4/3 (vrnm)® 247 (=)’
2
4
EZ ZES [g+h] 12(_1)b+ab+ag+bh+ghw
2 & (ﬁnn)8 24 !

4 a
Z ZE8 Z( 1)1-i-b+ab-i—ag’-&-(a-&-b)h-i—g’h-&-h(9 [a+b—1]
\/Enn (/72mi)8 2 nt
Z 2 4T a
== L[g']l 2(_1)/f+<b'+a+/f>+<ab'+yf—;l>+ag’+(b'h+ﬂ>+g'h+ﬂm
2= (\/Enﬁ)g 2 n*

Zi !
- Z x/@m

4
Z( 1)a+b’+ab’+ag'+b’h+g’h0 [l()l’]
4
n

Keep in mind that z? = z mod 2.

Before we do the next part, let’s elaborate on why Zg, = %Zmb 68 [ﬁ] is the partition function of the Ejg
lattice. From the sixteen fermion picture, this is just the (—1)F = 1 in the NS sector (corresponding to the
X0 = (98[ ] + 98[ ]) character) together with the R sector yg = 198[ ] giving the spinor representation.

Indeed, the roots of Eg consist of the roots of O(16) as well as the spinor weights of O(16). Note that the
spinor representation comes from the half-integral points, corresponding to (9[(1)] in the sum, while the adjoint
representation comes from 6 [(1]] and 9[8]. Consequently the action of S; that fixes the adjoint vectors but
flips the sign of the spinor acts on our partition function as S;Zg, = %Za,b(—l)a 63 [Z] It of course also

gives rise to a twisted sector, so altogether we get the four twisted blocks Zp, [Z] as required.

Since we have projected out the spinor representation, the current algebra only contains the NS currents J%
corresponding to the adjoint of SO(16), and we have two copies of this for each group of 16 fermions.

From the factor of (1/7,717) ™% we see that we have 8 on-shell noncompact massless bosonic excitations as
well as all of their descendants (on both left and right moving sides). We also see on the left-moving side we
get a theta-function corresponding to N = 8 fermions transforming under a spacetime SO(8), forming the
superpartners of the bosons. On the right side instead of the superpartner fermions, we have the 16 internal
fermions that transform in the adjoint representations.

Let’s see what massless states we can build. In the NS sector of the left-movers, we have Lo = 1/2, Ly=1
and so we get 1* 1 /204‘7 1 |p) which gives us our usual graviton, two-form field, and dilaton. We also have
Pt 1 /2 ?, |p) for the O(16) x O(16) currents. This gives us vectors corresponding to gauge bosons valued in
the adjoint of O(16) x O(16) as required.

In the R sector we have G = 0, L = 1 we’ll get a gravitino, fermion, and gaugino as before, but again this
time valued in O(16) x O(16).

. Because we have seen that T-duality flips the antichiral U(1) 0X — —0X, and we want to preserve the
(1,1) supersymmetry G in the type II string (and so must keep it as a periodic variable Why is this
absolutely necessary. Can we not work with double covers in some clever way when defining
supercurrents? ), we must consequently flip ¢). This corresponds to inserting (—1)¥%&. For the right-moving
R sector, this changes the chirality of the R spinor, taking S, — I'’T''1S, (there can be no phase, by reality
conditions of I'). We thus flip ITA to IIB and vice versa.

From this we get that

Fop = Sa(T%)3,8, = Sa(TTTM) 5,8, = —¢ $,(1T) 5, 8, — —€FT°
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10.

Expanding in terms of the F),, _,, gives the action:

k
g -6 33 G e

This gives that

Fui. o = _meu-#k’ Fui e = Fuyow9
Then ~ - -
5#1@2--4%9 = _gamc/u--#kv aulc/mmuk = aul Cluzir9
so that (up to a closed term)
~(p) _ 1 ~ _ ~p+1)
Cm---up—19 - _Ecﬁl -Hp—1’ C/(}?-#p o CM1---MP9

Get rid of the ¢ factor

. We have that Q|S,Ss) = er|S5S4). Further, it acts trivially on T° (you sure?). Now, in the operator

language we will have Q5,Q7! = ¢S, and QSBQ 1 - = €253. In any case, we must have for the bi-spinor
that QS, SBQ L= eRSgSa, which gives that e;eo = —ep Thus, we have:

OF Q™" = Q8.T0. 8,07 = €I85 = —€rl', FrsTg, = —er(TVFI%) g0 = —ep(FOFTT0) g

I think 7.3.3 of Kiritsis has the derivation wrong. Ask Nathan/Xi.

. When we take eg = —1 the scalar and four-index self-dual tensor survive. In this case, we will not have

consistent interactions. Since the graviton survives, there must be an equal number of massless bosonic
and fermionic excitations. The fermions come just from the NS-R sector (there is no R-NS now), giving 64
on-shell fermionic excitations. From the NS-NS sector, the dilaton and gravity will give 1 + 35 = 36 on-shell
bosonic degrees of freedom. We are missing 28 bosonic degrees of freedom.

The scalar and four-index self dual tensor contribute 1+ 5 1 M = 36 on-shell bosonic degrees of freedom.

This is too much. The two-form, on the other hand, contrlbutes the requisite 8 x 7/2 = 28. Consistency of
interaction thus demands we keep only the 2-form and drop the 0 and self-dual 4-form. This necessitates
er = 1.

We are just looking at the open superstrings here. Any open string that consistently couples to type I or
type 1I string theory must have a GSO projection as well. We have already seen how the oriented open
strings look like in exercise 7.3. In the NS sector we have at —p? = m? = 2//2
wig/z)\ab |p; ab>NS
Cijkd}i_l/gwj_l/gﬂ)EUQ)‘ab Ipiab)y g (68)
Cijwil/gaj_l)\ab |p; ab>NS
In the R sector we have (for S, suitably chosen so that the state satisfies Gy = 0):
o/_l)\ab |Sasab)p
wz—l)\ab ’Ca, (lb>R
I will assume NN boundary conditions. In this case
Qa_lg_l = —Q_1

p_1 Q7 =~y
Qméfr1 = —ip 1

Qp_sQ =i
2 2

|
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11.

12.

13.

So all of the terms in are terms of the form Ay, |p; ab) yg with the operator A transforming as A — 1A
under parity. Doing parity twice therefore will generate a —6%\,SA(’WT_1)Z-Z-/ lp;a’t’y (yTy~1);;. This is
exactly the same as in 7.3.10. Demanding that 2 act on the state with eigenvalue +1 will make it so
that A = iexgyATy~!. We already have eyg = —i so A = yYAT~y~! here. Imposing the tadpole cancelation
condition ¢ = 1 and we get gauge group SO(32). So we get that states at this level will transform in the the
traceless symmetric tensor + singlet representation of SO(32).

All of the terms in will transform under parity twice as as G%A('y'yT_l)ii/ Sa; @by (yTy™1) ;. We will
have the same v matrix as in the NS sector, as required for consistency of interactions. Here, though, we
will get eg = -1 = e%{ = 1 and we will get A = —yATy~! (this is what we got from the massless sector with
an extra minus sign since 11, a_1 now transform with minus signs). Again we will have that these states
will transform in the symmetric representation of SO(32).

Again we get 128 bosonic states that will transform as the 44 @ 84 representation of SO(9). We will also get
fermions transforming in the 128 spinor representation as in exercise 3. All of these states will transform in
the traceless symmetric representation of SO(32). Confirm

Certainly in the untwisted sector, the theory we get corresponds to tracing over the projection operator
%(1 + g) where g is orientation-reversal. Now in the twisted sector, we still have X* satisfies the Laplace
equation d;0_X = 0 so we can write

oy i “o_ u ~
X(o,71) =2t + T@p ;Lp £2p p Z <a” —in(T+o) 4 %e_i"(”ro))
n

The condition that X (o + 27) = X (27 — o) give that p# = p* and the ¢ term vanishes. We must have n
is a half integer. For integer modding we have e~ (7+9) —in(TF0)  For half-integer modding we have
ein(t£o) — (—1)”e_i”(71"). We should thus have «,, = &, for n integral and «,, = —&, We thus get

— e

X(0,7) = 2t + 20 3 an ELAERVOT SyS it
(0,7) = a# + 20%pPT + 0iV/2 Z . cos(no)e —V2 Z p sin(no)e

neZ\{0} neztl

This is the twisted sector. The last sum picks up a minus sign under orientation reversal, and so will be
projected out. We are left with the equations of motion for the open string.

In NS we have (up to an overall irrelevant factor of i—1/ 2)

$(0,7) = 3 o™V gy = ST pemt1/Drio)

nez nez

In the closed strlng case have that anH/QQ = zﬁnﬂ/z. Given that Qi(o,7)Q~! = (7 — 0, 7), we directly
get MY, 1 /QQ = i(— 7) Yrt1 /2. For DD boundary conditions we get an extra minus sign to this, since
there QY(o, 7)Q ! = (7 — 0, 7).

In the R sector we have ‘ ~ B A
) = Z bnen(7—+w)’ (o, ) = Z bnen(’r—w)

nez nez
Following the same logic we get that Q1,Q~! = (—1)™, for NN and Q,Q "1 = —(—1)",, for DD.

All of these cases can be summarized by

NN: Q. Q71 = (=1)",
DD: Q.Q 7! = —(=1)"¢),.

Let’s clarify a bit of terminology before we begin. We are looking at just the fermions of the left moving and
right moving sides of the heterotic string theory. On the left-hand (supersymmetric) 81de in the light-cone

gauge these form an O( ) current algebra at level 1. On the right-hand side the form a 0(32) current algebra
at level 1 again (why must we always have level 17 Ask Xi.).
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The characters of O(N), for N even correspond to the integrable representations labeled by O,V,S,C
corresponding to the trivial, vector, spinor, and conjugate spinor. For our purposes (ie the heterotic string),
we do not need to distinguish between S and C, which will have the same character. The characters can be
written in terms of 6 functions as

(a)

1 <03>N/2 (04>N/2 1 (03>N/2 <64>N/2 1 (92>N/2
X0 = 35 — + | = y XV =3 — I . y XSs=37 | —
2\ U 21\ U 2\n

—_

Now let us first look at O(32). The O(8), characters transform under 7 — 7+ 1 as

Xo = (=)0, A = =), x§ = —(=1) s
And under 7 — —1/7 they transform as

1 1 1
Xo = (X6 +x0) +xE b = 50O+ b)) — a8 x> 506 )

—_

The O(32), characters depending on q transform the same way under 7 — —1/7 but under 7 — 7 + 1
transform as

Xo = (“D5E, P - —(—DY, (F - (—D)YAE
Our partition functions in question can be constructed from a linear combination of products of exactly
one O/(\S)1 and one O/(\32)1 character. This gives 9 possible terms X?x?Q*. I label these in the table
below. I cancel all terms that are not invariant under 7 — 7 + 1.

o9 0OV OF
VO MV VS
SO SV S8

But we are not done. It is easy to see that while that X%, X% blocks have Taylor series O(ql/ 3), the xo
block contains a singular term going as ¢~ /6. Similarly, X%Q contains a singular term going as O(q*Q/ 3)
while >*<‘r‘3/2 = O(g /%) and X3 = O(G*?). The tachyon can come exactly (and only!) from combining
Xgox%f to get 1/ ]q\l/ 6 that will be singular and satisfy level-matching. Thus we must drop OV above
as well. We are left with four possible terms that can work.

Modular invariance under 7 — 1/7 further constrains this to take a form proportional to

(b = X5) (A + X&)
The normalization of the identity to 1 fixes this entirely. Note that we get spin statistics for free, as the
only character combinations appearing with a minus sign are precisely those containing X%, associated
with the spacetime fermions.

Having O/(\?)Z)l out of the way, let’s move on to O(16) x Eg. E\gl has only one integrable representation
and thus one corresponding character, xy*®. As pointed out in the text, it is related to the characters of
0(16), by x* = x&¥ + x15. Thus we have trilinear combinations X?(q)x}G(q)xEs(q). Upon noting that

—_

the characters of O(16); multiplied by x g, transform the same way under modular transformations as

O(32), and the same combination p% X‘l/ﬁ P8 uniquely gives the tachyon, we see that again the argument
goes as before and the only viable character we can have is

O = X902 + X = (G — X&)

This is exactly the heterotic E string theory.

Finally we get to the hard one: O(16) x O(16). Here we have 27 trilinear terms that can contribute.
I will write them out, and again cross out the ones that are not invariant under 7 — 7 + 1 as well as
double crossing out the tachyons. Here, though, the notation OO, OV, SV etc will represent just the

right-moving characters x5’ (9)x6 (2), X6 (@)x1° (@), x§ (@) x3° (@) respectively.
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14.

15.

16.

00 ¥ OF 00 O¥ 0S8 00 O¥ OS5
Ox ¥ V¥V VS, dx YO VV ¥S, ¥ x VO VV ¥S
SO SV S8 SO S¥ SS SO S¥ SS

It may look that 12 independent terms remain. The fact that the characters are symmetric under
exchange of the last two labels mean that there are in fact only 12.

Let us look at two cases. First, assume X%x%/ﬁ*x}g‘a* does not contribute (ie its coefficient vanishes).
Then the first 9 terms are all zero. The remaining constraint of modular invariance under 7 — 7 + 1
constrains the partition function to take the form

(v = xs) [XOXO +2ax8xs + (1= a)xi/xif + (2 — a)xg'x¥ ]

for any value of a. Spin statistics requires all these contributions to come in with positive coefficient, so
0 < a < 1. Moreover, if « is non-integral we will have coefficients that are not integers in the character
expansion, which would lack a Hilbert space interpretation Think more about the integrality
condition. Thus we can have only a = 0 and o = 1 corresponding exactly to the O(32) and Eg x Eg
superstrings.

So our remaining possibility is that Xgox%,ﬁ*xlsﬁ* does mot have vanishing coefficient. WLOG set this
coefficient to 1. Invariance under 7 — —1/7 constrains us to:

205X + XV [axoxo + 28XExE + (=1 +a = B)xiPxiP + (=1 + 20— B)x s x s |

+ X8 [(1— )X — 201+ B)ax&x¥ + (—a+ B)xiPxif + (1 — 20 + B)x&' x5’
Again, spin-statistics requires the coefficient of all the characters involving xy to have positive sign and
all the characters involving y¢ to have negative sign. This makes 1 < ,0 < 8 < a— 1. Integrality then

forces a = 1,8 = 0. More general solution? We need to impose that x?xSx{® has coefficient

lorO

Of all these theories, the first two theories have vanishing partition function - an indicator of spacetime
supersymmetry, but not necessarily an identifier. Of course, we can identify them as the heterotic string
theories, which indeed have space time SUSY. The last theory has nonvanishing partition function and thus
cannot have spacetime SUSY as the fermions and bosons do not cancel at one loop.

I think this problem is backwards. For 32 fermions all with the same boundary conditions, its immediate to
see that they will reproduce the partition function for the Spin(32)/Zs string:

1 a
- 916
2]
a,b
Just by considering the O(N) fermion at N = 32. On the other hand, if we split the fermions into 16 + 16,

and consider separately boundary conditions for each of those, then our partition function is the square of
the 16-fermion system. We then get the Fg x Fg lattice theta-function, as required

2

1 a
NGH

Note this was a Lorentzian lattice of signature (n,n). The norm was thus Pf — P% = 2mn € 2Z. It is also
self dual, since it is already integral, and there is no integral sublattice.

We have 3 . 3
'YGghost = —cy0B — 58675 - 2’72ba CTghost = 2bcdc — 5676/8 - 56675
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17.

Here Kitisis’ conventions are different than Polchinski. Recall upon bosonization §(z) = e~#(*)0¢(z2), v
e®(2) n(z). Although we can solve this problem very quickly since we already know what the stress tensor looks
like in the bosonized variables, I think it’s way more instructive to explicitly compute OPEs to O(z — w).
First let’s look at the 7, & theory, which is a fermoinic bc theory of weights 1,0. We get

E(m(w) = ——+ 1 €0+ (w) + Oz — w)

Z—w

We can bosonize this theory in terms of hermitian y field so that n = e™X, £ = e™X. Using these coordinates

1

Z—w

E(z)n(w) = eX(Be—x(w) — [1 + (z —w)dx + %(z —w)3(2*x + (0x)?) + .. ]

= GE(In(w) =~ + 2 (@x + (1))

Cow
Using this we can write
Ba(w) = e E(2) ()
~ - w)|1- G- ) + 5 - @02 - 20| |- L + 5@+ @07)]

z—w)

The constant term gives :3v:= d¢ =:0(87):= 0%¢. The (z — w) term gives exactly the stress tensor of the
B~ theory at A = 0, which makes sense since this is exactly 08~

1 1
108y = —5(09)" + 8% +3 ( X+ 5%
1 1 1
= Tp, = 0By — AO(BY) = —5(&;5)2 + (2 ~ )\) 0% + 5(ax)? + 552x-
In our case we have \ = 3/2.
= etz e e a Loz v Loty ) — B0 — 242
’YGghost = C< 2(6¢)) + 26 ¢+ 2(6}() + 26 X 20¢8c 27y b
1 2 _ A2 1 2 1o
CTghost = 2bcoc + ¢ —§(a¢) —0 d) + 5(8){) + ia X
Altogether this gives a BRST current:
1
jB = cTx + ’)/GX + = (CTgh + ’)/Ggh)

=cTx + 7Gx + bcoc — Zé’qbé’c — 1652¢ —~%

We are looking at [Qp,£e~?/25,ePX]. Therefore we should look at the 1/(z — w) pole in the OPE of jp
with €e~%/25,eX. The terms that contribute to this pole must involve pairing & with its conjugate 7. 7
appears in jp wherever v = e®n appears. From the previous exercise, we see that we need only look at the
terms YGx and —v2b.

These two terms contribute poles:

Z—w Z—Ww

PG x e 928,ePX: : e392npS e X :]

The overall minus sign comes from commuting across an odd number of fermions for the Wick-contraction.
We will need to recall two things:

PH(z) - Sa(w) ~ L (“ S7(w) + Q(DlF

V2vE—w ; 0 apSePu” (z—w)>, @t W)/2 L\ [ et )
s\
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18.

19.

The subleading term in the first expansion is taken from Blumenhagen 15.81. That means that first term is:

e¢’(z)i>/2§¢“(z)aX“(z) e W28 ()X ()

V2 el PagS"0Xue™ | —ilp,e™X 1
& V2 Vi—w 2(z —w) 402

?/2 X
= _T (FgﬂsﬂaXM - irgﬁsﬁwup : ¢> e

Tt P,/ = w)

Note this OPE has no singularity, so we exactly got the normal ordered term we required: : e?/2G x Spe™?X :.
Altogether this gives us:

/2 C /2 ‘
Vfgﬁi)on(u’p) = ua(p) [e£ Fgﬁsﬁé’Xﬂ - gT ZBSB¢VP P+ 6345/27758&] ePX

I believe this is right, and moreover that the inclusion of the £;! factor is necessary for the dimensional
analysis to make sense.

Here, I followed the discussion of Polchinski 12.5. The picture changing operator is:

X(z) :== QB -£(2)

Over the sphere, the 5+ path integral is equivalent to the ¢, 7, £ path integral plus an additional insertion of
¢ to make up for the fact that it pics up a zero mode due to to the vacuum degeneracy it produces. Because
the expectation value is just proportional to the zero-mode of £, which depends on global information rather
than the specific local insertion point, (x(z)) is independent of position and we can normalize £ so that this
is 1.

Say we have a null state. This means it is BRST exact. This means that we can rewrite its pointlike insertion
as a local operator surrounded by a BRST contour (direct, from the definition of exact). For that null state
to decouple, we need to be able to contract the BRST contour off the sphere (i.e. by pulling it off to the
north pole). The fact that ¢ is inserted will seem to obstruct this. What happens now as we pull the BRST
charge to infinity is that it will circle &, creating the PCO X(z). However, when the £ insertion is replaced
by X, the path integral will vanish since there is now no £ insertion to avoid the zero-mode.

Now consider a path integral with a PCO insertion as well as additional BRST-invariant operators (mean-
ing. the contour integral around them of jp is zero). Then we can write X(z1)&(z2) = Qp&(21)E(22) =
(—)2£(21)QP&(22) = €(21)X(22) where T have pulled the Qp contour around the sphere (there two minus
signs, one from commuting (Jp across a fermionic variable and one from reversing the orientation of the
contour.)

This is interesting: although X is null, it does not vanish in the path integral, since pulling @) p off of it will
make @Qp encircle £(z2) but leave behind X(z1)’s £(z1), so the & zero-mode will remain saturated and we
won’t get zero.

The X can be brought near any of the local BRST closed operators to change their picture (the OPE
is nonsingular). Ie note that the main term we look at is YGx = e¢®nGx in jp so that XO(_l)(z) =
2Gx(2)0(0) — G_1,0(0). We can move X to any other point on the sphere - since the exact position of X
does not matter any more than the position of &.

It is enough to look at the 1/(z — w) term in the OPE

: e_¢(z)/25a(z) VA (w) = e_¢(z)/25a(z)uﬁ(p)e_¢(w)/255(w)eip'X(w)

* ' fermion

We will use the fact of 4.12.42:

Caﬁ Fg,ﬁw# (w)

Sa(2)Sp(w) = (- w)]\//g + \@55(2 _ w)N/8—1/2
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20.

where C,3 is the charge conjugation matrix and here N = 10. We also have e~ ?2e0/2 = (z —w) Ve 9.
This leaves the (2 — w)~! term to be the requisite

I I uf
afB ipX (-1 aB
NGY) ¢Mep = Vboson(e = NG, s D5 2)

For the second example, we will look at the (z — w)™! term in the OPE

e %u’(p)

e*‘ﬁ(z)/QSa(z)eu <8X“ — %puw“ ¢”> e

The first term in parentheses will not contribute to the singular term. Also the e=#/2 and e?X contract with

nothing. Here, we use 4.12.41 to evaluate

_ATw)aSsw)
N 2(z —w)

—iJn

The — sign comes from the fact that the fermion current is coming from the right this time so z and w are
swapped. This gives a variation

. B
zp“e”@ (Tuw)a
1 \ D 2)

fermion

—¢/2: 1 I/Eg v B ipX _ v (=1/2), B _
e”¥Tipte’ e (Cuw)oSpe™™ =V, (u” =

We are in type I. We have

1
@C VD (wy) eV (wy) o eVo(ws) D+ 12, 1> a9 > a3

That constant out front is not obvious from Kiritsis, c.f. the discussion in Polchinski 12.4 and
allow for another factor of /2 since the fermions are dimensionful

/_\
o

The relevant expectation values are
{e(wr)e(wa)e(ws)) = [wipwigwas|, (e ?Mem@(w2)y — il
W)y (w2)) = G wiy', (XF(wr)e™ X (wn)) = —2il3ky'e™ Fwpy
In the matter CFT we get (here k; - k; = 0 so the pure e*% terms contract to 1):
(O ()X g () e 02 (1XP 4 2k - )t )
= 20441°(Sk) ( LU S T i o >

w12wW13 w12wW23 wW13wW23

So altogether we get an amplitude of (taking 1 — 0,29 — 1,23 — 0)

7 QZ'K;lggpen 10 (nlwkﬁm.23 nuykﬁxl?)
X F0(2k S e ””k“> 123] — [132
P R TR el G SR — k) ((123] - [132))

= TSR (K Pk oK) (123] — [132))

Note unlike the Bosonic string this is ezactly the same as the ordinary Yang-Mills amplitude, there is no k3
correction term (what would correspond to at TrF® term in the Lagrangian).

70



21.

22.

23.

This is also in type I. We should put the gaugini in the —1/2 picture and the boson in the —1 picture.

/—\
\_

We have
tig 2< VD (wy) o VY2 (wy) 1 VY (w3) D+ 12, 11> 20> 23
The relevant expectation values are
(e(wr)e(wa)e(ws)) = [wigwngwss|, (=) 2em0w2)/2e=0tus)y — g My 120 /2,
(Sa(wn)Sp(w2)) = Copwy = (Salwi)Ss(w2)"(ws)) = f}<crnﬁwﬁ”zu;”wxﬁ2

So altogether this gives

. 52 open
g om0 goen 5 8V (SRICTY  ([128] = [192)) = "2 () 0T (128] = 192)

This is k-independent so is an even simpler amplitude that the last in some sense.

We are now in type II. Gravitons are NS-NS states. We take two of them in the (—1,—1) picture and the
remaining one in the (0,0) picture. Again now, the constant demanded from unitarity now gets modified to
5%’;2: We look at

8mi 293
get3 3

<[cEe*¢*¢3w“z/7”ei’“1X]<z1>[cée*¢*%”z/7%“”x] (z0)[ce(0X” — §k YR (0X* — §k : W)e““x](zg)}

Let’s just look at the holomorphic part of the matter CF'T, and the calculation goes almost exactly as in the
last problem

<¢H(Z1)eik1"x(21) wu(z2)eik2~X(z2) (ZXp + %k3 ) ¢¢p)eik3'x(z3)>
_ lgg <”W’“f I Sl )
2 212213 212223 213223

£4
- Zs En’“’k'ﬁ +0Pkgy + 0" k)
=:“/rl“’p

So the total amplitude becomes
wige$'O (Sk) VPV I

consistent with Polchinski.

We can put all our gaugini in the —1/2 picture thankfully.

N
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24.

Our vertex operators are gopeny/ZsA\*e~?/25,e*X . The relevant two-point correlator is
Zs(CT #)aﬁwu
V2(z —w)
From considerations of the singularity structure, we get that the four-point correlator is:
(O as(CT)s | (O )ar(CT)as | BT )as(CT)s,
2212234723234 2213224232242 2214223242243

Sa(2)55(w) ~

Take z1 = 0,29 = w, 23 = 1,24 = . In order for the term going as 1/z to cancel so that the integral over
the line is well-defined, we need the (physmal on-shell condition):

and defining — (k1 + k2)? = s etc. gives

i L . "
WHWWWMMXLHHG>EWWmmmmM

_ Zgopen 8 10 F( )F( €2u) IS ST JR Y
= 5 R 2310 (k) 2 (F(l s — 2 )( Ieslls — sUgsls,)[1234] + 2 perms.

84

The minus sign comes from pulling an s or v out of the I' functions. The factor of 2 comes from summing
over both orientations. Altogether we can write this as

[(—£25)0(—F2u)
[(1—02s—2u)

— 8iggpen€§610(2k)K(u1, U, U3, Us) ( [1234] + 2perms.)
1
K(ul, U9, U3, U4) = g(u leFMUQ’&gFlﬂM — Sﬂlr‘uuzﬂigruuﬂ
The bosonic action in 11D is:

R 1 1 A
dllxm [R — 5. 4l Gi + (144)2 EMl"'MllGMI”,M4GM4,,,M80M9M10M11]

where G4 is the field strength of the 3-form C. From Appendix F, we have that the dilaton ® = 0 in 11D.
So the field o will just be 0 = —2¢ = %log G1111, and A here is as it is in appendix F. Directly using the
bosonic equation F.3 gives the terms

1
dBa\/—ge® [R — 462”F22]

(Here the i&HGH 110"(G1111) 1) will exactly cancel the 40,,¢d" .
Now let’s look at the 3-form potential contribution. Because F' is antisymmetric in all four indices, and we

only are compactifying along one dimension, only the first two terms of F.28 can contribute. They give

1 1
dPay/=ge? [_2 iy 3162‘7H§]

and (H3)up = 0,(B2),y) = 0Cuu11 so that HF = GG GP*HyypHyr, and Cuup = Chvp — (Cup114, +
2 perms.) consistent with F.30.

Finally, let’s look at that last eM1~-M1I term. At first it looks quite scary. Note we can write this last term
as 6dC’k; A dCs A Cs. T have 11 indices to pick to be index 11. If I pick any of the indices of the last C1 get
the term

19n 2ng N ng N BQ

If I pick either of the dC terms, then after an integration by parts I get the same term. So the same term
contributes three times Revisit this logic. We thus get the requisite action contribution:

13 | @B A dCs A dCh
K
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25. Under A; — A1 + de and C3 — C3 + eH3 we see that obviously R, Fb, By, and Hs will stay the same. Now
dC3 — dC3 + de A Hg while A A H3 —> A A H3 — de A H3. Thus, Fj will stay the same.

It remains to look at the variation of By A dC3 A dC'3. This is
By A de A H3 A dC3 + By A dC3 A de A Hs.
These two terms cancel by antisymmetry of the indices.

26. Defining C% = C3 + A A Bs give the above transformation as Ay — A; + de, C4 — C% + eHs + de A By so
that dC§ — dC% + de A H3 — de A H3 = dC5.

Now G4 = dC5—dA A By (Kiritsis wrote a small A, which I believe is a typo). Under the same transformation
we get that G4 is invariant as required.

Further, the transformation of C5 — C5 + dAy implies that C§ — C' + dAy = dC% — dCf = G4 — G4 as
required. So C§ now transforms trivially under the A transformation.

27. Take S = Sy + ie~?. The SLy(R) transformation acts on IIB supergravity as:

g aS+b By d —c Bs
cS+d Co -b a Cy
The latter is also how H3, F3 will transform together. Now think of S as the modular parameter 7, e~¢ =
So = 79 is the imaginary part. Think of Hs, F3 as periods wi,ws The IIB action in the Einstein frame can
be written as

10805 1 |GsP 1

2 82 2.3 8 4

1 1 Gy A G
S]]B:ﬁ dlox\/—g [R 5'F52]+ C4/\M

Rik2 Sy

Now R, C4, and Fs do not change. The term 25 95 transforms under SL(2,R) exactly like the invariant

5’2
measure d;g“ .

2

Finally, any term consisting of a pair G3, G3 in the numerator (either wedged or wedged with a hodge star)
divided by S5 will also remain modular invariant, as a quick Mathematica check confirms for us:

in2216:= G = F3 + (S1 + I S2) H3;
t2 = S2;
a(S1+IS2)+b
Gp:Assum‘ng[a d -bc =1, (a F3-b H3) + ————— — — (-cF3+dH3) //
c (S1+IS2)+d
FullSimpli fy] ;
a(S1+IS2)+b
c(S1+IS2)+d
G » Conjugate[G] // ComplexExpand
T2
(Gp * Conjugate[Gp] // ComplexExpand)

2p = Assum-‘mg[a d-bc=1, Im[ ] // ComplexExpand // FullSimpli fy] H

// Fulls+implify

// FullSimplify

T2p
(F3 +H3S1)? 2
out[2220]= ——— X X  + H3° S2
S2
(F3 +H3S1)2 2
Out[2221]= ———————— + H3“ S2

S2

28. Again for some reason Kiritsis writes a small a, which again I think is a typo. We need to find which gauge
transformations need to be modified for Cy, By, Co, Cy. There is a Chern-Simons term only in the definition
of F5 = dCy — Cy A H3 so we see that the Cy — Cy + ¢ (for ¢ a constant, the only closed 0-form) keeps the
action invariant.

Taking By — By + dA; will keep Hs and therefore F5 invariant, so this transform is legitimate.

Also, taking Cy — Cy + dA3 will keep Fj invariant as well and will modify the Chern-Simons term in the
full action Cy A Hy A F3 by closed form, which will give no contribution.
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29.

30.

31.

Finally, taking Cy — Cy + dA; will change F5 — F5 — dA; A Hs. This must be compensated by changing
Cy — Cy + %Al A Hs + %dAl A By. Then Fy will be invariant. Moreover, the Chern Simons term in the
action Cy A H3 A F3 have a variation

1 1
5/\1/\H3/\H3/\F3+§dA1/\BQ/\H3/\F3

After integration by parts this variation will contribute nothing, as required.

Clearly dimO(32) = 32 x 31/2 = 496, which is necessary. For N = 32 we also get from 7.9.29 that
Tr(F%) = 15tr(F*)tr(F?) where tr is the trace of the curvature form in (an associated bundle for) the
fundamental representation Also using 7.9.30 we get Tr(F*) = 24tr(F*)+3(tr(F?))? and Tr(F?) = 30tr(F?).
Then, both sides of equation 7.9.26 become

1 1
15tr(F)tr(F?) = —gtr(zﬂ)?’ + gtr(zﬂ)?‘ + 15tr(F4)tr(F?)

and we have agreement!

For an individual EFg, we have exactly

1 1 1 1
Tr(F%) = TrF? = —TrF?. —(TrF?)? — —(TrF?)3
() = g ™ 18 T F 100 (T F)” = 100 (T F)

Now for Eg x Eg we have the property that Tr(F") = Tri(F") + Tra(F™) where Tr; means tracing over the
direct summands in the associated bundle that are acted on by the ¢th Fs. Then we will have the relations

1

TH(F®) = ——— (Try(F2) + Tra(F2),  Te(F*) = =

= 500 (Tri(F?) + Tro(F?))?

So replacing Tr(F?) with Try(F?) + Tro(F?) in the prior derivation gives us again exact matching and thus
anomaly cancelation.

On the other hand U(1) has no Casimirs so Tr(F™) = 0 for all m. In particular this allows us to take
Eg x U(1)**8 or U(1)*% as a gauge group and remain anomaly-free. Check with Nick. Reconcile this
with

Now let us turn to the SO(16) x SO(16) theory. To check anomalies, we look at the chiral terms. In this
case we have massless content consisting of spin 1/2 Majorana-Weyl fermions transforming in the (16, 16)
(positive chirality), and (1,128)® (128, 1) (negative chirality) representations. We also have massive fermion
fields in the (128,128) representation that do not contribute to the anomaly. Note that we do not have a
gravitino, as there is no spacetime SUSY in this theory.

The positive chirality (16,16) MW fermions have field strength F, = F; ® 1 + 1 ® F, valued in the vector
representation.

The negative chirality (1,128)@® (128,1) MW fermions have field strength '~ = | @ F} valued in the spinor
representation.
Our anomaly polynomial is thus

SR, F) — (R, )

Both representations have dimension 256, so the gi(...) term in 7.9.22 cancels (note we did not need to

use that the dimension of the gauge group was 496 here!). We are left with (using tr for the trace in the
fundamental representation and trg for the spinor rep’n)

Y] e[FTRY]  alFY) (Tr[R“] N (TY[RQ]V)

720 24 - 48 256 45 36
. . . 70
[ trs[FO] N trs[F2]Te[R?]  trg[F2] (Tr[RY] N (Tr[R?])? (70)
720 24 - 48 256 45 36
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32.

From explicitly expanding out (F; ® 1 + 1® F3)>*5 we get:

trF2 = 16(trFY + trFy)
trF = 16(trFy + trFy) + 6tr FRtrFy
trFS = 16(trFY + trFY) + 15tr F2tr Fy + 15tr Fitr Fy

Together with the results 7.4E, 7.5E relating trg to tr we get

trgF2 = 16(trFZ + trFy)
troF4 = —8(tr By + trFy) + 6(trFE + trFy)?

trsFE

15
16(tr Y 4 trFS) — 15(tr FEtr Fy! + trFatr Fy) + 7 ((trFP)? + (trF3)?)

Altogether we get

16 (F16 + F26) + 15 (F12F24 + F22F14) 16 (F14 + F24) + 6 F12F22 R2 16 (F12 + F22) (R4 R22 ]
+ - —_ s — | -

In@014]:= @XP = - +
720 24 48 256 45 36

45 36

(16 F16- 15 F12F14 + 14—5 F12%) + (16 F26 - 15 F22 F24 + % F22°)  _8 (F14+F24) +6 (F12% + F222) 16 (F12+F22) (R4 R22
- + R2 - H
720 24 .48 256 ( ]

192
Coefficient[exp, R2] T // Expand
(R2 - (F12 + F22) ) Coefficient[exp, R2] - exp // Expand

F122 F12F22 F22?
+ F14 + - + F24

out[3015]= —

out[3016]= O

We thus get a Green-Schwarz term

oc f d'°zB [Trl(F4) + Try(F*) — i(Trl(FQ)Q + Try(F?)? — Tr(Ff)Tr(Fg)]

We have exhausted the set of supersymmetric chiral anomaly-free theories, so the question remains whether
there are any non-supersymmetric theories that are chiral and anomaly-free in 10D. We will have only MW
fermions and perhaps self-dual 5-form fields contributing. It does not seem possible to cancel the I4(R) with
just the I 5(R, F), so I expect any such 10 D non-SUSY theory will in fact contain only MW fermions.
They must come in pairs of opposite parities with equal particle number to cancel the gravitational anomaly.
Exhaustively showing this seems really difficult. Xi didn’t know the full answer

I know for a fact there is at least one other anomaly free theory in 10D, namely the USp(32) open string
Sugimoto theory (c.f. question 7.36).

We are orbifolding by a Zs. In the sector of the left-moving worldsheet fermions, only (—1)¥ acts nontrivially.
The twisted blocks are

1 4
7 ) |:h] _ 1 Z (_1)a+b+ab+ag+bh+gh0 [Z]
fermions 9 4
9 a,b=0 N

On the Eg x Fgs the untwisted block is just ( Dab 98[ ]/77 )2. Performing the projection g requires that a,b
match for both factors, giving;:

. beB (2r)  168[] +0%[)
ZH in: [] i[]) ]

a,

Taking 7 — —1/7 gives



33.

Finally taking 7 — 7 + 1 gives

The full partition function is thus

1
1 h h
Z = - Z ZEZ[ ]Zfermions[ :|
2,52, "Ly g
We see that this is modular invariant, as individually both Zermions and Z g2 are invariant under 7 — —1/7.
Their anomalous changes under 7 — 7 4 1 from the n* powers in the denominator are cancelled in pairs.
The gauge group corresponds to the invariant (diagonal) Eg sublattice of Eg x Fg (Confirm). At the

massless level, we still have the gravity supermultiplet (G, B, ®), as well as gauge bosons with gauge group
FEg from the untwisted sector. What about the twisted sector?

The gravitino has been projected out, so this theory no longer has spacetime supersymmetry. The theory is
still chiral, and since the partition function is modular invariant, we are also guaranteed that it is anomaly
free. However, it has a tachyon.

Unfinished

Let’s assume we do not have self-dual 2-form gauge fields that give self-dual 3-form field strengths and we
do not consider an I4 contribution. Recall we can write

DH/Z x‘/2
Lijp = —
+ 1 sinh(z;/2)

where x; are the off-diagonal entries in the 2 x 2 block decomposition of Ry = dw. All of this is easy to do
in Mathematica.

PickDegree[poly , n_] :=Module[{tot}, tot = Total@Exponent[#, Variablese#] & /@ Listee poly;
Return[Pick[poly, # =n&/@tot]];]
R2 = -2 (x1% + x2% + x3%) 3
R4 =2 (x1* + x2* + x3%) 3
x1/2x2/2x3/2
Sinh[x1/2] Sinh[x2/2] Sinh[x3/2]
x1/2x2/2x3/2
Sinh[x1/2] Sinh[x2 /2] Sinh[x3 /2]
x1/2x2/2x3/2
Sinh[x1/2] Sinh[x2/2] Sinh[x3/2]

deg4d = PickDegree[Series[ , {x1, 0, 4}, {x2, 0, 4}, {x3, O, 4)] // Normal // Expand, 4];

1
deg2 = 2— PickDegree[Ser-ies[ , {x1, 0, 4}, {x2, 0, 4}, {x3, 0, 4}] // Normal // Expand, 2];
!

1
dego = 4— PickDegree[Ser'ies[ , {x1, 0, 4}, {x2, 0, 4}, {x3, 0, 4)] // Normal // Expand, e];
!

132 =
x1/2x2/2x3/2
Sinh[x1/2] Sinh[x2 /2] Sinh[x3 /2]

Normal // Expand, 4] H

PickDegree[Series[ (-1+2 (Cosh[x1] + Cosh[x2] + Cosh[x3])), {x1, 0, 4}, {x2, 0, 4}, {x3, O, 4}] //

1
olyl2degd = —— R4 +
poty 8% = 5760 5768

R2
R22 // Expand; polyl2deg2 = E // Expand;
1
polyl2dego = ; // Expand;

ly32 1 R4 43 R2% // E d
0 = — «—R4- —— xpand ;
poty 576 2 5768 pands

{deg4 - polyl2deg4 // Expand, deg2 - polyl2deg2 // Expand, deg0 - polyl2deg0, I32 - poly32}

outis3o= {0, 0, 0, 0O}

For n spin 1/2 fermions and a gravitino we thus get the forms

n (Tr(RY) (TrR?)? TF? ., TrF?
I F)=— - Tr
2R F) = e ( 0 3 Y
Iyo(R) = 5552 ) ~ 5rg s T

The Anomalies.nb also has the 10D cancelation if anyone is interested.
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34.

35.

36.

In the absence of a linear dilaton background, the RR fields simply satisfy the equations of motion d*Fj, 2 = 0,
as well as the Bianchi identities dF),;2 = 0. We want to show that, the tree level effective action of type
IT SUGRA in the string frame will have no coupling at tree level between the RR field strengths and the
dilaton.

In a linear dilaton background ® = %X 9 the supercurrent G will be modified to

V2 : 1
Gzzgw-aX—z 2<I>7M61p“:Goocﬁ

I’'m not sure about a possible constant factor multiplying the second term in the definition of G, but it is as
in Polchsinki 12.1.18. Acting on the RR ground states, 1)y gives an additional I' matrix, but the ®, term
will modify the Bianchi and free massless equations as:

wo(pu +1P )

(0 — @) AF=(0y—®,) A*xF=0=e?de ®F =e®d» (e"*F) = 0.

This implies that we should view F = ¢ ®F as the field strength, and so the RR states correspond to e®F
(ie they already incorporate a factor of e®). The RR charges are surface integrals of F = dC. Thus the
dilaton coupling to the RR field strength F2m g o2m®e2(k=1)® p2m [y particular, at tree level the F? term
does not couple to the dilaton.

The (minimal) supergravity multiplet contains the left-handed 3/2 gravitino as well as a right-handed self-dual
3-form field. The tensor multiplet contains a left-handed anti-self-dual 3-form field and the right-handed 1/2
dilatino. Combining one of the Nt tensor multiplets with the gravity multiplet gives an anomaly contribution

of:
I3 — 1o

The vector multiplet contains the left-handed gaugino. The hypermultiplet (which BTW Kiritsis has not
yet defined this) apparently contains a right-handed hyperino (wow fancy).

So far this gives
I35 + (Ny — Ng — 1)1 5(R)

But we have Ny — 1 addition tensor multiplets which will then contribute
I35 + (Ny — Ng — Np) I j5(R) + (N7 — 1)14(R)

A quick calculation for an anti-self-dual tensor gives

<7TrR4 (TrR2)2>
Tasp = — -

1440 144 x 4

the minus sign out front is from being anti-self dual.
As before, in order to have factorization of the anomaly polynomial for the GS mechanism to work, we need
the TrR* terms to cancel. This gives our desired constraint
49 +(NV—NH—NT)_ 7 (
144 x 8 144 x 40 144 x 10

Ny —1) = 0= Ny — Ny + 29Ny = 273

I think Kiritsis has a typo in this equation and it should be +29 Ny rather than —29. This is consistent with
BBS exercise 5.9.

Another 10D nonsupersymmetric string theory without tachyon! This one is open+-closed. The O(16) xO(16)
is the only closed non-SUSY string theory in 10D without tachyon. Is this the only open one? The
relevant reference is arXiv:hep-th/9905159

This is a theory of strings stretching D9 — D9 branes.

We have \, A are positive chirality spinors belonging to the adjoint of Sp(n) (equivalent to the symmetric
representation L [ ] and traceless antisymmetric representation of Sp(m) respectively, while 9,1 are
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negative chirality spinors belonging to the bi-fundamental representation of SO(n) x SO(m). We take n =
0,m = 32.

As in the SO(16) x SO(16) example, the lack of spacetime SUSY means there is no gravitino contribution,
and we look only at the massless fermion content:

I + Iy — 21y

The gravitational anomaly cancels for free since we have the same number of left and right chirality fermions.
A does not contribute to the gauge or mixed anomaly, since it transforms trivially under USp(32).

Finish
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Chapter 8: D-Branes

1. First, a simple magnetic monopole for a 1-form gauge field in D spacetime dimensions has a radial magnetic
field B, = # where Qp_g = 27rd/2F(d/2) is the volume of a unit D — 2 sphere. This way, the flux of

the solution over any D — 2 sphere surrounding the (point) monopole will be Q1.

Upon taking the Hodge star we get the solution is F' = Q1sin0dd A d¢. We can write this as A =
Q1(c — cosf)d¢. Taking ¢ =1 we get A vanishes at § = 0 (which we need since the ¢ coordinate degnerates
there) while taking ¢ = —1 we get A vanishes at § = 7, which we also need.

We cannot have both solutions, and so we realize we are dealing with two As, corresponding to local sections
of a line bundle over S? on different hemispheres. Let AT be well-defined on all points on S? except 6 = .
Then A™ is a section of a line bundle on the punctured sphere. The punctured sphere is contractible so any
fiber bundle over it is trivial, so A% is just a function on the punctured sphere S?\{f = 7}. So let’s define
At =Q1(1 - cos 0)d¢. Similarly, we define A~ to be the nonsingular A on the sphere with § = 0 removed,
namely A~ = Q1(—1 — cosf)dg.

On the overlap, AT — A~ differ by an integer, which labels the degree of “twisting” of this line bundle over
S2.

For a p form, our monopole will now be spatially extended in p — 1 directions. Label these (locally),

0. Locally transverse to these coordinates will be r, ¢! ..., pP~17P where ¢
parameterize a D — 1 — p sphere enclosing the monopole. The field strength looks like:

by z'...2P7!. Time is x

F=QyQpp
where 2 is the canonical D — p — 1-sphere area form:

Q = sin?P72(pp) sin? P73 (pg) . . .sin(wp_p2)dp1 A ... dpp_po1

This can be written (unfortunately unavoidably) in terms of a hypergeometric function:

1 D—-p—1D—-p+1 ., sin? P~ (1)
57 2 ; 9 , S1I11 (301) D——p—ld(’p2 A A dQDD—p—I

A=2F1<

there is no need for an overall constant, as the function above vanishes at both 1 = 0 and 7, however this
is compensated by the hypergeometric function having a branch cut at ¢; = 7/2. Across this cut, it will
have a discontinuity set by an integer depending on the convention of the arcsin function, and again we will
have At — A~ differing by an integer. The same quantization condition follows.

Again A" will be defined on the SP?~P~! sphere minus the south-pole (this is homeomorphic to the D —p—1
ball, and hence contractible, so again the line bundle trivializes and A™ is a bona-fide function for any D, p)
and A~ is similarly defined on the sphere with the excision of the north pole.

2. Our simply charged point particle with a Wilson line Ag = x/27R turned on will have an action

1 2
S = f dr (255M:;;M L qua':9>

2
L
The canonical momentum will be p; = &* for = 0...8 and pg = 3 + %. Consequently, our hamiltonian
is )
- 1 ax 1 X 2 = m ax .\ ax
H= M_p=_ppt+ Ay [ Zpg— A2 (- A
™ £ = Sl 52 = | S 5T T T T
ax
= (P;AP” + (po — ﬁ)Q + m2>

N~ N~

2mn — qx \” 2
P )+
(p“p + ( 27 R > m
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3. For a string satisfying Dirichlet boundary conditions, the total momentum is not conserved (along the
directions associated with the D boundary conditions). This is easily interpretable as momentum transfer
to the brane that it is attached to.

4. For an open string of state |ij), Ag will act as % Since this is an open string with no winding, we can

only have momentum contribution, and so we will get a mass formula

mg':N_%_i_ nooXi— Xy ?
" 02 R 2R

In particular at the lowest (massless) level for a string without momentum we will get the desired spectrum

2
o [ Xi— X
mw“(m)

5. For completeness, we will do both the gauge boson and scalar scattering. These come from the NS sector,
and are given by:

Vf’l'“ = gp)\a¢#g_¢ceipX, Voa,u — gip)\a(iX +2p- @Z)@D”)CeipX

V20

We can explicitly scatter four such gauge bosons - two in the —1 picture and two in the 0 picture.

iCp28"(Sk) x gy (Vo1 (y1)eVo1(y2)eVo(ys)eVo(ya)) + 5 perms.
it gy
T o
x (e(yr)e(yz)e(ys)y (e ?WemoW2))

Take y; = 0,y2 = 1,y3 = 0 and integrate y; = y from 0 to 1 (then we’ll have 5 more terms coming from
permuatations). There are five contributions.

(e Xy, e Xy, (X4 + 2ks - o)™ Xy, [((XH + 2ky - pyph)e™3X],, )

e Contracting the ¥#1(0)y"2 together and allowing the remaining 4 terms at ys,ys to contract either
amongst themselves or with various vertex operators.

e Not contracting the first two 1) and Contracting the iX (y3) with any of the vertex operators while
contracting the last ¢ with the first two

e Not contracting the first two 1 and contracting the iX (y4) with any of the vertex operators while
contracting the third v with the first two

e Forgetting the iX , and contracting the v at y; with the various v at y3 (consequently the ¢ at yo with
the ¢ at y4)

e Swapping 3 with 4 in the above (this gives an overall minus sign by fermionic statistics)

Integrating this will give two types of terms: 7%n° and n®k¢k?. Our shorthand replaces the superscript p;
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by just 7. Below, I underline the terms that contribute to the first type:

ng5p+1

e

1 yzzzkl.my%ikz-m s 1ol , " - . o "

J @ 202 = Lon [% >t (2092 (=™ ks - ke + KkS) + (265)% (k3 +k4)<— + 1)]

0 S ” ”
+ 220)2[(K + gk (— ki + k3n')]

+e§(2e§)2[(’j+ ’“_31)( R + k')

€2
+ e?(y )1 [,)713?,]24]{; k’ + 7734k3k2 13kik§ o n24kik%]

20
62( y) [ 14n23k3 cky + 7734]951@1 _ 7713kzk§ _ n24ki)k?l)] }

(71)
Using s = —202k; - ko etc we see the underlined terms contribute
P 24p+1
ig,# L(1—u)l'(1-1) 1230y L =w)I'(=t) 14 935  T(=w)'(1—=1) 14 o3
—(1 _— _— 1423
7 { T2+ s) (=080 + T(1+s) T TRt T [1423]
;o 24p+1
zgp;b’ [(—u)T'(-1) 12, 34 13, 24 14,23
= —tu t 1423
2 F(1+S)( un 0>t — sunUn®t — sty tn*?)[1423]

The non-underlined terms are more involved but end up contributing twelve terms that yield:

2gp+ D (—u)T(—t)
02 23 I'(1+s)

[tnmk;’k% + 11 perms. | [1423]

igagrtt [F(—u)F(l —t

) 2, 127314 9
eg (1 8) 6577 kzkl [ 3]

Here my Mandelstam variables are dimensionless. The result with dimensionful Mandelstam variables is:

. (=250 (—F2u)

2 ¢p+1 92 s s .

igogPt e ( Ky (ki,e;)([1234] + [4321]) + 2 perms. (72)
S\ T T e o

with Ky(k;,e;) = —tue; - eses - eq + 2s(ey - ez ea - kyeq - ko + 3perms.) + 2 perms.

Now for the four transverse scalar amplitude, our vertex operators look like:

Vfi“ = gp)\awﬂe_‘z’ceipX, VO(LM \/gipg )\a(X/ +2p - wu)ceipX

here X’ = 0,X = 2i0X. Moreover, we have Dirichlet boundary conditions on both the Xs and the fermions
1. The 9 are still in the NS sector since we're looking at the (bosonic) scalar field scattering.

Crucially, the correlators for the 1 field are the same for DD boundary conditions. We had (X*(z) X" (w)) =
—%n““(z — w)~2 while the correlators for X’ pick up a minus sign (X" (2) X" (w)) = %n”(z —w)~2. This
ends up giving the exact same result however, since the vertex operators contain X’(z) while the prior ones
contain iX (z).

Finally, contracting X " with any of the e X will give zero, since the open strings only have momenta parallel
to the Dp brane while the X’* is transverse. This gives a simpler amplitude than :

_ 25 _ 2u
igadP e K (F( r£(81 )fégtf )([1234] + [4321]) + 2perms.) (73)

with K} = —(tud12034 + sud13d24 + std14023). In the case where there are no CP indices we expand the I'T/T’
functions: 0 ) 0 o )
+it+u
2P R X o+ P2 (22T
g K (ﬁﬁsu list  lu = ig, e listu

So to leading order in the string length this is zero. This is consistent with the U(1) DBI action, as the
scalars do not directly interact with the U(1) gauge field A, (in general a real scalar cannot be charged
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under a U(1) gauge field). That is, at leading order the action is free in the X fields. Taking &# = X* for
pu=0...pand X independent functions, we get:

5985,

Jd”“&\/det GrnOaXMagXN = Jd”“&\/det dap + 0ij0a X005 X7 — Jdp“ﬁ L 0a X 05X

This is just a free theory. Its also quick to see that the 3-point function of the transverse scalars vanishes at
tree level in string perturbation theory.

. I have done the previous problem in full generality, including CP indices. So now let’s again look at the s
channel. As s — 0 so that ¢t = —u we get from the 12034 term a pole in s going as:

S

1
zgp5p+1€2tu X (64

s5uU s

([1234] + [4321]) + %([1243] + [3421])) 5p+1=‘2p ([1234]+[4321]—[1243]—[3421])
We can rewrite this as:

2 2
_¢5p+1%gf(Tr(12[34]) — Tr([34]21) = —MPH%’ETr([l?][M])

S S

The pole at s = 0 corresponds to an exchange of a gluon from the %(DMX])2 term in 8.6.1.

We also have a further term that does not involve a pole in s. Let’s still take 1 and 2 equal. Expanding to

this order we find: )

. g
—i 1 35 (Te([12)[34]) + Te([13][24]) + Tr([14][28])
This comes from exactly the potential term %[X I , X J ]2 in the effective action 8.6.1. Come back to that
last term

. Momentum conservation will imply p = 0 for the NSNS states. Our vertex operator will take the form
Cuvcie™Pe= Pt 1 X We can use the doubling trick to get C,c(2)c(z*)e” e )yt et X and we
are automatically in the —2 picture.

The states from in the p + 1 parallel directions give just the correlator (¢ (i)y"(—i)) = —2—: (importantly
NN fermions in NSNS have 2-point function —1/(z — w) c.f. 4.16.22). We also get a /! from momentum

conservation.

The states in the transverse (Dirichlet) directions give ‘%] correlator. Defining the diagonal matrix D*” =
(n®B,6%) we get a correlator proportional to

(27r€ )2T,

_ 5p+1(kH)DW pV;,HD“

52 2
Check with Victor. Confirm the tension relation. This diagonal tensor D*” allows for a nonvanishing
dilaton and graviton tadpole, but will not couple to the antisymmetric Kalb-Ramond B-field.

. Our RR fields have picture (r, s) for r, s half-integers. In order to have total picture —2 on the disk, we need
to pick this to be the (asymmetric) (—3/2,—1/2) picture. The construction of this operator is complicated.
I expect that the (—1/2, —1/2) operator that we are familiar with is basically e"?Gy times the (—3/2, —1/2)
operator. This means that the (—3/2,—1/2) will be one less power of momentum and one less gamma
matrix than the (—1/2,—1/2) operator. Picking out the p + 2 form part of the (—1/2,—1/2) operator (in
Blumenhagen’s convention 16.21) gives

1 € - - 1 0y o ~
aBg F)e—?/2-6/2 _, M J1 - bip 42\ OB —$/2-4)2

Here S, = SLFO as is standard in a spinor product. BRST will require that F' and =" be closed.
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Changing picture means removing one power of momentum and one gamma matrix. This anti-differentiates
F', which must be proportional to the potential C' since p[u10u2---up+z] = F,..up+2- It is then reasonable to
expect the corresponding (—3/2, —1/2) operator to be proportional to

-0 C .
—3¢/2—¢/2 ZH1-- “P Fuo HpyaBg G
€ e

Note both e=3¢/3S,, and e/ 255 remain primary operators, having dimensions 3/8 + 5/8, so this is indeed
a reasonable guess. Now, for the D-brane boundary conditions we have

(6+9)5(2) = Sp(=* H &, =TTy

i=p+1

This reflects the Sg spinor along all the Dirichlet directions and keeps it the same across the Neumann
directions.

From 5.12.42 of Kiritsis I expect the leading-order of the S,Ss correlator to be Cug/(z — 2)'%/% and the
e~39/26=%/2 will contribute (z — Z)~%* to make this a primary correlator transforming as Cop(z — 2)72 For
Neumann boundary conditions, C,g is the charge conjugation matrix. For the D-brane, it will be 5LC .

Only in the IIB case will C,g will be nonzero between S, and 5’5 since S, and 5“5 transform in the same
representations. Each 3¢ changes the chirality. So the amplitude in IIB will vanish if we have an even number
of £, equivalently 9 — p is odd, so we will have only odd dimensional branes in IIB as required and even
dimensional branes in ITA as required.
We thus get an amplitude proportional to:

Ho-H
gcﬂp"‘l CNO -Hp (p-‘rl)p

9!5 uo -Up +1 911
T Fﬂl NPFP I‘ I‘
( )= @ T )

352 (p+1)!

Comparing with the 8.4.4, which should factorize as A(p||)*Go—_p(pL)0?*!(p|) we see that the normalization
of our on-shell amplitude is in fact:

Gl
./4 = ’L.‘/p_;,_]_ 27'('(27['65) 7IDW

This is consistent with other results c.f. Di Veccia, Liccardo Gauge Theories from D-Branes, arXiv:0307104
but I think they’re not incorporating 1/a, = 2k7, in the propagator. Taking this factor into account and
dividing by it followed by taking a square root gives us an on-shell amplitude of:

Ho- 1t
1 Cu0~~~up€(;?+1)p

A= ZVZD+1 (27r€s)p£sgs (p + 1)!

= i‘/p+1Tp Cp+1 A E(p+1).

This is exactly what would come from a minimal coupling term of the form T}, { Cp41.

. We take one vertex operator to be in the (—1,—1) picture and gauge fix it to lie at z = ¢, and take the
other in the (O 0) picture lying at 4y, fixing y to range from 0 to 1. In doing the doubling trick, we take
Xt = DUXY pF = DUy and ¢ = ¢, ¢ = c.

We wish to calculate the correlator:

gg4 72 <[¢”1/1“ zle] [(i0X* + %k& ¥ (10XY + %kz e 1k2X] )

OS

The simplest way to do this problem is to recognize that after the doubling trick has been applied, we are
calculating the a correlator of four fields at collinear insertions on the Riemann sphere.

,uu l/Tl’U,D'LL DV <Vv‘u (pl) V—ul(Dpl)7Vv0y(p2)a‘/()V/(Dp2)>
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10.

We can map these four points to 0, 1, y, 00 and take the integral to be from y = 0 to y = 1, with appropriate
jacobian.

This is nothing more than the 4-gluon amplitude calculated previously, which gave

[(—025)[(—2u)T(—£25)
(1 + 202¢)

92
2i=2 g7

— Ky(ki,e;
g2 (Ki,ei)

Here we do not have three terms for y in different regions - we only have one. Our momenta are p1, ps, Dp1, Dps
giving: The only caveat is that in that case, we had boundary normal ordering. We can view this as
¢here — gthere /9 This is reflected by halving the momenta of the open strings.

there here there here
Y41 - p1e/2, P2 — py"¢/2

pghere S D. pilzer6/2’ pihere D .pgere/2
This gives us (here we do not have three terms for y in different regions - we only have one)

[(—025)(—12 2 L(F2py - pa/2)T(¢2py - Dpy/2
( gss) (QESU) N K4(l{fi,€i) N 2i%5p+1£§ (gsp; p2/ ) (Esp; pl/ )
F(l—l—?gst) 9p (1 + 02py 'p2/2+€sp1 -Dp1/2)

g2
2i=2§P+12
p

Following Myers, we can write t = —2p1 - po as the momentum transfer to the brane, and ¢> = p; - Dp;1/2 as
the momentum flowing parallel to the brane. The Gamma ratio then looks like:

D(—6t/4)T (6q°)

T(1+ 02t/4 + 242)

If we held ¢ fixed and took the large ¢ limit we would get a series of open string poles. This corresponds to
a closed string splitting in two, with its ends on the D-brane as an intermediate state.

Now let’s hold ¢? fixed and take the large ¢ limit. This is the limit of large energy transfer - the Regge limit.
From the ratio of I'T'/T" we see that there are closed string poles. This can be interpreted as the closed strings
interacting with the long-range background fields generated by the presence of the Dp brane.

=

Comment about pole structure

In the D9 brane case, we have seen that the open string boundary only preserves the sum of Q + Q. If
we T-dualize in the 9 direction, we act on the right-moving sector by spacetime parity, so that necessarily
0X% > —0X9. 4% — —1;9, S, — §28« (up to a phase in that last one). Here 6 = T°T''!. Our spacetime
supersymmetry generator Qn = ﬁgdi e~ 928, therefore will be mapped to 6°Q. Thus, in the T-dual
picture we preserve the supercharge Q' + 6°Q’.

Iterating this procedure in other directions we get that in general we preserve Q + d+Q, with §+ = I 5,
where ¢ runs perpendicular to the brane. Note that T-dualities along different directions do not commute!
They commute up to a (—1)F%, and so the order that we do them matters. In this case the 6% act by
left-action.
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11. (As in Polchinski section 13.4) From the previous problem, we see that the first D-brane preserves the
supercharges Q + 6+Q while the second preserves the supercharges Q + 5L/C~2 =Q+ 5i(5L_15UC~2) so the
supersymmetries that will be preserved must be of both forms. This is in one-to-one correspondence with
spinors invariant under 5L This operator is a reflection in the direction of the ND boundary conditions
(the directions orthogonal to the D,y brane in the D, brane). Since in either ITA or IIB p and p’ must differ
by an even integer, the number of mixed boundary conditions—call it v—must be even. Then we can write
5715 as a product of rotations by 7 along each of the v/2 planes FLTIGL = eim(Dittdu), Each j acts
in a spinor representation, so that e™’i has eigenvalues +i. If v/2 is odd, this makes S5 = 1 so this
will not preserve supersymmetry. We thus need v/2 even, or v = 0 mod 4.

From this I posit that the static force between two branes vanishes precisely when v = 0 mod 4.

12. Now let’s confirm this guess with an amplitude calculation. Take p’ < p. We work in lightcone gauge. We
do a trace over an open string with p’ NN boundary conditions, p — p’ = v DN boundary conditions, and
8 —p DD boundary conditions.

We begin from the open string point of view in calculating the cylinder amplitude. Chapter 4 has done the
NN, DD, and DN boson amplitudes for us. The difficulty lies almost entirely in the fermions. Recall the
following:

—— H
] nt1/2) _ /3l o8] _ g1/ g
=g [ +q 2¢ H (1+q") H

Ui

Further from 4.16.2 recall that for modes b,,, 12, b, corresponding to NS and R sectors the NN and DD
boundary conditions give:

e NN: l_)n+1/2 = _bn+l/27l_)n = bn
e DD: bn+1/2 = bn+1/27bn = —by
For DN we have the same result as for DD but now the R sector is half-integrally modded and the NS

sector in integrally modded. Now lets compute partition functions. Our final answer will be a sum over spin
structures NS+, NS-, R+, R-. Taking ¢ = e~2™ we see Tr[glo=?4] =

o NS+:
— NN: q71/48 Hn(l + qn+1/2) 6[8
= DD: ¢ VT, (1 + ¢""Y2) = \/O[3)/n
— DN: /2¢7V48¢Y16 T (1 4+ ¢™) = A/0[3]/n ( /2 when raised to a power counts ground state degen-
eracy)

o NS-:

= NN: ¢ VST, (1= ¢"2) = O[]/
— DD: ¢ VBT, (1= ") = V/OR1/n
— DN: 0

e R+

= NN: v2¢' T, (1 +¢") = /0]

— DD: v2¢V2A ], (1 +¢") = /0]

= DN: ¢ VBT, (1 +¢"2) = /0]
e R-

— NN: 0

— DD: 0

— DN: ¢ V8T, (1= ¢"*2) = \/0[0)/

3



Notice NN vs DD boundary conditions have no effect on fermion contribution to partition function. This
is because, although the left moving and right-moving modes are identified differently, the mode excitations
look exactly the same.

On the other hand for NN and DD the bosons will contribute 1/n and will contribute 4/1/0[}] for DN.
Thus we have the following contributions to the partition function (here N is the number of NN boundary

conditions):
e gl [T o) )
(2mls) 2 (\/2)Nys—v (6%1/n) v/ n n

19[?]>8M

2
N§— — N Jdt (55 (
n

@2mls)N ) 2t (v2t)NyB

e W fdt o(EE) o[\ (o1
(2mls)N 2t (\/2t)Nys—v (9[0]/77)”/2 n n

1
727rt( Az

27ls

VN dte
R— = ~ | o Oy—8

(27ls) 2t (\V2t)N
All theta and eta functions are evaluated at it. The circumference of the cylinder is 27t. The relative
signs in front of the different contributions come from a combination of defining the NS vacuum to have
negative fermion and modular invariance (equivalently spacetime spin-statistics). Note when v = 4 we only
get contributions from NS+ and R+, which exactly cancel. Similarly when v = 4 or 8, by the abstruse
identity of Jacobi we will get cancelation again.

We can interpret our result as a one-loop free energy. Differentiating this w.r.t. Az would then give us
our force. For v = 0,4,8 we do not get a force, consistent with the D-brane configuration preserving
supersymmetry.

For the sake of completeness, and to clear my own confusion once and for all, I will also do this from the
POV of the boundary state formalism (not developed in Kiritsis). For a good reference see the last chapter
of Blumenhagen’s text on conformal field theory.

For a single free boson, after the flip (¢, 7)open — (T, 0)closea the boundary states |N), |D) must satisfy
(an + a—p) [N) =0, (n — @—p) [Ds) = 0,

This gives boundary states:

1 B - —
’N>:WH€ wOn@on]0,0;0) = > |, O 0)

m={m;}
|Dey = (2mLs/v/2) "2 J Z—keim [Te = 10,0;k)
™

The overall normalization came from comparing with cylinder amplitudes. © here is CPT reversal. Similarly
for a fermion

(% + Qﬁ—n) |N> =0, <wn - &—n) ‘D:v> =0,
So with GSO projection we get:

IN,NSNS) = PLPg[ [e/"""|0),  |N,RR) = PpPg[ [/~ |0)
r n
ID,NSNS) = P Pr [ [e %7105,  |D,RR) = PLPg] [e Y |0)
T n
Here r runs over half-integers in the NSNS sector and n runs over integers in the RR sector. Pp = %(1 +
(-1)F), Pr = (1 + (—1)F) are our GSO projections, defined to project out the tachyon in the NS sector

and project out one of the spinors in the R sector.
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For the boson, it is quick to see that (¢ = 1/t)

v V

N 77FZ(L0+[~/076/12) NS =
(Ne N = tanGD) ~ rtoaiiD)

_ont( Lz 2
(D| e~ Lot Lo=c/12) | Dy _ Mfdkeimxe_ﬁgp%t _e 2t (2

V2in(it) J 2x o on(it)
o~ m(LotEo—c/12) |\ _ L 1 _ | mGe) | n(it)
(D] 0(Lo+L 12 |IN) = ﬁﬂn(l + %) - \/9[(1)](25) - \/9[(1]](%)

These are exactly what we’ve already gotten many times before from our trace over the open string bosonic
states. The states |[N),|D) must be a sum of both the RR and NSNS sector fermion states. We do not know
the relative coeflicients.

Let’s look at the NSNS contributions. For the NN boundary conditions, the NSNS sector with projection
consists of two terms:

. #NN/2 . #NN/2
i 0[o] (i 0[g] (it
<N, NSNSunproj| e—né(Lo+Lofc/12) |N, NSNSunproj> _ ( [0] (Z )> _ ( [0] (Z )>

n(if) n(it)
o\ FENN/2 11, .0\ #NN/2
_ i 0[] (i) 0[] (it)
N, NSNSun 70J —1 FL_FR@iﬂE(LOJrLO?C/lQ) N7 NSNSun roj/) = : - = 0 ;
¢ pros] (=1) | woi) = |~ o

Replacing N with D would give the exact same factor in both cases WHY? (explain: bc we need to match
on both sides and so both minuses cancel in the exponent). For DN boundary conditions the NSNS sector
give the two terms:

. v/2 17,. v/2
: ALla0\"” (o
D, NSNSun o e—ﬂf(Lo-{-Lo—c/lQ) N, NSNSun oi) = 1 : _ 0. :
< o] | oi? =\ i) )

. V/2 01/ - v/2
_ ; 0[] (i) 0[0](it)
D, NSNS ynproj| (—1)Fr=Fre= Lot Lo=c/12) | N NSNS, o) = | -2k = |
¢ prosl (=) | proi) (i) n(it)

Now let’s look at the RR sector. For NN boundary conditions, it contributes:

0[[1)] (M))#NNQ ) (9[(1)] (Z,t)>#NN/2

n(il) n(it)

<N, RRunproj| e—wZ(LoJrLofc/lZ) |N7 RRunproj> = (

<N7 RRunproj| (_1)FL:FR€77T£(LO+Z~107C/12) |N7 RRunproj> =0

By the argument before, we get the same for DD boundary conditions. Finally, with DN boundary conditions
we get

(D, RRunproj| e ™+ L0=¢/12) | N RR ;> = 0

. v/2 01, v/2
_ ; 0[] (i) 09](it)
D I -1 Fr=Fr ,—7ml(Lo+Lo—c/12) N nroi) = 0 _ 1
(D,RR POJ‘( ) € |N,RR P0J> n(i0) n(it)

Together this is exactly consistent with what we get from tracing over the open string. We can work back
to get relative normalizations.
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13.

14.

Dp’

Dp

S

This shows that the massless RR and NSNS fields mediate the force. Moreover the NSNS fields without and
with projection correspond respectively to the unprojected NS and R open string states while the RR fields
without and with projection correspond to the projected NS and R open string states.

First recall that for a constant vector potential A9 = X% corresponds to a T-dual picture of a D-brane
at position —xR = —27m(2Ag. Now consider a magnetic flux F12 we can write a (nonconstant now) vector

potential that gives this flux as Ay = Fj3X'. We T-dualize along X? and get X? = —27T€§F12X1. Then
tanf = —27T£§F12.

YR _— P

/

V’)Kﬂ

\

Although we were working with D1 and D2 branes, we could have done the exact same calculation for Fy;
on a D1 brane and recovered a D0 brane tilted in the X — X! plane (ie boosted). Such a D0 brane has the

usual point-particle action:
Spo = TodeOq/l + (o X')2

Because the DO brane and the D1 brane describe the same physics, this action should be identical to the D1
action. Note that doX'" is infinitesimally exactly tan 6 calculated above. We get the action

Sp1 = —T} JXmdX2 1+ (2ml2F12)?

Of course, because the branes couple to strings, the only gauge invariant combination under transformations
of the Kalb-Ramond B field is F = B + 27/2F. We thus get:

Sp1 = -T1 delch2 —det(G + F)

We can tilt this brane and T-dualize to pick up EM field strengths in arbitrary dimension up to 9.

Let’s T-dualize. This describes two D4 branes that are tilted only along the x1-z5 plane, and are otherwise
parallel in the x9,x3, x4 directions. T-dualizing x9, x3, x4 makes these into D1 branes tilted in the x; — x5
plane. See the solution to the next problem. Now setting 1534 = 0 will give poles from the theta
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15.

function in the denominator. This is to be expected, from the NN boundary conditions that always come
with a volume divergence factor in that direction. We regulate this divergence by replacing;:

GH(' tyit) ™t - L
wi, 1 — 1
1 n(it)=32mls\/2t

Thus we get a potential:

2
L3 foo dt e it 0[] (ivt/2, it)*
_17 —_—
@2rls)t Jo t (26)2n(it)°  0[1](ivt, it)
Let’s take the distance to be large. The small ¢ contributions are then most important. The #-function ratio
contributes a factor of e=37/4¢=3/2 while the =9 contributes e*™/4¢%2 Finish the details here

Dlr /D

P S o P

4
We get a potential that decays as — (Iif)% Sl;n(fe/f) giving another attractive force going as 1/(Ax)°

Following Polchinski, we define variables Z¢ = X* 4+ iX** i = 1,...,4. Let the ¢ = 0 endpoint be on the
untilted string. Then at ¢ = 0 we have O;RZ% = SZ% = 0 and at 0 = 7 on the tilted string we have
1 R(ea2%) = (e 79).

We see that the field that satisfies this is given by Z%(w,w) = Z%w) + Z%(—w) for w = o' + ioc?. Using

the doubling trick we have Z%(w + 2m) = e¢?%a Z%(w) (and similarly for the conjugate). Thls gives a mode
expansion with v, = 0,/
A a? .
ZYw) =i— Z L,
\/5 T€L+Vq "

The a' modes are then linearly independent. Taking ¢ = e~ 2™

and restricting 0 < ¢, < ™ we get:

as usual for open string partition functions,

gzi—2(e—2)’ g (it)

= —
[Tnoo(1 = gmtva) (1 — gm+i=va) " 9[Y(ivgt, it)

Where we have used

= o0
9[1] (Zl/t Zt) qé v/2_ l//2 H m+1/)(1_qul/) - in(it)qéfiJF% H (1_qm+u>(1_qm+1fu)
m=1 0

So the angles act like chemical potentials to make the theta functions nonzero. Now its time for the fermions
(oh boy!). In each NS and R sector (projected and unprojected) the boundary conditions shift by v,. We
thus get e.g. for NS unprojected:

0 L T 2 1, 0[0] (ivat, it)
VA _ g tVa/2 1— m+1/24v, 1 m+1/2—vey _ vi/2710 a”
M gt [T(1—q )1 —q ) =14 )

In total, then we will see that the fermion part gives us

- oo o o] - 2

a=1
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16.

This last equality follows from the full abstruse identity of Jacobi, where ¢j = %(¢1 + 2 + ¢3 + Pa),
¢h = 5(d1 + b2 — b3 — da), ¢ = 5(d1 — b2 + b3 — d4), &) = 5(d1 — b2 — é3 + ¢4) and the v}, are defined

identically. Inserting the DD conditions along the 9 direction that denotes separation, we get the full potential
as a function of the separation Ax

V=_—

0 —27t Srils ’ 4 iVt i
Xf a2 () o[1](ivit, it) (4)
0

2t 220 1% O] (ivat, it)
The initial overall factor of two comes from two orientations of the open string. At long enough distances,

the exponential factor forces small ¢ to contribute primarily. The complicated ratio of #-functions becomes

a ratio of sines. Then we get
(Ax)?

ﬁ sin(mv/)) foo dt — B2
. e
WG Jo 2wtz

Taking the integral and analytically continuing, we get a potential that looks like —

|Az| 51n(7rV .
2me2 Ha 1 sin(mvg) » IVING
sin(mv),
sin 7r1/a

an attractive, constant force, of —5- £2 Ha 1

Let the first brane at ¢ = 0 have no electric field and put an electric field Fy; on the second brane at o = .
The endpoints of the string are charged. We have the following action (take e, the charge of the string

endpoint to be 1)
1

A2

Upon variation, we get a boundary term:

f dodr[(0,X)* + (0, X)*] + f dr A0 X"

O=T

i JdT@ XH§X, —|—de5 (A,0.X")

1

=3 62 fdﬂ? XHoX, + de&MA,,cSX“é’TX” — 074,
s

1
=5 £2 Jdﬂ? X 6X“+deFW6X“6’TX”
= 0y X, — 2702F,,0. X" = 0

This gives mixed boundary conditions on the X" and X' which can be written as

0, X" 5 {0 1\ [(0;X°
(&,X1> = 2l E <1 0> (aTX1>

with E = Fjg. Note that we have been careful in raising the p index. I will define Z* = X° + X! and have
0sZ" =0,Z" =0at o =0 and (0, — 27(2E0,;)Z" = (05 + 2702E0d.)Z~ = 0 at 0 = 7. The modes thus
satisfy Neumann-Mixed boundary conditions. Following a modification of exercise 2.14 and solving these
boundary conditions we get that the modes must be labeled by v = —iu/m + Z. Here u = atanhv is the
rapidity. Now let’s compute a cylinder diagram. Let’s assume for now that we are scattering D1 branes (the
problem does not explicitly give p,p’). It will look like the wick-rotation of the integral considered in the
previous two questions. We have an amplitude
_(aw)? 1 4
iV %9 Joodt e 23 0[] (ut/2m,it)
! o 2t (2mls)P(26)P/2 n(it)20| 1] (ut/, it)

Note however that since the first argument of the 6 functions is real, we have poles at t = mn/u, v = u/x for
n L = 7n6(z) + P(z) to pick
up poles at t = n/v, at odd integers n (so that the four-order zero in the numerator doesn’t cancel them),
giving:

o 01] (%, it)!
27 QZ
™ Z (2mls) Qn/y) (p+2)/2 2p(in/v)12 (75)

neZodd
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17.

18.

The imaginary part of the amplitude can be interpreted (after T-duality) as resonances (ie bound states) of
the D-branes.

From the last problem we can write: In terms of d,,0_, we have:

X _ (B ) (X0 (76)
6+X1 28 1+£2 0 X1

1-&2  1-¢&2

Here £ = 2m/2E. Taking £ close to zero recovers NN boundary conditions on X°, X!,

Dy
75 L
— vV = él:-

(It’s worth noting that that the speed of light here will translate to a maximum electric field |E| < T on the
brane. This provides one motivation for the necessity of a nonlinear electrodynamics, namely DBI). taking
FE = 0 give N boundary conditions on X°, X!. T-dualizing X' gives D boundary conditions on X'. Now,
boosting the brane along X° and

5+)S-0 (v vy (1 O v vy 0_{(0

o X' vy ~ 0 -1/ \—-vy ~ o_X1

- (@)= 6 D6 6 D ER) - 12) 66
04 X vy v )\0 =1)\-vy v J\O —-1)\0-X T AU

This exactly what we had before, with v = 27/, F.

This argument is quite simple from the abstract picture: taking A; = EX°, T-dualizing in the direction of
X1 gives a D-brane lying at X1 = 27/2E X" giving a velocity 2m¢2E. This can also be obtained by analytic
continuation of question 8.13.

Using the fact that this scattering problem is exactly T-dual to the electric field problem mentioned before,
we return to and consider b = Az to be small. In this case the large ¢ regime dominates (corresponding
to a loop of light open strings). First we perform a modular transformation to get

17, - .
A = W foo @t(&p)/?e_ Qt:jg O] (iv/2,i/t)"

(8m22)p2 Jo n(i/t)°0[1] (iv,i/t)
Now we follow Polchinski and rewrite A in terms of an integral over the particle’s path r(7)? = b% + v?72,

A= —i{drV(r(r),v). Then we get V from reversing a Gaussian integral to be

rQ 1 . . 4
Vi) =i 2V, _ JOO )2, tanhfye[l]l(ze/zj i/t)
(8m263)@+1/2 Jo n(i/t)°0[1] (iv,i/t)

The large-t limit is now direct:

2 © dt  —t2 tanhu sin®(ut/2
Vi) = — Vot+1 Lt d 1 tanhu sin (ut/2)

(872¢2)(p+1)/2 (1+p)/2 sin(ut)
Using steepest descent at zeroth order, the ¢ that dominates is of order 27¢2/r? so that ut ~ 2ml2v/r? is

the leading contribution. Justify why ut is O(1). This then gives that r ~ ¢54/v. If we go at very small
velocities we can probe below the string scale.
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19.

20.

21.

~‘.

7;) x! > ! ?@
scier

On the other hand, a slower velocity means that the time it takes to probe this distance is longer 6t = r/v =
{s/+/v. This implies that dzdt > ¢2. This looks like a type of noncommutative geometry with o/ playing the
role of Planck’s constant now.

Combining this with the usual position-momentum uncertainty relation

1 < dxmdv = gldxdv = Ax = ‘%—gs,
v

1/3

we can minimize simultaneously £5+/v, g¢s/v by having v ~ ¢*/3 giving 6z = (5g"/3. At weak coupling this is

smaller than the string scale.

The action is a factor of two off from Polchinski’s. The momenta are p; = ﬁ(X t 4+ [As, X]). Then we get:
H - fdtTr[gsgspipi PN N Xj]Z]
4 2g5ls(2me2)2- 7

Defining ¢'/30,Y? = X p; = pyi/gi/gﬂs, this sets the length scale, which coincides with what we got in the
previous question by less rigorous arguments. Now we have Y is dimensionless and get a hamiltonian

1/3

gl 1 1
H - diT [f Dy 4+ —— [V Y ]
0 f r| Pyipy: + 2(%)2[ ]

So the only dimensionful content of this hamiltonian comes from g, {5 appearing in the overall normalization.
This gives an energy scale of gi/ 3 /ls. For strong coupling gs > 1 this probes deeper than the string scale.

This is pretty direct. Since the metric G, does not depend on X ‘fori =p+1...9, we have that each
X' is killing, in particular the metric takes a block-diagonal form where only the first (p + 1)2 G, entries
have nontrivial coordinate dependence and the remaining metric is just the identity matrix J;; along the X;
directions (we didn’t even have to do this since 8.5.1 has 7, the flat metric. Is my logic here even right?).

Take the ansatz A — (A, ®;). We thus get F},,, in the first (p+1)? entries and d,®° in the off-block-diagonal
piece. We can rewrite this as a determinant of just the (p + 1) piece Justify this step

V- det(Gpu + 20F,, + 0,810, 81)

The bosonic part of this is immediate. Write the fields A; in the dimensionally reduced dimensions as X!
and we immediately get TrF{ — Tr[F2, | + 2[Dy, X']* + 3 X I'X71?]. The fermionic part will reduce
to:

(TexT*Dyx) 100 — Tr[XT*Dpx + Al [ X5, AY]]
Where now the y; are fermions that break the 16 representation of SO(9, 1) into a representation of SO(d —
1,1) x SO(10 — d). For d = 3 we get N’ = 4 SYM and this is (2,4) + (2,4), corresponding to four Weyl
Spinors.
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22.

23.

24.

25.

26.

27.

At the minimum of the potential, all X' lie in a cartan and mutually commute. The A;; correspond to
open strings moving between the D-branes at positions X;. The ground states of these open strings have a
mass squared of (X7 — X ;)2/27/2, so indeed the mass is linear in the separation. Confirm. Understand
Lie-Theoretic perspective.

The worldvolume coupling to the RR 2-form looks like ¢T5 § Cy. For the brane tilted in the x!, 22 plane we
can write this explicitly as:

1 fd$0d$1(001 + Co2 tan(@))

Now T-dualizing in the 2? direction changes the Cpy; form to the RR 3-form C3, giving the standard i§Cs
term. On the other hand, the second term gets reduced to —27763 Sdm0d$1dangoF12, where I have used
exercise 8.13 to write tan @ = —2m¢2F}5. So we get a leading coupling to the three-form and a sub-leading
coupling (in £2) to the one-form. This is a hint of the Meyers effect.

For the D2 brane the CP odd terms are C3, C; A F and —C1 A %[pl(T) —p1(N)]. In the frame described
by exercise 7.26, Cs transforms trivially under A transformations, and under its own gauge transformations
it only adds an exact term which does not modify the CS action.

F transforms trivially under A transformations and under B transformations only modifies the action by a
closed term again.

Equation I.14 is not in any standard frame. The Dilaton plays no role here. The

I feel I am missing something.

Gauge transformations of the axion Cy are just shifts Cy — Cy + a. Cy couples to Fo through the Chern-
Simons term:

JCO ATre" A G

Because of the Bianchi identity, dF = 0, and the same holds for any trace of any polynomial of F'. Similarly
G is also a closed form. Therefore shifting Cy gives an integrand term Tre” A G which is closed.

For trivial flat-space background 7,,, we have g, = 0, X, 0, X". Take My, = 0,X,0, X" + 2ml%Fy, and
M = det Mgyp. Taking the DBI variation w.r.t. X and A, respectively gives:

gaa (\/WM;,}&Z,X#) —0

22T

Ty (V) <o

Its rather nasty to evaluate that inverse matrix. On the other hand, taking X° to be the only nontrivial
function of the £, and depending only on the radial distance r from a central point, and setting all A; = 0
with Ap a function of 7 alone, we get M = 1 + G4y per(0r X°)? + 2702 (Sgmr b0 — Sa—0p=r)E. We take
E = 0,X%. The determinant is then (VX%)%(1 + 27¢2).

Note that if the second equation of motion holds, the first equation of motion implies that we would want for
0"0,X? = 0, namely that X? is a harmonic function of 7. On a p brane this is X° = TSEQ. In this case, the
determinant, as well as M ~! will vanish when covariantly differentiated by 0", giving us our desired second

equation of motion.

This solution is known as a Bl-on (BI for Born-Infeld). It represents an infinitely long open string ending
on our p-brane.

Let’s have G, B, @, Cy trivial. We get
_ ! Jd% 1 — (2n02Fp1)2 + L J d*¢ Co(2r0?) Fyy
2ml2g s 272 N
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28.

29.

Pick the gauge Ag = 0. Our variable is then A;. From this, we get a canonical momentum conjugate to Ay

equal to:
1 (271'[?)2}701
2129 \/1 — (2102 Fp;)?

+ CoFor

Consider putting the D1 brane in a circle. Now since Cj acts as a 6 term, consider putting an integer m for
Cpy. The momentum is quantized, and in particular there is a gap between the zero momentum ground state
and the next state up. We get:

2ml? F
s 01 = gm = 27T€§F()1 = gm

1 — (2702 Fp)? \/ 1+ m2g?

1 1
B 27r€§g 1-— (27T€§F01)2

And from the quantization condition on the electric field we obtain from the Hamiltonian a set of quantized
tensions

We have a Hamiltonian

1

- 2
2ml2g

14+ m2g2.

/ D D/

The D3-D_; system has #ND= 4 and so preserves 1/4 supersymmetry (1/2 the SUSY of the D3 brane
itself). Similarly, the instanton configurations satisfying *Fy, = +F,. The supersymmetric variation of the
gaugino is dAocF),, I'™. The I'™ are generators of SO(4) = SU(2) x SU(2), and the (A)SD conditions on
F, will ensure that only half the generators (the first or second SU(2)) will appear in the variation. Thus
instanton configurations are also 1/2 BPS on the worldvolume.

To confirm that these instantons really are D_41 branes, note that the CS term contains %(27[‘€3)2T3 §CoFs A
F,. For a nontrivial instanton configuration we get { Fy A Fy = 872, Thus the instanton coupling to Cy is
(27ml,)*T3 = T_1, exactly the charge of the D_; brane. Does this exclude the possibility of objects
with the same charge and BPS properties as D_; branes, but that don’t have interpretations
as endpoints of open strings?

I expect the moduli space to have dimension 4n, corresponding to the space (technically Hilbert scheme) of
n points on R%.

This configuration is invariant under ! translations as well as under time 2". The exact same BPS properties
discussed in the previous question apply here. The state is half-BPS on the worldvolume both from the POV
of string theory and from the POV of the low energy SYM theory having half the gaugino variations vanish.

The same instanton action argument in the previous question gives us that %(2W€§)2T4801F2 A Fy yields a
coupling (274,)*Ty = Tp to the C; form.

For N D5 branes the low-energy effective theory is SU(N) SYM, and we obtain the moduli space of SU(V)
instantons. The dimension now becomes 4Nk justify . I expect that the moduli spaces of D1-D5 bound
states are identical to the moduli space in the previous problem.
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30.

31.

32.

33.

34.

35.

First, the pair of 5-branes in the 12345 and 12367 dimensions are parallel in the 123 directions and 900
rotated in two directions. This gives 2 sets of ND and 2 sets of DN boundary conditions, on the strings
which gives us v = 4. In this case, following Polchinski the spinor 8 = BL_l BU has an equal number of
eigenvalues —1 and 1. So half of the original 16 spinors preserved by the first D-brane will be preserved by
the combination of both.

Now take a third D-brane in the 12389 direction, perpendicular to both the first two. The same argument
shows that we brane another half of the supersymmetry, giving 4 supersymmetries left in this configuration.
In other words it is % BPS. Confirm

Adding a D1 string gives 4 ND boundary conditions with each of the other D-branes. This breaks the
supersymmetry in half again, preserving 2 supersymmetries now. It is % BPS.

If T were to add it along direction 4 it would have 5 ND boundary conditions with the second two branes,
which preserves no SUSY, so the latter configuration has nothing preserved.

Note this is O(2) and not SO(2), so instead of getting one D-brane at #R and the other at —0R, we get one
“half” D8 brane at #” = 0 (the location of one orientifold plane) and its image at 7R (the location of the
other).

We work with the compact real form USp(2N) = Sp(2N) n U(2N). In this case any symplectic matrix can
again be diagonalized to be of the form (e, e~ .. .). Again we interpret this as D-branes on both sides
+6,R of the orientifold plane. The generic gauge group is U (1)2N. If m branes lie at either orientifold plane
we get an enhancement Sp(2m). When all N branes and their images lie on one of the orientifold planes, we
recover the full symmetry.

Due to the negative tension, an excitation on it has even lower energy, corresponding to a negative norma
state which is forbidden in a unitary theory by positivity. What more can I say?

There is a mistake in Kiritsis’ equation G.8. We should have A = —H!(p) not —H(p). The way to see

that is by noting that —H 1(p) = —% = —# =1+ g The constant 1 is gauge and hence irrelevant,

while the second term is the proper electric potential that will give rise to a Fy, = %

Also, this problem asks us to work in N' = 2, D = 4 SUGRA, so the appropriate equations should be that
the variation of each dilatino by a Killing spinor is zero. In this SUGRA, there are two Majorana gravitinos
Yu,a, A = 1,2 with four components each, for a total of 8 SUSYs. Consequently, the variations involve two
Majorana spinor parameters €4, A = 1,2. We will use lower indices to indicate chiral and upper indices to
indicate anti-chiral fermions. The gravitino variation is then (c.f. Freedman Supergravity Section 22.4)

1
0pua = Veq— Zpr'YVp’Y,uEABeB (77)

Here we have V,, = 0, + iwuabf"b with w spin connectionﬂ

Because of the chirality we can replace F’ with F'~ in the above equation. Now, if we use spatial coordinates
Z,|x| = p, the metric takes the form
ds* = —H?dt + H*d7"

Take €24 = H~2, then we have the frame fields el = eAdt, el = e~Adz’. We will use hats to denote frame
indices a,b. Our spin connection is then:

Wy; = _€2AaiA dt, w%j- = —ajAdLL“i + @Ad:zj

First let’s look at the = 0 constraint of equation

1

1 v 0ean P

1
Orea + ZwOabFabGA —

3This corresponds to setting x = /2 in Friedman’s Supergravity 22.69.
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36.

Now because the solution is static, ¢y is killing and we expect that dse4 = 0. Further, the only contribution
to woap is wyg; since only this has a dt (NB the double sum gives a factor of 2). Similarly for the second
term, since there is only an electric field, we only care about v, p € {0,7} (NB the double gives a factor of 2).
Finally, we have only an electric field Fy; = —0d; Ay (A is the vector potential, not to be confused with A).
This yields:
1 5 3 1 ;
— §€2A 0iA Yy es — 5(_5iAt)’YO’Yl’YO€ABGB =0
1 - 1 .
= —§€A ot vy + 5(—81-1407’5/;363 =0
= e 9;e? ’y%fyGeA — 0; Ay eA’y%zSABeB =0
= 0;e’ 'yﬁeA = 0;Ageape’
Here, the hatted «-matrices are the familiar ones from flat space. We thus need (up to an irrelevant gauge
constant) Ag = +H ! and
€A = TL’yOa‘ABeB (78)
Since we require —H ! to match the electromagnetic potential A, and so that it is asymptotically unity, we
have H = (1 — €)1 = % =1+ %. This verifies the extremal RN solution.

r

We have not yet derived the spatial dependence of €. Taking p =i we get

1 1
diea + Vi alPeq — 1 VoY Pyic ape”

Now we must use that w, »; = —0nA(6ij0) — 0167 ). Using the p = 0 constraint we get:

1 1 :
0i€A — 551«4 Vi €A — §F0i70%€ABEB =0

1 o1 ;
Oi€a + EakA e A WZkeA T iaieAHvoeABeB =0

1 7 1
Oi€a + QﬁkA'y’keA - EﬁieAefAeA =0

Now the v** is nothing more than a generator of rotations acting on e4. Since we are assuming spherical

symmetry, Y*e4 = 0 and we are left with the differential equation:

1
(9,‘6,4 = iaiAeA = €4 = 61/2A60

where €p is a constant spinor satisfying .

Because the constraint €4 = $706 ape? applies to half the space of spinors at any given point, we have that
the extremal RN solution is half-BPS.

Again take coordinates x; so that
dt?

ds? = ——
H?(p)

+ H?(p)(da?)

Upon the choice e4 = — F 'yOEABeB, we had the relation 0; H~! = 0;A¢g = Fjo. The field equation 0 * F = 0
0iv/—99"g" Fio = 0;H?0; H" = 07 H (w;)

Thus we have that H is a harmonic function of the flat Laplacian in transverse space.

We see that H from the previous problem takes the simple form 1 + %, which is obviously harmonic in 3+1
dimensions.

A more general solution allowing for for multiple charged extremal black holes amounts to nothing more than

replacing H with 1+ ), | x?;w which remains harmonic, and thus preserves half supersymmetry. This looks

like a bunch of extremal black holes whose pairwise electric repulsions cancel their gravitational attractions.
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37. Again we are working in N’ = 2 SUGRA. The metric takes the form
42 2

This corresponds to 2D AdS times a sphere of constant radius. Both spaces have radius ). The spinor

equation is as before, now with 7, = —% G- Consider just AdSs. Define the operator
2 B
Dyes =V, €4 — 2Q’)/M€AB€
Consider now .
[D,uaDu]eA = (4Rw/ab7 + 2Q2)
And since AdS; is a maximally symmetric space Ry, ap = —(€au€hy — €av€iyu) /L? and so the commutator

vanishes identically. This is the integrability condition we need. At each point, the spinor bundle is dimension
N x 2[P21 - for N = 2 AdS2 this is 4. We see that any spinor can be transported by the connection D, to
define a spinor field on all of AdS,, and thus we get that the space is maximally supersymmetric.

The exact same arguments (with @ — —@Q) apply for the positively curved 2-sphere of the same radius.

The product of two maximally supersymmetric spaces is maximally supersymmetric Confirm. We get
8 Killing spinors. We now see that the Bertotti-Robertson universe preserves full supersymmetry, and
thus the extremal RN black hole plays the role of a half-BPS soliton that interpolates between two fully
supersymmetric backgrounds (flat space and AdS; x S?).

38. The variation of WFQ

pi2 = Fpio A xFpio directly gives xFp 19 = 0.

Varying the dilaton gives

0=—2¢"2P[R+4(V®)?] — V(e 2?8V®) = —2¢ 2P[R + 4(V®)?] + 162 (VD)2 — 82210
= R =4(V®)? — 410

Finally, writing the metric explicitly in the action

\/TQG_Q(I)[QHVRMV + 4gﬁu’au(1)ay(1)] V g p+2

2( 2)!

) 1 )
Let’s look how each term changes when we vary NeR R
° /_g€—2¢>R
_ 1 _
— (R + 90—V, V,)e 2 _ 3 Juve 2R

1
= 2 (R = 300 R + g (=200 + 4(00)%) = (=2V,.V,@ +40,00,0))

o /—ge 249" 0,90,P — 4¢72%0,80,P — 27 2%(09)?
1 1 1
® —5pranV 99 PR E Y o By _2(p+1)!F,3V + 4(p+2)!9w/F2- Here F7, = F, F”

Combining these all together and using the dilaton equations of motion gives

2®

_ 1 1 e g

29 2 2 2 w2
R, +2V,V,®— F vF°=0= R, +2V,V, 0 = <F — F>
¢ ot =Va 2(p+ 1)1 * 4(p + 2)!9“ pr 2V 2(p+ 1INV 2p+ 2

exactly as required.

97



39. This problem was very time-consuming to do out explicitly. The only resource that was of any help for
cross-checking was Orfin’s “Gravity and Strings”.

First consider the possibility of ® = 0, /' = 0. In this case we have no stress tensor and are left with static
vacuum Einstein equations, spherically symmetric in 10 — p dimensions and translationally invariant in p
dimensions. In that case we know that our solution is nothing more than the Schwarzschild solution in 10 —p
dimensions times a transverse p-dimensional space:

1
ds? = —f(r)dt* + dx? + ——~dr? + r2d03_
v ) 8

Reproducing the arguments from black holes in 4D, we see that

d d d

S (r) 2 Tog(f) = o

- - S -

ie f(r) must be harmonic in the transverse dimension. After rescaling coordinates to have appropriate
asymptotic behavior, we get:

for some constant 7 related to the ADM mass of the solution. So we see that H(r) = 1 when the dilaton
and p + 2-form field strength are turned off. The curvature is R = 0. Now let’s turn on ®. We expect small
® will correspond to small H.

To do this, let’s look at the simplest case, p = 0. Take the Ansatz (which you can convince yourself to be
completely general given the symmetry of the problem)

dr?
ds® = = \(r)dt> + —— + R(r)%2d0>%_
( ) ,LL(’I") ( ) d—2

We will later set d = 10, A = p = f(r)/v/H. Let’s explicitly calculate the Christoffel symbols. There are
three categories: I's involving just r,¢ I's involving mixed r, 2, and I's involving just the € variables. I will
use a, b, ¢ to index the angular variables v,, whose metric is RQdQZb = u0ap, and I use ’ to denote ordinary
partial differentiation w.r.t. r.

T P A S e
R A A L
cm = 9b>c(5 cot "/}b + Oesbbac Ot e — Oy qdpe cOt wa%

That last Christoffel symbol looks particularly nasty. Thankfully, by using the fact that the sphere is a
symmetric space, we will not need to use it explicitly.

Now let’s directly compute the Ricci tensor.

Ry = 0,1, — 0,10, + 0. 17, —T7 T'0,

In what follows, it is useful to recall the identity ', = , log1/—g. The nonzero terms will be Ry, Ry, Rap.
Respectively they are:

Ry = 0,I'}; — % + 5, — gprgt
1 1N1
- 7(,»’)’ + 0rlog /g (uX) = 2§j§/v‘x

\f (ru )z%)\VQIOg/\

It’s important for this next one to note that q,/R? is independent of r. It’s equally important to appreciate
that the final combination of I' symbols is the only thing that would appear in the absence of r dependence
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in R. In this case, because the d — 2 sphere is a symmetric space, we’d have Ry, = % Jgab- Indeed, this is
exactly what the final term gives. We thus get

Rap = 0rTgy — % + 15,00 —T5,I0,
d—3

_ 1 2v/ da — 2v/ da
= — S0 (B2 15 ) + 0 log V=g S (R*) 155 + “5~ b
d—3

)

= gab(—V2 log R +

The next one is a bit different. Less cancelation. The last term will sum over (o, p) = (r,7), (t,t), (a,a). Also

note \/—g = \/A/uR2,
Ry = 0,17, — 8,T%, + T, T, — T T%

po-rr rp- or
1

N2 /\2
=~k ) = 7 log(v/ A UR?) ~ %@ tog(WNR2) (i) — 2L L e gy

422 4 R?
1., d—2 , 1 R
26T log(\) 7 R 2(d 2)Ré’rlog«/)\/,u

L 12 d—2 [A (0 M/
- = logh— —= |2 (R [E
gh Vilog R u( )

Altogether we get a Ricci scalar:

R =—V?log(AR?) + (d— 22%(2‘1 -3 _d ]_% 2@ (R’ “),

Now let’s take A\ = p = f(r)/v/H and R = H'/*, \/—g = H\@=2)/4,

d—4 d - d -
—V2log(f(r)yr®2H 7 ) + d=2)d=3) Tf‘;;l/z 3)

—(d—2) 7«%34 (rHYY

. (d—4)/4,.8 . . .
The Laplacian takes the form 6T[Iid_2 H(dr,zf)%)ar] which simplifies the above to:

GR(f(ryrt=2HD)  (d—2)(d—3)
C pd-2p(d-2)/2 rd—2f1/2

The dilaton equation of motion is
R = 4(V®)? — 4V

Since a nonzero ® is what gives an H away from 1, we might hypothesize a relationship log Hoc®, meaning
we should replace ® with log(H?%) in the dilaton equation. Let’s also take f(r) to be not different from the
-3

d
Schwarzschild solution: f(r) = 1 — ;?1—,3 So far we will not be so bold as to assume anything about H.
We also at this point need to specialize to d = 10, otherwise no nice simplification occurs. Straightforward
algebra then gives:

red-3
inzasz= FLr_] 1= 1- H
rd-3

sqrtg = r@"2 H[r] (4274,

Sqrt[H[r]]
r= ———3
fir]
1 d-2) (d-3 f
(—76{r,z) (FIrl r2HLry@9748) & -2 -3 (d-2) i 8¢r,2y (r HIF1Y4) /. d 10| -
rd-2Hprytd-2/4 r2 Sqre[H[r]] rH[r13/4

(4grr‘1 (8- Log[H[r1%])? - 8. (sartggrr 8, (Log[H[r1%])) /. d-»lo] /7 Fullsimplify

sqrtg

r(ri-ro7)(3+8 (1-2a) a)y H'[r]2+2H[r] (2 (ro” (7T-4o) +4r’ (-7T+80a)) H[r]+r (r’-ro’) (-7T+8a) H'[r])
Out[2385]=

4r8H[r)5/2
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To get rid of the term quadratic in H'(r) we need 3 + 8(1 — 2a)a = 0 = «a = 3/4.
After that, these will only be equal if

The above solution is the most general given that H — 1 as r — c0.
Now let us generalize this to higher dimensions. We add p z; in the parallel dimensions of the solution.

d 2
ds® = —\(r)dt* + v(r)dz? + WT;”) + R(r)%d02_,

This gives two new Christoffels. Here is a complete list

Dy =guX  Th=gA"'W\ T = —gu 'y
Iy =05 Top = dan(R)'
FZC = 9b>cég cot wb + 5c>b9ac cot wc - 6b>a5bc cot %Zf
It = — 20/ ny‘ = %5}1/_11/

Our nonzero Ricci components are now Ry, Ry, Rap, ;j. The primary way that the new dimensions will
contribute is by modifying /—g We get:

- 1
Ry = Rgtw P ZPMX(IOg v)'

_ 1
Ray = Ry’ ™ = Spgan(log v) (log R)'

Rep = RIO) 4 () ™2((u0) 2 (1050
R;; = %5ijuv2y
This gives a Ricci curvature of:
R = RU0-P) ¢ %p(—V%O_p logr — v V20 + %u((log v)")?)
Making the necessary replacements we get

_ Gy PHIM)(d - 2)(d - 3)

rd—2 [ (d—2)/2 rd—2[1/2
1 0, [fr8 P HO=P)/0 log H~1/?] vVH 8—p 7(6—2p)/4 1oy LS —1/212
+ 2]9( - TS—pH(Sfp)/él - r8—PH(8*2p)/4 6r [f?" H arH ] + 5 H1/2 (a,» log H )
It makes sense to take the ansatz f(r) =1 — :9:: and H =1+ % Further, the relationship between H

and ® can be guessed from reasoning in the p = 0 case to go as Poc HGP)/4 or alternatively we can establish
this from first principles by algebra
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7-p

n27321= H[r_] 2= 1+ H
— a

ro’-pP

flr_]1:=1- H
— i

Sqrt[H[r]]
T fIe)
sqrtg = r® P H[r]®-2P /4,
+(ZS-P) (7-P)_(8_p) -
r<sqrt[H[r]] rH[r]
H[r]1/2

r8—p H[r] (8-2p)/4

a(r,Z) (f[r] rs-p H[r] (s-p)/A)

Fullsimplify |- O,y (r HIFIY4) +
r

8-p H[r] (8-p) /4

1

2 P (er-p H{r](e-P /4

1 fr] -
2 saretny (o (toelir1 1)), o <7]

or (FIr1r® P H[r1**P /% o, (LogHIr1])) - or (FIr1 r®PHIr1 2P 7% o, (H[r1~2)) +

Fu'L'I.Simp'l.ify[(4 grr* (8- Log[H[r]%])? - 8 (sqrtggrrt &, (Log[H[r1%] ))] ]

sqrtg

LT (-7+p)? (-3+p) r'®2Pr@P (4LPr7r0" +L7 (-(-3+p) rPro’ + (1+p) r’ roP))
4714 7P TP (LPr7 4+ L7 rP)2

217 (-7+p)? r®2ProPa (2LP r ro” + L7 (-rPr@’ (-3+p+20) +r' roP (-1+p+2a)))

NN =Ty

out[2736]= —

out[2737)=

This immediately gives that the dilaton term will equal the scalar curvature only when a = (3 — p)/4.
We have thus proved the form of f, H, ®. Let’s finally look at the RR field.

For now let us ignore the issues with self-duality at p = 3. Take the the p + 1 form has flux in the radial
but not angular directions in transverse space. The only nonzero component of Fj,, 2 is given by Fyq.,. The
equation of motion gives:

Or (V=99""g" Fy,..) = 0

Now we already have /g = r8~P H4=P)/2_ while we will have raising for each index 0. .. p as well as r, giving
a factor of f(r)HP+V/2ZH=1/2/f(r) = HP/2, Altogether the differential equation becomes:

o, rS PH2HT

k/r8—P

Immediately we must have F' = “Z—. This means that F' is proportional to H'(r)/H (r)?.

I don’t know how to easily get this constant of proportionality without knowing the decay properties of R,
as r — o0 Return to this. I know it must scale roughly as a positive power of L. It turns out to be:

7—
Fo ,=— I—TOPH;D(T)
rU...p L77p Hg(?”)
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Agi:%¥3£g¥+Jﬁzﬂéyﬁjaiﬁ%f)

Htr)

Can I do this all by somehow “boosting” Schwarzschild?

40. From the expression 8.8.9 of the electric field in terms of H we have (assuming p < 7)

6+p
B, = (7— pﬂ”‘””WW — (7— p)L(7_p)/2\/L7_p7+Tg_p’rp_8

Integrating this over the 8 — p sphere will give

T,N = w[}?—p)/?\/m‘
2K7)

41. Using the standard ADM formula (cf, eg Carrol)

1

- ﬁ st24 9" (Guow — g,w,a)no‘dS
—-p

Then for a metric that looks like g, = 1, + by With by, = :7’1”,7.

Qg
M = TyV, = 282p((7 — p)coo — Moo Cap)
k1o
Qs pVp T L7 7—p , Lo
— _ bl o) Py —(T-p)/4
2r2, (T=p)(rg "+ 5 )+ro "+ B )
Qs_,V, _ _
= 5 (8 =p)rg "+ (7T-p)LTP)
k1o
Revisit- something seems off
42. Note that
LT 1 1

J-lp) =1~ PP+ LT 1+ LTPrTr  Hr)

Similarly
Folp) =1 rg_p+L7_p _ r7_p+rg_p _ f(r)
+ r7P 4+ L7p  pT P4+ L7P  H(r)
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43.

This confirms that the dt and d¥ terms are indeed consistent, and that the f:l/ 2(p) in front of the transverse
part is our desired v/ H. Next note that:

7—p _ 77—p1/(7-p) _ 2
1 p L T 2 1-5=p 2T 2
e e R e s R
Py p P
So the angular part is consistent. Lastly, f./f_ = f(r) which is the required coefficient for dr?. It remains

to cancel the jacobian:

_12-2p 5—p

pﬁ—p _6-p —1—2=P
dp=f_ "Tdp=dr’=f_ T dp*=f_ Tdp’

r = —
rb-—p

d

So

H(r) o ipf 1252 5 —5-5% dp?
dr® = I Pp? = »
oy SR =i 7+(0)

Before doing any supersymmetric manipulations, we should know the spin connection.

Take the extremal p-brane metric to be of the form
ds? = 240 dat'dx"nu,, + eZB(T)da;ida:jéij
In this case we have A = —B = 1log H(r). Take the frame fields
el = eAdzt, et = eBdy

Then

def = 0, Ae?dr A dat = Z 0;Aetdz’ A dat = e AWl = wpp = 0, Wi = (—)“:OﬁiA A Bagh

1

det = o, BeBdr A da' = Z(?Z-Bedej Adat=él A w%. = w;s = ﬁdexi — 0;Bda’
J

Using our extremal form of the solution, I can further write

_ _ _H
€CI> = ggH(?) p)/4 _ gge(p 3)A’ FrOl...p _ +ﬁ _ i4A,€4A
The + corresponds to brane/anti-brane solutions.

In 10D NV = 2 SUGRA coupled to matter, represent the Killing spinor as ¢ = (2;) We have the gravitino
and dilatino variations:

1 e®
0=0%ua = (0u+ ngbrab)e + gFP,JD,HQG

o
e
0 =0\ = Jde + Z(—1)1’(3 — ) FPpi2e
Here we are took what was written the democratic formulation of Kiritsis Appendix 1.4, setting all fields

equal to zero except for the dilaton and relevant RR p + 2 field strength. The extra factor of two in the last
terms on both lines comes from counting F, - F;, and Fig—, - F19o—, on equal footing.

As written there, for ITA we have P,, = (Fn)"/zal and for IIB we have P, = o' for HT" even and io? for
Ln 44
5 odd.

Let’s first look at the dilatino variation. We get E|
(p—3)A TTe + AC PN (_1)P(p — 3) A’ 2T PP, 5e = 0
= (14 (=1)PeAIFPITOL-PD o) = 0
= (1+ (—=1)Pr0L-Pp, ) = 0

1 have set gs = 1 for all of this. I don’t understand how any of this could work without being modified for arbitrary gs.
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44.

Here the I matrices with hatted (vielbein) indices are the familiar 10D Dirac matrices, as in Freedman and
Van Proyen Supergravity. We need our constant of proportionality « = 2 in order for the above combination
of matrices to have a nontrivial null space. Note we could inversely have taken this as a way to take the
profile of ® = ¢(P=3)4 and get the profile of F to be +4A4’e*4.

Locally, then, this is a linear algebraic constraint on the space of spinors at a given point, which half of the
spinors will satisfy.

Now let’s look at longitudinal the gravitino variation. Similar to the case of the RN black hole, we expect
0,€ = 0 since 0, in the longitudinal direction is Killing.

1 ab — 6(p—3)A ! _4A1r0...p
o€ + Zw“ TCoe F 4A e T PT Ppyoe = 0

1 1
== — §€A_BA/ FfﬂE 1 §€(p+1)AA/FTOWpF#Pp+2€ = 0

1 1,
= — 5A’ Tipe F 5A’r”)---pr,lppﬂe =0

=T e + TOPT Py yoe = 0
—(1+ (=1)PT%PP,,5)e = 0
This is exactly the same constraint as the one that the dilatino gave us. This also directly confirms our

assumption: d,e = 0 longitudinally, since we can subtract the dilatino variation from the above gravitino
one.

Meanwhile in the transverse directions we no longer expect d;¢ = 0. It is important to note that the
components of the spin connection wiabf ab Will only be nonvanishing for a,b = {j,k} being transverse
coordinates, in which case I'j; is proportional to the infinitesimal rotation generator. By assumption of
spherical symmetry (just as in the RN case of problem 35), this must vanish I'jie = 0.

1 A(p—3)
0= a,r.e +Wi ¢ 3 4A/64AFTO..‘pFer+2€

1 A
= 67»6 + QA/ FTO"'pFer+2€

1
= Ore £ (—1)p+1§A' I%PP, e

A/

1
2876—§A/6=>€=6 2¢0

where €y is a constant spinor satisfying the linear algebraic constraints previously given.

We thus have that indeed our configuration is half-BPS.

We write again the spin connection found in the last problem:
el = eAdzt, e = eBdat

Hatted indices always denote the vielbein indices.
Then

def = 0, Ae?dr A dat = Z 0;Ae’dat A dat = N wﬂ% = wpp = 0, Wi = (—)“:OﬁiA A Bzt

del = o,BePdr A dz' = Z&iBedej Ada' = el A w% = w;; = &de:ci — 0;Bda?
J

From this, we can get the Riemann curvature using R ; 5= dwaeg + way A wg). First Ry, is the easiest:

Ry = dwip +wp; A w%,; — 2A=B)(0A)2da! A da = R
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Note that last expression is unhatted.
Next is Rﬂ;

L = A AN ]A
Rm. dwm Tws A wy

= [0;0;Ae1B 4 0;A(0;A — 0;B)|da? A dzt  —0;AeN"P0; Bdat A da' + 0;Ae "B, Bdat A da?
= A B(0,0;A + 0;A0;A — 0;BO; A — 0;Bo; A)|da? A dat — eAB0;A0; Bdat A dat
We can get RJ (note unhatted) by multiplying this by e~ and R/* by multiplying this by —eZ~4.
Finally R;}

= deo . fi A Wk
Rij = dwij +M Fwsi A w5

= 6k6dexk A dxt — 0,0; Bdz® A da? +0kB(9de:L‘i A dz* — 0,BO;Bdx? A da* — (0B)?dz® A da?

= —(0B)%da’ A da? + (0,0;B — 04 BO;B)da? A dx* — (040;B — 04 Bd;B)dx' A da* = R}
To evaluate R, . R*'P° amounts to summing the squares of all the entries in the curvature two form when
expressed in only vielbein indices. We can do this in Mathematica:

I can’t get c,,c_ exactly right. The best attempt is in ”exact p brane solutions.nb”. The
general [ and r dependence in both cases matches though, and I’m not getting any p — 3
factors, so I can believe this result.

To get the Ricci tensor, we must to the appropriate contractions. Importantly, if a longitudinal index must
be summed over this gives an extra factor of p + 1 while if a transverse index must be summed over this
gives an extra factor of 9 — p.

Ry = R0 + R;," = —nu =P ((p + 1A+ A"+ 8%”14’ +A'B'(9—p— 2))

Here A’ = 0, A is differentiation with respect to the radial coordinate. The Ricci tensor has no components
mixing transverse and longitudinal directions:

Ry = Bl + By = 0
Finally the annoying one, for which I looked at Stelle’s Lectures on p-Branes 9701088 :
Rij = Ry;" + Ry ¥ =—0; (B” +(p+1)A'B + (T—p)(B)? + 202t p | gA')

+ L8 ((7-p)B"~ 2B+ (p+1) A" — XL A —2(p+1) A' B/ +(p+1) (A)2—(T-p)(B')2)

In this last part I rewrote 0; = %i&r.

We can evaluate this directly in Mathematica. For R, R*” and R we get:
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45.

46.

L7

n@Bot= H[r_] 3= 1+ H
ri-e

1
Alr_] == —4— Log[H[r]]

1
B[r_] := Z Log[H[r]]

Ruv = -Exp[2 (A[r] -B[r])] |A'"'[r]1+ (p+1) A'[r]12+ (T-p)A'[r]«B'[r]+ pA'[r]] // FullSimplify;

2(7-p) +1 1
Rmn=—(B"[r]+(p+l)A'[r] BUIrl+ (T-p) (B'[r1)? s PV "2 guppy B2
r

A'[l’]]—

1
ﬁ((7-P)B"[l’]+(P+1)A"[l’]—2(P+1)A'[l’] B'[r]l+(p+1) (A'[r])®-(7-p) (B'[r])?-
T-p p+1
——B'[r]-——A"'[r]]| // FullSimplify;

r r

In[396]:= main:—(B"[r]+(p+1)A'[r] B'[r]+ (7-p) (B'[r:|)2+72 (7_p)+lB'[r]+p+1
r

A'[r]l];
offdiag =
—((7—P)B"[r]+(P+1)A"[l’]—2(P+1)A'[r] B'[r]+(p+1) (A'[r])?-(7T-p) (B'[r])?-

T-p p+1
—B'[r] - —A'[r]] // Fullsimplify;
r r

RicciSquared = (p+1) (Exp[-2A[r]1)* Ruv’ + (Exp[-2B[r]1])? ((9-p) main® + 2main«offdiag + offdiag®) //
Fullsimplify
R=(p+1) Exp[-2A[r]] Ruv+Exp[-2B[r]] ((9 - p) main+offdiag) // FullSimplify

1
ouaggls —————————L'"P (-7+p)? r*?P (8L7P (-9+p) (-8+p) (-3+p)7r+

32 (LPr7+L7rP)®

L* (1+p) (137+p (-1+ (-9+p) p)) r*P -8L™*P (-8+p) (-5+p) (-3+p) (1+p) r'*P)

L*¥ (-7+p)? (-3+p) (1+p) r22e

4+[/1+L7P - 7rP (Lp r’ o+ L7 rp)z

out[399)= -

The last line is in agreement with the expression for R in Kiritsis 8.8.31
Exercise 7.7 shows that, upon T-dualizing along the x° direction we get

~(p+1) A _ A1)
CMl---MpQ - C;(ﬁ)...u;ﬂ Cl(g)m#p o CMI---Npg

In transverse space, our (p + 1)-form C has components only along the longitudinal directions. Upon T-
dualizing, we pick up the 9 index in the C form, and thus get that our brane has a (p + 2) form charge. We
thus expect this to be a p + 1 brane wrapping that additional 2° direction. I'm unsure if this wants us to
explicitly give the form of that solution, since doing it in a compact space seems a bit harder.

Let’s assume p < 7. When A » 1 the perturbative stringy description is no longer valid. For an extremal
p-brane, we know from problem 40 that:

2610 TN ( L )” g N T(52)
(7T—p)Qs—p 27l T—p o552
So A = 2mwgsN » 1 gives that L » /,, meaning that the throat size is macroscopic. We can thus probe it
without having to see distances smaller than the string scale.

L'P =

2(7—p) . .
L2771 as 7 — 0. This will

When p > 3 we see from our calculation of R in problem 44 that R blows up as o 2

/2 2/(p—3)
" ( L(?—p>/2>

When p < 3 the formula for R indeed is seen to go to zero. On the other hand the string coupling grows as

L?—p) (3—p)/4

r7—p

become order /2 at

¢ = g HODA _ g (1 N

So if gs is the string coupling “at infinity” which we can take to initially be small, then it will become
appreciable at

_ L(—l _|_gs—4/(3—17))1/(17—7)
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47.

so for g5 sufficiently small, the quantity in parentheses will be quite large and be raised to a negative power,
so that this is a small fraction of the throat size.

This is only a slight variant of exercises 8.38-9, and in fact is a bit easier. Our action is

1 10 —2® 2 1 2
- @
S 22 d"x\/—ge R +4(V®) 53l (dB)

Let’s first vary ®. We get

0=—2¢2® [R +4(V®)?2 — 213'(dB)2} — V(e *8VD)
672<I>
—2¢7?*R — 87 2%(VD)? +

3!
dB)?
=R = 4(V®)* — 41 + (23)'

(dB)? — 8e7220® + 16(Vd)2e 2%

Next for the B-field we will just have
dxe?*dB =0

Finally, varying ¢ is the hardest, but we’ve done most of the work already in the other problem:
° /*ge_Qq)R
_ 1 _
- (Rm/ + gl 1— vuvu)e 22 _ ig;we R

1
_ 20 (RW — 59w R + g (—200 + 4(02)?) — (-2V,V,0 + 4auq>ayq>))
o \/—ge 2490, $0,P — 4¢72%0,80,P — 27 2%(09)?

e—2%® mivt Up+2Vp+2 e—2% 2 e—2% 2 2 V...
* —5GraV 99 co gt B o Py —2(p+1)!F/w + 4(p+2)!gw,F . Here Fj,, = F, F

2

Combining these all together, dividing through by e~2® and using the dilaton equations of motion gives

LHQ

Ry +2V,V,® = o~ Hy,

Here H,,, = H,,o H/’ as we've had before (i.e. in chapter 6).

Ok next let’s take the ansatz as in Kiritsis:

ds* = —f(R)dt* + dz? + H(r) (}i(f) + r2d9§> :

With dilaton
e = g2H(r)

The field strength written is wrong (as you can see by noting that as r — oo the magnetic flux integral
goes to zero). We can find the correct expression by noting that d x dB = 0 trivially since *dB has a dr
component. The only nontrivial equation is the Bianchi identity, giving (by spherical symmetry)

dB=0= B =cw

for w = dyp A sinydf A siny sin6d¢ the unit volume form on the sphere. Let’s see what this constant ¢
should be from the dilaton equations. We get
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In[17031= XX = {ty ry ¥, 6, ¢}
L2
H[r_]:=1+ r—2
. ro?
[r_ ] :=1- 7
H[r]

g = {{‘f[r]) 0, 0, 0, 0}, {B, m

» 0, 0, B}’ {B) 0, H[r]r?, o, B},

{e, 0, @, H[r] r* sin[y1?, 0}, {0, 0, 0, 0, H[r] r? Sin[:p]zsin[e]z}};
ginv = InverseMetric[g];
R = RicciScalar[g, xx];

1
&[r_] := ; Log[H[r] ]
de2 = ginv[2, 2] D[=[r], r1? // FullSimplify;

1
d2s = ——— D[H[r]? r® ginv[2, 2] D[&[r], r], r] // FullSimplify;
H[r12r3

dB = c Sin[¢]% Sin[e] // FullSimplify;
1
R- (4 dz2-4d2z + 7 ginv[3, 3] ginv[4, 4] ginv[5, 5] de] // FullSimplify

c?-412 (L2 + rOz)

out[1713]= —
2 (12 r7)?

So when ¢ = —2L4/1 + r2/L? we get our dilaton.

By Hodge-dualizing, this also gives credibility for the /1 — r3/L? constant in the p-brane solu-
tion, which would have required the more complicated R, equation.

Finally the least trivial equation of motion is also straightforward:
ini778l:= RicciTensor[g, xx] +

2Table[D[D[&[r], xx[i]], xx[jI] - Sum[T[k, i, jID[2[r], xx[k]], {k, 1, 5}],
{i, 1, 5}, {j, 1, 5}1 -

00 ) ) )
L |ee ) ) )
~ |e o ginvi4, 41 ginvI5, 51 ) ) dB? //
2 lgo ) ginv[3, 3] ginv[5, 5] )
00 ) ) ginv[3, 3] ginvl4, 4]

Fullsimplify // MatrixForm

Out[1778)//MatrixForm=

006000
00000
006000
00000
00000

48. Let’s review the extremal near horizon limit first. There, when r « L we can just write

d 2
ds? = —d? + d7 - di + L*Z + L*d0}
T

Defining v = v/ N/, log m gives dy? = L?/r? giving
ds? = —dt® + di - dT + dy* + N02dQ3

This looks like flat space times a constant-radius sphere with a linear dilaton background going as ® =

v/ Ns.
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49.

st A4 1X ¢

~ ’(53

Next let’s look at the near-extremal case. We take r = rgcosho so that f(r) = 1 — 72/r?> = tanh?®o.
Meanwhile ) ) ) )
H L inh” od
(T)dTZ =1+ = o> 20 A ré cosho? = H(r)r?
flr) rg cosho tanh” o

So we get a metric
—tanh? odt? + dit - dZ + (N% + 12 cosh? o) (do? + dQ2)

At large N, rescaling t this looks like
—tanh? o N02dt? + dit - di + N2 (do? + dQ3),
which looks like a 2D black hole solution in o,t space, after rescaling

Let’s write the spin connection. Take €24 = H(r) so that ¢ — ¢g = A. Our frame fields look like:
el = dat, Ayt
for p parallel and i transverse. It looks like w;,, = w,; = 0 while
w5 = —(%-Ad&:i + 0;Ada?

similar to what we had before.

We again write the gravitino and dilatino variation in 10D type II SUGRA, neglecting this time the RR
forms but incorporating the N 2-form contribution:

1 1
0=10Yua =(0,+ ZwaFab)e + ZH,ﬂ’e
0 =26\ = §de + %HPe

Here P = T ® 15 in type ITA and —130 ® o in type IIB.
The dilatino variation gives
1
Orpl'e + 5(—2L2) sin? ¢ sin fT V99 Pe
H' , L2 N
_ = T Yo
QHF eF H3/2r3r Pe
Hl - L2 N A n
— - Yoo
2H3/2F €F H3/2r3F Pe
= —L*(1 £ T™P)e = 0
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This is an algebraic constraint that is satisfied by half the space of spinors at any given point. This makes
the solution half-BPS, so long as the profile of € can be chosen so that the gravitino vanishes.

The 7, variation longitudinal to the solution is trivial. The transverse variation is
1 ik 1 jk
((% + Zwijkl“ )Ei + ZHijkI‘ Pe

Crucially, though, T'7* is the generator of rotations. By rotational symmetry we thus reduce this to d;e = 0,
implying that €(r) = €g is a constant spinor.

It is also worth noting that transverse to the NS5 brane is precisely the extremal BH solution in 5D, which
preserves half SUSY by the same arguments as before. Parallel to it is flat space (which preserves all SUSY).
The product spacetime therefore preserves half.

We have the same equations as when we were solving the for the NS5 brane. This time, the de™2® x dB
constraint is nontrivial, and we must have a field strength. Because the field is electrically charged under
the field, I expect

B~ H(r)

For H =1+ f—fﬁ the relevant harmonic form in transverse space. I don’t have much justification for this other
than the fact that - in every problem I've seen this seems to hold true. Now let’s take the ansatz that the
metric and dilaton look like

ds? = H*(—dt* + dz?) + HPd, 2?, e® = H”
Then /—g = H*** and we get
e ?®%xdB = H_a+3ﬂ_27_2r7H'(r)
We want de 2% x dB = 0 so we must have
—a+38—-2y—2=0
The simplest guess would be o = —1, = —1/2. This turns out to work. First look at the dilaton EOM:

In21s8;= xx = {t, x1, r, 61, 62, 63, 64, 65, 66, 67};
g={{-H[r1", 0, 0, 0,0, 0,0,0,0,0}, {0, H[r]"*, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1,0, 0, 0, 0, 0, 0, 0},
{e, 0, 0, r*, 0,0, 0,0, 0, 0}, {0, 0, 0, 0, r’sin[e1]?, o, o, 0, 0, 0}, {o, 0, 0, 0, 0, r’sin[e1]’ sin[e2]?, 0, 0, 0, 0},
{e, 0, 0, 0, 0, 0, r*sin[e1]? sin[e2]? Sin[e3]?, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, r’Sin[e1]® Sin[62]? Sin[63]* Sin[e4]?, @, 0},
{e, 0, 0, 0, 0, 0, 0, 0, r’ sin[e11? Sin[62]” Sin[63]” Sin[e4]% Sin[65]1?, 6},
{0, 0,0,0,0,0,0,0,0, r’?Sin[e1]?Sin[62]1? Sin[63]” Sin[e4]1? Sin[e5]” Sin[e6]1?}};
T = ChristoffelSymbol[g, xx]};
R = RicciScalar[g, xx]
126 L2
EXTONSE

Out[2161]= —

1
In21291= E[r_] = _E Log[H[r] ]
dz2 = D[&[r], r1% // Fullsimplify;
1
d28 = ————— D[H[r]* r" D[&[r], r], r] // FullSimplify;
Hir]™tr?
H'[r]

dB = -
H[r]?

// FullSimplify;

1
R- (4 dz2-4d23+ 5 ginv[1, 1] ginv[2, 2] de] // FullSimplify

out[2133]= @

Next, look at the metric’s EOM
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in2148)= (RicciTensor[g, xx] +
2Table[D[D[&[r], xx[i11], xx[jl1] - Sum[T[k, i, jID[&[r], xx[kl], {k, 1, 10}], {i, 1, 10}, {j, 1, 1@}]) // FullSimplify //

MatrixForm
12 4
8L _1ginv[2, 2] ginv[3, 3] dB2 ] ] ©o00000080
(,_6”6)3 2
12 4
0 -8 _ Lginv[l, 17 ginv[3, 3] dB? o 000600060
(Ls,rs)J 2
12
0 0 —1 - Yginv[l, 1] ginv[2, 2]dB> © 6 6 0 0 © ©
rz(,_s‘rs)z 2
In[2153]:= I} 0 ¢} © 06000006
] ] ] ©0 00000
] ] ] 0000000
] ] ] 0000000
] ] ] 0000000
] ] ] 0000000
] ] ] @0 00000
Fullsimplify
ours3= {{0, @, 0, 06, ©, 0, 0, ©, @, 0}, {0, 0, 0,0,0,0,0,0, 0,0}, (6,0,0,0,0,0,0,0,0,0},

0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0
(o, o, 0, 0, 0, 0,0, 0,0, 0}, {6, 0,0,0,0,0,0,0,0, 6}, {6,0,0,0,0,0,0,0,0,0},
e, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 6, 0, 0, 0, 0, @, O, 0}, {0, 06, , 0, 0, 0, @, @, 0, 6}, {0,0,0,0,0,0,0,0,0,0}}

» Yy

Perhaps the easier thing to do was look for a BPS solution. In either case we are done. My (reasonable)
guess for the non-extremal version of this would be to keep the dilaton and NS field the same and modify
the metric to be

2
H(r) (= f(r)dt* + da?) + ar r?dQ3
f(r)
where f(r) =1— :—(2 I have not checked this, but it seems right based on experience at this point. s

Let’s start with IIB. The untwisted sector will contain closed string states that are invariant under the
Z4(—1)FL combination. The twisted sector will localize to the 5-plane left invariant by the inversion. Let’s
say that this is labeled by xg...x5 and xg...xz9 are the coordinates reflected under the orbifold. The
supersymmetries Qy, = Q, Qr = Q both transform in the 8, representation. On the 5-plane, this decomposes
under SO(4) x SO(4) as

8 — [2H X 2L]+ [i” X QL]

Here 7, acts with — on the 2 ® 2 vector representation of SO(4) 1, leaving the 2® 2 SO(4) alone. We take
7, to flip the sign of only the 2, spinor. (—1)¥Z acts with a — sign on only Q. Together, this leaves

QEQHXQJ_, QE?”X?L

invariant. These preserved generators give (1,1)g supersymmetry. The exact same argument would give that
the ITA twisted sector has (2,0)g SUSY. These rigid supersymmetries have a unique massless representation,
namely the vector and tensor multiplets respectively, so this is what we would expect to get.

Let’s check this explicitly for the twisted sector of the IIB orbifold. The parallel o do not get twisted
boundary conditions, but the transverse a’ get acted on by a — from the Z, so will get half-integrally
modded. For the fermions, the )" are affected by the (—1)FZ and so will become integrally modded in the
NS sector and half-integrally modded in the R sector. The 9" are additionally affected the Z and so remain
half-integrally modded in the NS sector and integrally modded in the R sector.

In both R and NS sectors, we have the same number of periodic and anti-periodic bosons and fermions, so
the ground state energy vanishes in both sectors. Massless excitations are described purely in terms of the
ground states of the system. The bosonic ground state is unambiguous. In the NS sector there are four 1
transforming in the SO(4) | vector representation while in the R sector there are four ¢ transforming in the
SO(4) vector representation. These lead to ground states transforming as 2 + 2.

The effect of the (—1)F2 is to change the left-moving GSO projection in the twisted sector (c.f. exercise
11.29). Thus in both NS-NS and R-R we get GSO projections:

2= (OF)+ (F)
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For NS-NS this means:
(2r +21)® (20 +21) ~ 21 @21
This transforms in the vector representation of SO(4), and can thus be interpreted as 4 scalars with SO(4)
R-symmetry.
For R-R we get the same:
2 +2f) @ @2f +2f) - 2f @2}
This is a vector with little group SO(4).

So the NS-NS states give 4 scalars and the RR states give the vector. These are consistent with the spectrum
of a single NS5 brane in type IIB, and the same logic holds for ITA. Understand how this connects with
Sen’s articles on non-BPS particles
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Chapter 9: Compactification and Supersymmetry Breaking
In collaboration with Alek Bedroya

1. We compactify the heterotic string along just one dimension, making it a compact circle of radius R with
all 16 Wilson lines turned on.

Each noncompact boson contributes
1

VTomi

The fermions on the supersymmetric side contribute

a4
i (_1)a+b+ab e[b]
a,b=0 774

The (p, p) compact bosons and 16 complex right-moving fermions that can be written as the pair 4! (%), 1! ()
have the action as in E.1 (setting {5 = 1)

1 1 1 _ _ _
- Jd% det gg®°Gpda X0, X7 + - Jd%ea”BaﬁaaXaa,,XB + - Jd%/ —detg > ¢! [V + Y 0X ¢!
7I 7 T
I

Here o, 3 are the toral coordinates for the compact spacetime and Y;! is the Wilson line along torus cycle a.
To evaluate the path integral, as we did in the purely bosonic case, we have a factor of

Vvdet G
5 (i)

coming from evaluating the determinant (det V2)~1/2 of the bosons. This multiplies a sum over instanton
contributions labelled by m®, n® taking values in a (p, p)-signature lattice with classical action

Z e~ F(G+B)ag(m+mn)*(m+7n)’  pors o

me,n®

The fermion contribution depends via the Wilson lines on the configuration of the X“. In each such instanton
sector, the fermion path integral with a constant background Wilson line is equivalent to a free fermion with
twisted boundary conditions. For simplicity, let’s compactify just on S', and denote 87 = Y'n, ¢! = —YIm.
We get boundary conditions:

W0+ 1,09) = —(~1)%e

Y(0,09 + 1) = —(~1)be2m¢"

where a,b = 0,1 denotes anti-periodic/periodic boundary conditions respectively. We know that (in the
absence of Wilson lines) the determinant of ¢ acting on complex fermions is:

a
detmb 0= ﬂ
n

Let us now investigate the twisted boundary conditions. For simplicity its enough to take a = b = 0 (all
antiperiodic). We have two different ways to write the partition function. As a product over modes, we have
Ym, ¥m modes, with respective weights m — % —0,m— % + 0 Check against Polch 16.1.16 and respective
fermion numbers +1 relative to the ground state. The fermion number of the ground state has no canonical
value (as far as I can see). On the other hand, the ground state energy is given by the standard mneumonic
to be —i + %92. This gives:

2

= 0
[T(1+ g 2/240e2mi9) (1 4 gm=1/2-0¢=2mid) — 0Ll + 077)

. 2
Trg [ "] = ¢ ;

m=1
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For other boundary conditions, we can apply the same logic to get

q92/2 0[3](¢ + O7|T)
n

The overall phase is still a mystery. Writing H[Z] [3)] as a new theta function, we can fix the phase by requiring
modular invariance

ollsf e =efills ol e el
6{3}{3}(”” ”“"H[ﬂe}() 9{}][Z]<f+1> ”W)HLMu

Even from the first of these conditions, we see that we need a term going as €? out front. After adding
this in, all other transformations will hold automatically. The 7 — —1/7 transformation will thus hold
automatically. Interpret this as an anomaly? Yes, Narain, Witten do this in Section 3 of their
paper. It seems careful anomaly analysis is not enough and one must indeed impose modular
invariance by hand.

(79)

Altogether then the 16 complex antiholomorphic fermions contribute in each instanton sector:

pmin 3, 0 (@ 4700 L g H@wa

2 a,b=01i=1 n

Giving a total partition function as in the second (unnumbered) equation of Appendix E:

1 16 1 a
R WR [m+nt|? 7z7r2 nY ! (m+n7) YTyl L 1 I — 0\~
L , L3 Fofs]or o e | <ot s
217 ab 0:=1 / a,b=0

From the properties of the theta functions in Equation , the underlined fermionic sum has the exact
same transformation properties as a sum of #'6 terms and thus makes the full partition function modular
invariant.

Each theta function can be written in sum form as:
G[Z] L‘ﬂ _ mibd 92/2 Z q; —§)? p2mi(n—§)(¢+76— Z qé (n+6—%)? 2mig(n+56—§)—mib(n—5)
nez nez

Then we get the following expression for the underlined fermionic term:

1 16
1 Z 2 q%(kJrnYIf%)26727rimYI(k+%nY17%)+7rib(k7%)
2
a,b=0I=1keZ
1
- 1 Z Z q%(qI+nYI—%)26—27rimYI(q1+nYI—%)+m'b(k—%)
2
a,b=0 ¢’eZ16
_ % Z [q%(qI+nYI)2e—2m’mYI(qI+%nYI)(1 + (_1)21‘11) _i_q%(ql-i-nYI—%)Qe—%rimYI( d+1 nYI—f (1 +< )Zl(ql—%))]
qlez16
_ Z q(qI-‘rnYI)ze—QWimYI(qI-&-%nYI)
gleAl6

We note that the second-to last line is indeed the sum over the roots of O(32) augmented with one of the
spinor weight lattices. Altogether the compact dimensions contribute:
R2

R T
Lo 3 [t

meZ,neZ,ql e A16

1
(m 4 n7)(m + n7) + mit(qt + nY1)? = 2rimY ! (k + 2YI)]
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To put this whole thing into Hamiltonian form, we proceed as in the bosonic case and perform a Poisson
summation over m. The terms that contribute are:

.nR2 nRTy

T2

xR?, 2.2 2 _po xR2? o I I
o T TR?To 267 o —2mimY T (¢'+3 InyT)—i

m
2 T ﬂz 1 Iy_; R 142
— e nﬂ'RTg\/ZZ m+Y(q+ nY!)—qg TQ)
2
— —n?rR2m /T2 2 7”2 (m+Y 1 (¢! +4inYT))2 +7rR2%n2+2ﬂi(m+ql+%nYI)nn

e 2nR*r VT2 Z 7”—2 (m+YT(gT+1 nYI)) +27ri(m+q1+%nYI)n7'1

Together with the other terms this gives us

Z q2(q +nYI) —n27R27y —?(m+YI( +%nY’))2+2m'(m+qI+%nYI)m—l

nal?

"717 n7m7qI

_ }17 Z %(qI+nYI)2q%(%(meI(qIJr%nYI)+nR)2q%(%(meI(qI+%nYI)fnR)2
,’7/',] n7m7qI

1 v LT m Lo iyt I T
= —(m—-gY! - —nYly == —2ylyh — ¢y
kr, R(m q 5" ) +nR R+n(R 5 )—q
1 1 1
kRzE(m—quf—§nyfyf)—nR:%—n(R+§YIY1)—qIYI
kL =qf +nY?!

consistent with Polchinski with m <« n,,,n < w", Y/ <« RA! and o/ = 0 (might be off by a factor of
2 for k:II% rel. to Polchinski but I think I’'m consistent with Ginsparg). We only care about the
SO(1,1,7Z) T-duality group coming from the compact 2°. This does not act on the Y/ as far as I can see
CHECK

The SO(16,7Z) on the other hand acts on the Y/ as in the standard vector representation.

. I am going to re-do the computations of appendix F Hatted indices denote the 10D terms. Greek indices
from the start of the alphabet denote compact 10-D-dimensional indices while greek indices from the middle
of the alphabet denote noncompact D-dimensional indices.

The 10D action is ) )
Jdlox\/ —Groe 2[R+ 4(VD)? — EFIQ - ZTrpz] +0(£2)

with Flfy = 8MAZI, — ﬁyflﬁ and fIWP = GHB,,,) — %ZI AﬁFup + 2perms.. Here I is the internal 16-dimensional

index for the heterotic string.
We take the 10-bein (r,a denote D and 10 — D 10-bein indices, hatted indices 7, i should not be confused

for 10-bein indices!!)
(e ALES N C Ry
K 0 E& " 0 Eg

This gives us the metric:

As we’ve done before in chapter 7, we then define

1 A
o= — 1 log det G g, Fi, = 0uAy — A,
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With this, the compactification of R + 4(V¢)? is clear:
1 1
JdD\/ge%[R + 40,00"¢ + Zauaagamaﬂ —~ ZGagﬂf},‘lp;j‘f]

The first and second terms are clear. The third term makes up for the redefinition of ® in terms of ¢ while
the last term is the standard KK mechanism generating a gauge field strength from the compact dimensions.

Next, let’s look H. Because we have no sources for the H field, H is on the compact cycles. We can define
the D-dimensional fields using the 10-bein as:

Hyop = €68 Huap = Hyap (80)
Hyvo = € esel e Hipo = Hyyo — AlHyo5 + A H, o (81)
Hy,p = eZef,eZefes’)eff{ﬂgﬁ = ﬁljj/ﬁ + [—Afjfla,,p + AﬁAff[algp + 2 perms. | (82)

The point of defining these coordinates in terms of the 10-bein coordinate is that now, we can just directly
separate the Hp,H 7P sum into terms without worrying about the metric, and yield directly:

agp 1 3 3
de\/Tge =g Huwp B — 5 Huro H' — = Hyuag

The method is the same for the F' tensor. We define new Wilson lines and field strengths:
I I I AT AT T
Y, =A,, A, = eLeﬁAﬂ =A4,-Y, Afj

I can define F' in the standard FJV = 0,AL — 61,A£, F’}fa = 0,Y!. This gives me F;fu = F,{y + 0, (YIAY) —
0,(YLA2). By redefining

n A

L, =F, +YIF"

we can equate this with F;{u For the compact coordinates its more simple and I take F, o = 6MYO{ . Again

F,3 vanishes since we cannot have internal sources. This yields directly

2

16

18 . . L

Jde Tge_%[_i E FJVFI»IW _ ZF’{"FLW]
T

Its not good enough for us to write everything in terms of an abstract H 3-form. We want to relate H to B
and Y. From our relationship in 10D we can directly write:

1
Hyop = 0uBap + 5 M(vloy) —vio))
I

Taking C5 = Baﬁ — %ZI YCfYﬁ[ we get

Hyop = 0,Cap + Y. Y 0,4
I

Next
1 R R
H;wa = auByoz - ayBua + 5 Z(Azljauyal - A{LaVYaI - YO{F}{V)
1

We define the B field using not just the vielbein but also the gauge connection:

. 1
Bya := Bua + BapAl + 3 MYJAlL,  FZ =d.B,—0,B,
1

Then using we get
B AB Il
H,uua = Falul/ - CaBF;u/ - ZYa F,ul/
1
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Finally, using both vielbein and connection

A 1
Buy = By + 5 [A5 Bua + MALASY] — (v o p)] — ASASBag
I

And this gives us

1
Hyup = 0,Byy — L AZ FJ 4+ 2perms.

ptvp

where L;j is the (10 — D, 26 — D)-invariant metric and we have combined Af, Bay, A into a length 36 — 2D
vector.

Now the full action is:
_ 1 v
JdD\/Ee 2[R + 40,00" ¢ — o o H"

1 1 1~; ~
_ ZGaﬁijaH#yﬁ _ ZGaﬁF[ﬁ,aFAMVB B ZFL/FI’“V

1 Q 1 Q 1~ nl e}
— HuepH" Py 10uGapd"G p_ §FJQFI’“ ]
Using our expressions for H,,,q and F W, the middle line can be combined into
L (G ctg-'c+vrty -cfg=t otGlyT+vy”T ‘ .
-1 ~G~'C G -G y? Fy FHI
YGTIC+Y -YG'  1+va T

j
here F' = (FA® FB, F!). Call the matrix M~' and notice that LML = M~!, and indeed we get M
transforms in the adjoint of SO(26 — D, 10 — D).
Similar arguments would give that the last line becomes %Tr&uM o*M~1 (Too much algebra).

From this, its immediate that any SO(10 — D, 26 — D) transformation on the scalar matrix (adjoint rep) and
array of vector bosons (vector rep) will preserve both of these last two terms. It will also preserve H since
it depends on the invariant B,, and SO-invariant combination LUALF,Z,).

. The action for ITA in the string frame is

1 . IPU 1 1 1
4104 \/> —2<1> & il U & 7107 N F2l+ — JB dCs A dC
2'%10 v ) 127K ] 42 2.4 4 * 42 2 80 °

Doing the same reduction as before, the R + 4(V®)2 — L H? term becomes:

v 1 1 1
Jd‘*,/ ge % [R + 40,00" ¢ — FA CRAY 4 a Gopd"GP — g Huwp H' — ZHW[;H"W — ZGO‘Blean“/a]

«

1

. 1
= Jd‘&ﬁ—ge—% [R + 40,00t p — Elewp - ZM;F*Z”FM + gTr[éuMé“M_l]]

Here we used H as in the last problem and the matrix M consisting of the 21 G,z and 15 B,g. The F' i are
the field strengths of the 6 + 6 U(1) vectors coming from G and B compactification.

Hyup = 0By L ALpr + 2 perms. M= (

G+ BTGB —-BTfGg!
—G 'BG! G

The H,,, can be dualized to provide a sizteenth scalar coming from the B field. By analogy to 9.1.13, in
the string frame I would expect to write:

e > Hyup = EupoeVa
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The By, equations V# (e72°H uwvp) are now automatically satisfied. The axion EOMs come from the Bianchi
identity:

y 1 o o o
BP0, Hypy = —3 LM Fjy Ff, = —LigFl P, Fl, = CEME,

Here we have defined the dual 2-form as required. This can now be recast as the equation of motion for the
axion (contracting the E's gives a 4):

1 .
VH(e*V ,a) = — L P
With this, we can dualize the action in terms of the axion to yield:

B 1 1 oL 1. | 3
Jd‘%/—ge 2¢ [R + 40, 60" ¢ — 5e4¢’(aa)2 + Ze%’aL”F;yFﬂ oo ZMilewa‘“’J + ST, M oM 1]]
We could also do this in the Einstein frame and get ezactly the same action as in 9.1.15 with the M matrix
as we have it (no sum over heterotic internals).

The only thing left is the RR fields. We follow Kiritis’ treatment of the 4-form field strength. We use the
10-bein to get:

Capy = Capy

Cuap = Cuap — CGBWAZ

Cuva = Cva + CuapAl — Coap Al + Copy AL A

Cuvp = Cuvp — (ASCy pa + ASAJCo, + 2perms.) — Cop, AT AL AY
Let’s now define the field strengths. Now we must have Fi, 5,5 = 0 since the internal dimensions do not
contain sources for the field. What remains is

Fluapy = 0uCapy

Fuvas = 0uCuas — 0vChap + Capy Fll,

Fuvpa = 0uCupa + CMQBFfp + 2 perms.

Fuvpe = (0uCapy + 3perms.) + (CopaFys,, + 5 perms.)

Then this gives the contribution (here all two-lower one-upper index Fy, are taken to mean FA).

4 1 o
Sk = —517 | VIV G Frapr P77 + 4Fyupa PP + 6Fia PP 4+ AF 5, F1P7]

It is important to realize that in 4-D the 4-form field strength coming from the 3-form has no dynamical
degrees of freedom. It plays the role of a cosmological constant Check w/ Alek.

The two-spacetime-index term can be directly dualized. It corresponds to 6 x 5/3 = 15 vectors. The three-
spacetime-index term can be dualized to become the kinetic term for 6 scalar axions a, with no interaction
term.

The F),,3, correspond to kinetic terms of the 6 x 5 x 4/3! = 20 scalars CS@?V'

Let’s do a similar thing for the 2-form field strength. There, we get C, = C’a, C, = éu — Co Ay, The
corresponding field strength is F,,3 = 0,F,, = 0,Cy and F,, = 0,C, — 0,Cy, + CaFlf‘V. We then get
contribution

1
Sp = 4 [t G P+ 20

Again F),, can be written in terms of dual fields F, ,5,2,) =E,,F (2)ro This is one gauge fields and six further

scalars.

Return and think about the effect of the CS terms. I bet they make the RR field equations
non-free.
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4. First note that using the OPE

B 517
2 ()2 (w) = oot (z — w)* 7" (w)
the (JHX/%7) correlator can be evaluated as
1/4
_ z

(T (1) 87 (22)27 (23)) = (87 = 1) 22—

212213
51‘]7%)

Taking z; — 29 we see a singularity going as 22_33/ % Meanwhile taking the JX OPE gives

212

(D 0o

- 23
212 212

So we see that under J/ the charge of ¥/ is 3/4 if I = J and —1/4 otherwise. We have 4 J/| and notice
that the total charge under all four of each 3! is always zero. Consider the following combination of charges,
which provides a basis for the ¥/ charge space

Gl gl g2 g33 g4

j2 _ Jll —J22+J33—J44

J3— gut_ g2 g33, qu

Under each of J? we have the following charges

Zl - (%7 %7 %)7 22 - (%7_%7_%)7 23 - (_%a %7 _%)7 24 - (_%7_%7 %)
B chobob PoChiD PoGobd FoGidod

These are exactly all combinations, and we can define the three bosonic fields ¢; with 7' =}, %(6@-)2 S0
that

SU=expi(3o1 + 52+ 363)], S* =exp[i(3¢1 — 362 — 303)], etc.
Each of these ¥/, %/ has dimension 3/8 as required.

Let’s look at the supercurrent G. It can be written in terms of an eigenbasis of the commuting J*. In

particular look at J*.
Gt — Z eladrp(q)
q

Now consider the OPEs G™ . 21 and G - 1. As observed in the chapter, both of these have only the
singular term going as (z~— fuN))*l/ 2. Together both of these require that ¢ in G can only be +1. We can
repeat this argument for J2, J? to see that G must be a sum of 6 terms:

el 7y + e—iq1¢1 Zl + eiq2¢222 + e—iq2¢2 22 + eiq3¢3Z3 + e—iq3¢3 23

Each Z;, Z; must be dimension one operators, so they are themselves bosonic fields z'an. We thus have
that G = Z;ﬂ:l’ + w;—réX_i. This is exactly the supercurrent for six free boson-fermion systems and will
give (under anticommutator) the stress tensor of a six free boson-fermion systems. This is exactly a toroidal
CFT.

5. The relevant partition function is not difficult to compute, as we can follow 9.4’s example but not do the
twist on the internal (0,16) part. Firstly the fermions on the left-moving (SUSY) side have orbifold blocks
under the shifts as before:

2

L% s B

Z, [
a,b=0 n
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Similarly we’ve already constructed the bosonic blocks before. They are given by 4.12.10 as:
Z4,4[ ] = Z4,4[ ] =2
0] n°n g S (b

Then the (2,2) part is untouched, yielding 522—7722 as is the (0,16) part. We get the partition function

h +h]g[a—h 151 pgra 8)2
ghet _ F22i22 % } le Z4742[92] » 1 le (_1)a+b+ab 02 [Z]e[(ll)—&-f]H[Z—g] % <2 2&1’21060[1)]
Nt 2,y Tt 2 42 n 7
1 D D 4
2 3

Let’s see how each term transforms under 7 — —1/7. 1 stays invariant. 2 have Zaa [Z] — Z44 [Z] with 7'2772772
invariant. 3 is the only nontrivial one. We will do it explicitly in the next step. 4 will remain invariant.

Under 7 — 7 4+ 1, we must be careful, as 0[1] picks up an €™/* while 9[61] picks up e 3/4, The other two
nonzero theta functions simply do 0[ ] — G[a b 1]

1, 2, remain invariant, with 2 making us change variables ¢’,h’ = g,h + g — 1. The n functions in the
denominators of 3 and 4 leave over an 1/77'? which contributes a — sign.

Let’s look at 3. First when h = 0,g = 0 we have (—1)*"**®¢4[?] and 7 + 7 + 1 will send this to — itself as
required to cancel the 712 — sign.

The other terms looks like (after canceling 0[1])

7074 B 4 04 7174
h=0,h=0:90 -0 0} —0[1} -0 =0

1 B A R B R A EH R A
e BB R« R R e R R R R PR
e e R A R AR R HR AR BRI

0 1) =171 1 2 O
Lot [0, 0| } 0
Ok, so in fact this partition function is zero. This should not be surprising, since naively we are just
breaking supersymmetry in half, and so we should still expect fermions and bosons to run in loops such that
the vacuum energy vanishes. Naively, then we would again say “zero is modular invariant” and be done with
it- but not so fast. There are still phases we can pick up, say from 7 — 7+ 1 that would not be visible given
the vanishing of the partition function, but would nonetheless spoil modular invariance.

1
|
N
1
|
1
|
1
J

>

>

One way around this is to turn on the chemical potential v; in the theta functions to prevent vanishing.
Effectively, then, we ignore the Jacobi identity and don’t just set 6 [ﬂ = 0. Then, let’s look at how each

term transforms under 7 — 7 + 1. Again, the terms not involving 9[}] will cancel independently of v; = 0 or
not, and after simplifying things ,we have

oo i A ] A AT AT oo

(1,0): —20 ?] 0 i] ﬁzwm em —ix(1,1)




So we see (0, 1) (ie the projected part of the untwisted sector) goes to its negative as required. On the other
hand, the twisted sector has (1,0) and (1,1) swap, but with a factor of i instead of —1. This is not good
enough for modular invariance.

Under 7 — —1/7 the sectors appropriately get sent to one another except for the twisted projected sector

. . 2 . . . .
which picks up a factor of —1 from the 9[%] , 80 this too is not modular invariant.

It is worth adding that Polchinski remarks in 16.1 that for abelian orbifolds (of the type T"/H with H and
abelian group), the only obstruction to modular invariance is 7 — 7 + 1

Indeed, we see that this twist violates 16.1.28 of Polchinski, where we hae ro = 0,73 = r4 = 1 and so
S — 300, sk2 # 0 mod 2N when N = 2.

6. Now the partition function is given by

e _ T2 LS Zualg] 1§ a+b+ab92[2]0[‘212]6’[%:§‘] 1 & CRIGLIGS] 5 Sas O5)
ZN 7 X5 2 5 (- 1 x5 2 8 X s
nenc 2, 0727777 3 50 U 2 & 1 1
—— 9= N s —_—
1 D 5
2 3 4

(1,0)

(0,1) :

-0-6 1—2 1-6 0—2 q6 1—2 1-6 1
:60 0[0 +0[0 0[0 +[ 6[1 +0[1 [1

r 96 072 1—6 1~2 16
0| .16 —é[o 0_{ +§[ 4

Things will still remain invariant under 7 — —1/7 for the reasons given above, now applied to both 3 and 4.
The only important subtlety is now in the (1,1) sector the Eg #° [ﬂ will contribute a —1 sign, as necessary
to cancel the twisted projected left-moving fermion sector.

Next, under 7 — 7 + 1, the exact same arguments apply to 3 and 4, namely the untwisted sector of the
left-handed fermions picks up —1 phase as required to cancel with the 7. The twisted sectors look like:

’0’8 ’18 *08 18 04 14 04 14

0 +0 0] +0 1} +0[0] —»0[1} +9[0] +9[O] +9[1] <= (0,0)

o _ _ : 0 ¢ 1 ? 1 ¢ 0 ? 0 ¢ 1
0] 1 [1]° 0]’ [o] 1° 117 [0]°-[o
_06__12 __16_02 _06__12 __16__02 0]’ [1]° 11° [o]? o| -[1 11° o]?

0] : 1] 5 0] : 1] 5 1] g 0} g 1] 0] WH aH He[ﬂ] eH HQM aH HGH 9[0] ix
So we get that the untwisted sector remains the same, while each of the two twisted sector components

change by a factor of ¢. This combines with what we know about the left-moving fermions to make every
combined contribution change with a — phase which exactly cancels the n-functions. The result is modular

)
=)

)
(o]

o

)

invariant.

To verify the spectrum, as remarked in the text when we act by orbifold on the Eg x Eg we break down
[120] @ [128] of O(16). We get: [120] — [3,1,1] @ [1,3,1] @ [1,1,66] @ [2,1,12] @ [1,2,12] and 128 —
[2,1,32] @ [1,2,32] in SU(2) x SU(2) x O(12).

The Zo action takes the spinors of the two SU(2) subgroups to minus themselves, keeping the conjugate
spinors in variant. Projecting by this keeps [3,1,1] & [1,3,1] & [1,1,66],[1,2,32]. This organizes into
[3,1] ®[1,133] @ [2,56] € SU(2) x E;. Here 56 is the fundamental representation and 133 is the adjoint
representation of Fr.

Now let’s organize our coordinates into p = 2,3 indicating the spatial coordinates in lightcone gauge, and
pair the remaining 6 coordinates into Z = %(X% +4iX 2%+ i = {2, 3,4}. Let’s organize the different sector
contributions based on how they transform under the Zo twist:

e Untwisted Sector
— Left-handed side:
% NS - The zero-point energy is —1/2 and we thus have massless states coming from single fermion
excitations.

45
T 7/)51/277/)—1/2

. 67,89
o w—1/2
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* R - The zero-point energy is 0 from equal number of bosons and fermions and our massless
excitation comes from the ground state. Under the rotation e2™(s2¢2=53%3) the ground states
organize as follows:

T L o O e
1 11 1N 1 1 11 111 11
B |§’ 2020 §> 2 57_§7§>|_§’5’57_§>|_§’§7_§’§

Note we only have an even number of + signs in any of the ground states by GSO projection.
These won’t matter for the massless bosonic spectrum.

— Right-handed side
The zero-point energy is —1, so we either have a bosonic excitation:

. ~,LL 475
+: T,ay
~6,7,8,9
a_y

Or a weight 1 excitation from the current algebra:

+: Jatye[3,1,1]@[1,133,1] @ [1,1,128]
—: o) e[2,56,1]

So, the untwisted bosonic massless states must be the Zs-invariant combinations of left (NS) and right
movers. We get

— " 1/2a 10 Guv, B, @.
— Pt 12 \a » - vector boson in the adjoint of SU(2) x F7 x Fg. This combines together with 1" 12
and 1/1

45

1/2a | to produce an extra U(1)%.
1/2 lay U Pt 1/2d1 - complex scalar transforming in the adjoint of U(1)* x SU(2) x E; x Fg
— 1/16 I/SQQ ~§I’8’9 - 16 neutral real scalars.

6,7,8,9
- Y2 1/2

Here Kiritsis does not mention the presence of the dilaton with the other 16 real scalars. I assume this
is an accidental omission.

a~) 4 real scalars transforming in the [2, 56, 1] representation of SU(2) x E7 x Eg

e Twisted Sector

For the transformation g, we have 4 points on each 72 that are equivalence classes with the transformed
point gx. This means that we have 4 x 4 equivalence classes that we must include in the spectrum for
the twisted sector. This will be the same as looking at the spectrum for 1 class of twist and taking it
16-fold.

Equivalently, because fixed points correspond to the equivalence classes in this case, note that our
transformation has fixed points given by (0, ;, 72, 5+ %3) x(0, %, T3, 5 + %) on the respective T?s. The
products give 16 fixed points. So we will have 16 copies of the spectrum at the fixed point (0,0) on our

T* Appreciate this. Are you sure its not 327

— Left side The bosonic oscillators will be shifted by 1/2
The fermionic oscillators will also be shifted by 1/2.
* NS - The zero-point energy is now —% + i = 0 and so we get only one ground state - the

vacuum.

* R - The zero-point energy remains zero. The zero modes that give the vacuum are now obtained
from %345, We thus get 2 ground states after GSO projection, which will end up giving us
the two requisite gravitinos

— Right side:
This is the hardest part. We use complex fermion language for the current algebra. We separate it
into two parts AT:1+8 A\£9-16 We get massless states from the (R, NS) and (NS, NS) states.
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* (NS,NS) Here the ground state energy is —1/2. We thus get the following states contributing:

6,7,8,9 Ai3m8

Q12 0 AZ1)2

The first one will get GSO projected out (as will anything with an even number of fermions).
The second one will transform as the [12] of SO(12). In line with this, we can also construct

three other copies of [12] (or [12]):

+3..8y+1y+2
A1 Ao Ao

ISNT THIS 57
The other state we can build that does not get GSO projected out is:

6,7,8,9 y +,1,2
aZy9 Ao
This gives 4 x 2 copies of the [2] of SU(2).
x (R, NS) Here the ground state energy is 0. We have zero modes coming from the 12 fermions

AE3-8 giving 26 ground states giving the 32 and 32 spinors of SO(12), one of which will get
projected out by GSO.

g alone will get GSO projected out, so does not contribute to the spectrum.
Together the two copies of [32] 4+ [12] + [12] of SO(12) combine together to form the two copies of
the [56] of E7 and we get 8 copies of the 2 of SU(2).
Altogether our gauge multiplets lie in 2 x [1,56, 1] and 8 x [2,1,1].
Thus we get the twisted bosonic states coming from [0)y ¢ |a) giving us 32 scalars in the [1,56,1] and
128 scalars in the [2,1,1].
The zero-point energy calculations are here:

1 1 1 1y2
in27e]= bosel = — (—— - (e——) ]/ 6-0;
2 \24 2 2
1 1 1 1,42 1
bosez:—(—-—(e——] ]/ 6 —3
2124 2 2 2
1 1 1 1)2 1
ferm11=-—(—-—(e——] ]/ 0> —3
24 2 2
. 1.1 1 1,2
ferm12=——(—-—(e——] ]/.e-»e;
2 \24 2 2

4 bosel + 4bose2 + 4 fermil + 4 fermi2

out280= @

(*NS, NS«%)4 bosel + 4bose2 + 4 fermi2 + 12 fermil + 16 fermil
(*R, NS%) 4 bosel + 4bose2 +4 fermil + 12 fermi2 + 16 fermil
(«*NS Rx)4 bosel + 4bose2 + 4 fermi2 + 12 fermil + 16 fermi2
(xR R%) 4bosel + 4bose2 + 4 fermil + 12 fermi2 + 16 fermi2

1
out272}= — —
2

out[273]= O
1
Out[274]= —
2
out[275]= 1

7. Under 7 — 7+ 1 its quick to see that compactifying on any (d, d + 16) Lorentzian lattice and orbifolding by
a Zy, shift symmetry of ¢/N will give a transformation

T—o>T+1: ZN[h} - 647“/36”1@2262ZN[ : ]
g h+g

where the first exponential factor comes from the 776 and the second factor comes from shifting p% — p%%
which is otherwise even by eh/N which gives ]}\%(e% — %) = h?¢*/N>.
The 7 — —1/7 phase

h mihge?
T — —1/7: 2N [h] e TR N [—gh]
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can similarly be proven from straightforward Poisson resummation.
This problem specializes to N = 2.

For €2/2 = 1 mod 4 the twisted sector picks up a phase under 7 — 7 + 1 and one can see that this phase is
+1, just as in the last problem. This is what was necessary to combine with the left-moving fermions to give
a modular invariance. Note this happens only when €?/2 = 1 mod 4.

Under 7 — —1/7 the twisted sector’s projected part picks up a factor of —1, exactly what we need to cancel
the —1 on the left-moving side.

. The partition function for our general heterotic AV = 2 compactification takes the form:

1 DoasfplTaalgl 1 & O[51005051005 )

-3 3 ltal 5, Dalle

8524
h,g=0 217 a,b=0 N

We seek to compute 79 By where By = Tr[(—1)?*A2] over our string’s Hilbert space. To do this, consider the
following helicity generating partition function:

_ Ty 2mivAp—2niv 1o DaasplPaaly] 1 & O10)elslel5 100, ]
Z(v,v) = TT[C]LOQLO€2 Ap—2 /\R] = 2h2 Wf(”)f(”)g Z o I ! (83)
,9=0 a,b=0
Here " )
_ (1—4q™) _ sin7v 0y (v)
f(y) - E (1 _ qnGQﬂinu)(l _ qn€—27rim/) - T O (l/)

plays the role of exchanging the traces over the bosons in the non-compact spatial (3,4) directions with traces
that involve the helicity.

I apply formula D.21 in Kiritsis to simplify the theta functions to:
1 & @100 100 ] *LIGL] B3 o
2 2 ; - - (54)

a,b=0 N

This vanishes at least as fast as 2

We must now take this and apply

(%ﬂay - 2%25)23@, 5.

Because our generating function vanishes as 2 thanks to , we only need to look at 02,

To obtain a nonzero result we thus need to act with 02. On these terms for each h,g. First note that for
h=g=0 vanishes as v* so will not contribute. For (h, g) # (0,0), the terms vanish as v? due to the
62 [ﬂ, exactly cancellable by taking two derivatives on that term. Thus, we need only worry about the zeroth

order behavior of everything else: £ ~ 1 and 0[}:2]9[1”’]@/2) ~ H[i_h]H[Hh](O). We are left with

I+g —g17 1+g
2 Tsqs[" 2.2 _
a 721(21)2; 2 27188—[33 2 1}(:7—2 1-h QE h]g[iih] (‘Mm )*
m h’hg#(o’o) 7—277 77 0 [1_9]0 [1—g] *g g v=0
_ 4nP F2,18[ﬂ N P2,18[(1)] B F2,18[(1)]
2ran®'® | 02[g] Y] 62[g]

Where we have used 6[;] = —0[(1)], as well as 0]],—o = 27> We now use the identity

and recover




9.

10.

11.

12.

The gravitini can only come from the untwisted left-moving R sector (spinor spacetime index) tensored
with an 07%‘1) on the right (vector spacetime index). The zero-point energy of the left-moving R sector
is 0 from equal numbers of bosons and fermions. Because our group acts on the (bosonized) fermions
the same way it acts on the bosons, we get that Z3 gives the three nontrivial elements given by rotations
e2mi(s1¢1—s2¢2) 2mi(s101-83¢2) 2mi(sad1—s362) with ¢o corresponding to the spacetime fermions not appearing.
We see that the only spinors which are invariant under these three transformations take the form

1 111 1 1 1
£33 250 £33 -3, 2)

And we must have an even number of signs by GSO projection, so we in fact get two supersymmetries

~2,3
preserved: & %, %, %,% O] ;, ;, %, , providing the +3/2 states only one gravitino.

As before, the twist acts the same way on the bosons and (left moving) fermions. Already at this level, we
see that the only invariant states |si, sq, s3, s4) must satisfy sy = s3 = s4 so we will have the (GSO projected)
possibilities:

providing again the +3/2 states of a single gravitino.

To avoid anomaly from ground state energy mismatch, we need the condition of Polchinski 16.1.28

4 16
Dt Z 52 = 0 mod 2N

1=2

Here N = 6. Note that our r; = (1,1, —2) already sums to 6, so we must have the same for our s; that
determines the I'ig action.

I am confused why Kiritsis is saying there is only one such action of Z3 on I';g. As long as Y. s? = 0 mod 6
we should get a consistent theory, as shown in Table 16.1 of Polchinski.

The simplest such twist (aside from the trivial one that leaves the Eg x Eg untouched) would be to act on
the first 3 complex fermions of forming the first Fg group in the same way as we act on the complexified
bosons and left-moving fermions, namely by

AEL23 L, o#2miflos B 123 5 g, %,ﬁg _ _%
while the remaining A*#-16 are left untouched. Let’s now get the massless spectrum under Zz = {1, 7,72}

e Untwisted

— Left-moving The bosons are labeled by
o Twisted by r
e Twisted by r?

The Nijenhuis tensor is defined in terms of the almost-complex structure (1, 1) tensor J; as
Ny = JH I} — 0;07) — Jj(@JF = 0.Jf) = JHopdh) — Ji(oudh) = JHVIR) = AV J))

We are able to replace partial derivatives with covariant derivatives and vice versa because the non-tensoriality
can only enter through the Christoffel symbols I', as follows

T (T T5— ;g,ﬂﬂf) — LI~ Chedd) = T Ji =TT Jj = W )+TF =0

So we see because everything is antisymmetrized that the Nijenhuis tensor is indeed a tensor.
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13.

14.

15.

16.
17.

18.

It is easiest to directly construct coordinate patches on CPY. We define N such patches to consist of N
complex coordinates z1 = Z1/Z;...zi—1 = Zi—1/Z;, ziv1 = Ziv1/Ziy- .- 2N = Zn/Z; that are valid for all
parts of CPY where Z; # 0. It is clear that these coordinates cover the whole manifold, since one Z; is
always not equal to zero, so any given point is always in a coordinate patch.

Moreover, the transition functions between different patches U, U’ are simply fractional linear transformations
of the z;, z/, so are holomorphic. This is enough to give a globally defined complex structure (vanishing Ni];)
the the manifold.

We begin with the existence of a Killing spinor

[Vma vn]£ = Rrs,mn7rsg =0
Now, multiplying by +", we get

0 — ,YTL,YTSRTS’mné' — (,.YTLT’S _|_ gTL’/’fyS _ gnS,yT)RTs’mné'
The first term vanishes by the Bianchi identity. The other two terms give:
2Rns’786 =0
Now we can multiply by &, to get
0= Rns£7r785 = RnsJ;
Since the complex structure is invertible, this gives R,s = 0, so indeed our space is Ricci flat.
To verify the masslessness of the graviton, it is enough to look at linearized gravity and confirm that the

perturbations satisfy the massless spin 2 condition.
To

The NSNS fields give a graviton, an antisymmetric tensor, and 81 scalars. From the RR sector we get
another scalar from the axion Co, another 2-index antisymmetric tensor and 22 scalars from C5. Finally the
self-dual 4-form Cjy gives 19 anti-self-dual and 3 self-dual two-index antisymmetric tensors.

The supergravity multiplet contains two left-handed Weyl gravitini. The tensor multiplet contains two Weyl
fermions of opposite chirality from the gravitini.

In order to cancel anomalies, we must be able to apply the Green-Schwartz mechanism

Thus we get Ny = 21. Now IIB has a self-dual 5-form. For each of 20 2-cycles wrapped we get

126



Chapter 10: Loop Corrections to String Effective Couplings

It is not likely that this will be relevant to my research. I will skip it indefinitely for now.
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Chapter 11: Duality Connections and Nonperturbative Effects

1. Taking the expression for a toroidal heterotic compactification from exercise 9.1

Z TrR [m+nT|? *ZTK’Z[ nY ! (m4n7) YTyl L 1 i 11_6[ 0|: ] YI m + Tn)|7') X L 1 i 94 [Z]
mmAlT 7 2
T21m ab 0i=1 / 77 77 72 a,b=0

Using 6 function identitiess as in the second equation in appendix E, we get

1 I
zE? |m-+n7|? 1 irmY Y In—izbnY! 5 —2nY
T R, Y 0
1,17( Ze ™ G;Oe b oy

Now take Y/ =0 for I =1...8and Y/ =1/2 for I = 1...16. Then

; INnI : I . I : I
HemrmY Yin—irbnY"' _ SZNmZI(Y )2—imbY, YT _ 1

1

and we can ignore this term. Similarly because we are taking a product over 16 #, no phases will interfere
with us replacing 0[5] with 0[:7;] for integer w,v. This gives us the desired first step

! a+n 8
Z 9
b +m
Now again because we have enough 9[ that phases do not interfere, we see that we only care about n,m
modulo 2 in the fermion term. We know how to divide the partition function of the compact boson into

parity odd and even blocks by doing the Z? stratification corresponding to the 7R translation orbifold of the
circle. This gives our desired answer:

e ]

P117RY RZQ

a+n]

a,b
with
I11(2R) = 2R ) exp {_ (2n + h)T|2:|
2. As before, take the ansatz
ds® = eQA(r)nwdx“dx” + 2B gyt dzt, Ago = 460 = Gro12 = £C'(r) €

The BPS states in 11D require only the gravitino variation to vanish:

1
| GPQRsrpQRSFMe —

8
2.31.4l [ GMQRSFQRSG

1
Oy = Ope + 4wM FPQ€+ m

‘We have worked out w in 8.43.

Wap = 0, Wpi = (_),uzO 0; A eA*Bda;“, w;s = (9de3;" - ainl‘j

Let’s look first at M = p parallel. Since € is Killing we expect no longitudinal variation and we get

1
0= /+ A/ A— Brm C/(T‘)ec r01 L€ F QC,(T)ECI‘NFT012€

+ 2.3l
_ 7A/ A—BTAT T gC,/GC—B—MFmﬁﬁiie

=0=A€F %C'ecf?’AFOiQe
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If we would like these two terms to be proportional, then we should take C' = 3A, and we get the following
condition for e

(1FI")e=0
So half the dimension of the space of spinors satisfies this at any given point. We thus get

For M = i transverse, we recall I';; generates rotations, so assuming rotational invariance in the transverse
space, we’ll cancel this. We get

1 . 1 1
Ore +W+M$ gGromrm26 =

1
=0, F gGromfoue =0

3!

Solving this gives us that

e(r) = €/,

for €y some constant spinor. We still do not have a relationship between C' and B. This can be obtained by
not assuming rotational invariance but rather imposing cancelation of the second and third terms above as
follows:

1 1 .
f&B e + Q—a-cec IO, ¢

_ ij - C-3A z]012
a BTYe + 5 3,5 Ce r

:>6B—|—3'50—0

where we have used the condition on ¢ already obtained. Thus C' = 34 = —6B. Finally Let’s look at G’s
equation of motion:

3
(144)2

dG =0, —d G+ MNOPRRST 1y opGorsT = 0

By assumption, the term quadratic in G vanishes. What remains gives us:

0= ar(efiAJrSBefGAfQBCl(r)eC) _ ar(673A+GB+CC/) _ ar(clefC) = 63670 =0

So we have that e=¢ = H(r) as required, where

L6

I'm happy with this. I could use Mathematica to show that the other EOM:

1 1 1
Ryn — §9MNR = Tyn, KTun = ol <4GMPQRG QR _ 29MNG2>

is satisfied - but this is barely different from what I've done several times before for the D-branes and
fundamental string solutions in chapter 8.

As before, this generalizes straightforwardly to multi-membrane configurations.
*G

The charge of the M2 brane with H =1 + M is given by integrating 5> %, OD @ seven-sphere at infinity.
Here 2k, = (27)8¢]; Asymptotically we will get the field strength going as
32 x 6m2N (Y,
r6
Altogether, using Q7 = %4 this gives a total charge of
732 x 672N, N
3 (2m)86%, - (2m)20%,
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This is exactly consistent with 11.4.10-13, with © = N = 1 corresponding to a single M2 brane.

Calculating the Ricci scalar curvature in fact gives a constant as r — 0 so we do not encounter a divergence.
This signifies that this is just a coordinate singularity and we can extend past.

n120:= R = RicciScalar[g, xx]
6144 1112 NN2 1*

out[120]= — 5 13
(1+ 2R (32 NN r o rT) 2

6

6144 1112 NN? 5*

(1 3—“‘;"”"2) Y (32 LIS NN 2 r 4 72

In[122):= Series[— » {r, 0, 9}]

3 1
out[122]= - < Ve +0([r]
(27()2/3 ('L'L NN) r2
r

Finally, we can take the near-horizon limit and get

rd L? . ,
ds® = ﬁnuydw“d:ﬁ’ + ﬁd:z:’ ~dx’
4 2
T L
= ilwdztdz” + T—zdﬂ + L2902
Take now r = L/+/z to get the first term to look like 1/2? while not affecting the second term much:
1
—5 (uda’'da” + AL2dz*) + L*dO?
We can rescale z, z* and see that this geometry is AdSy x S7
3. The M5 brane is now magnetically charged under C'3. Now the equations of motion d * dC = 0 are trivially
satisfied but the Bianchi identity is nontrivial, giving
L3
GH=0=H=1+—
r
The metric form can be fixed by analyzing the gravitino variation similar to before. Longitudinally:
O _ }AleAfBPﬂf' + 1 C/€C+A74Bré1é2é3é4/l
2 2-3!
- A/G + lclecf3BFfé1é2é39A4e
3!
We see that we must take C' = 3B and A = —(C'/6, and we get the half-BPS condition:
(1- F?ééfoﬂ)e —0
The transverse components will give the profile for e.
1 Cm A A
are + 2 : 3!C/€C 331*\919293947’6

and this gives a profile
_ o—CN2

€ €0

The membrane charge is given by integrating G on a 4-sphere whose area is given by 872/3, so we get

872 3TN3, N

3 (2m8)e),  (2ml11)P0n

Again we get that the Ricci scalar tends to a constant as r — 0, giving regularity at the horizon. Again,
this signifies that this is just a coordinate singularity and we can extend past.
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ini38:= R = RicciScalar[g, xx]
3118 NN2 72

outes UBNNT)2/3 3 4\2
2 1+73) (VB3NN sr+r)
r

inf139):= Series[R, {r, 0, 0}]
3 1
out[139]= — =23 o o[r]
2 2/3 ( llrsNN) 2
Taking the near-horizon limit we arrive at
2

ds? = T, datdz” + L—dmi cdzt = Dy datde? + L—2d7~2 + L2d02

Now take 7 = L/z? yielding

1

5 (uda’'da” + ALPdr?) + L2d03
so again after rescaling the same was as before we get AdS; x S*.

As before, a solution can consist of an arbitrary number of M5 branes at different places, in which case we
get

L;
H(r) =1+ Z -
7
This remains half-BPS.

. First look at the field strengths. The general M5 brane solution For a uniform distribution of M5 charges,
we know that in the transverse (3D) space the potential must now decay as

L 2L
H=1+de“4 =1+ 5
|7 — alléq| 0D

where L depends on the density of the distribution. Then the 3-form field strength in 10D will just be
(dB)abc = 6abceaeI_I

Given this source in 10D, we have already worked out Einstein’s equations in Chapter 8. Another way to
see this is that we remain half-BPS after adding even an infinite number of parallel branes.

We have that e4®/3 = G11,11 so that e® = H/2 consistent with the NS5 solution.

Using the perscription of dimensional reduction in appendix 1.2, we take ¢? = ¢2®/3 = H1/3. Using Juv =
e“’gfy, we see that multiplying by H'/3 takes us to the string frame NS5 metric solution.

ds* = nydatdz” + H(r)dz' - da*
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This is exactly the NS5 metric in string frame.

®/2

We can further take gﬁy =e gfy and multiply the string frame by e~®/2 = H=1/4 to get us to the Einstein

frame.

5. Recall the BPS D6 brane in 10D is described by

L
H Y2y, datda” + HY?dZ - di, H=1+ —,L=gsN/2, F=LdY, ®=g2H3%"

]

This means that e~2®/3 = H'/2. Multiplying ds? by this factor, we the 10D part of 11D metric

string
Napdy?dy® + VdZ - dE

Here we've picked notation consistent with the problem so that v%6 = 296 H(r) = V(r), and 2’ is the
same.
Note also that ) 4
T
— | F= T = 2L =
2%y Jou = i~ e

This should be supplemented by the metric component in the internal 11th dimension, given by e*®/ 3(dy +
Ay - dB)? =V (dy + A, - d)? where A, is the 10D gauge field generated by the monopole solution.

Now A cannot be globally defined because of the monopole. Given L = 2N, it takes the same form as A,
does in 3D about a monopole of charge n = N /{;.

We could have taken a more “active” approach, demonstrating that this metric ansatz does indeed solve
FEinstein’s equations, and shown that for the field strength to satisfy the Bianchi identity in this geometry it
needed to indeed be a harmonic function of the transverse coordinates taken with flat metric.

6. The DBI action for a two-brane in flat space with vanishing B-field and constant dilaton is given in euclidean
signature as

~T J dxr/det(6gp + 0, XHORXY + 2102 F ) + iJC(3) A Tr[e"] A G,

where the second integral consists of Chern-Simons terms that we will ignore in this argument. We can work
with the field variable F' rather than A by imposing the Bianchi identity “by hand”, namely writing the
(non-CS) part of the action as

—T f Bz {\/det(éab + 0u XHOpXY + 2102 Fyp) + ;)\eabcﬁanC]
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This last term can just as well be integrated by parts to give €?¢0,\Fj...

We now introduce an auxiliary V variable to rewrite the action as

1

1 11
— T Jd‘?’x [QV det(dab + 0 XHOp XY + QWKEFQI,) + §V + 2€abcaa)\Fbc]

1 1 11 iy,
=T fd?’x [2V(1 +-(2r?)FE ) + 57+ 3¢ b 6a)\Fbc]

2
here ... involves terms depending on the d, X*. The equations of motion for F' then give
6abc aa A
Fp=—-t—7rs—
“® = T ere)ev

Substituting this back in gives

0ol

Integrating out V gives us the square root action again, but now with F' replaced by 0\, a new coordinate

—T5 J\de\/det((Sab + 0 XHOp XV + (271'5%)_25,1)\(%)\)

Taking X = \/2m¢2 gives our desired result
I have only shown classical equivalence. How to I prove this is quantum-mechanically true as
well?

7. We are looking at the transformation 7 — —1/7. We see that

-1 —Cp + ie™?®
Cy+ie”® — - =
0 Co + ie~® C2 +e22

So we see Cy — —ﬁ and e~ ® — %. On the other hand, Cy will not affect the Cs, By transfor-
5te Cg+e

mations. Nor will it affect C4, which remains invariant

In the Einstein frame the metric is invariant. That means that e =%/ Qgsmng is invariant, which means gs¢ring
transforms as e~®/2 times the Einstein frame metric. Consequently, in the string frame g;mng = e“pgsmng
(I think Kiritsis is wrong here, and Polchinski agrees with this)

Am I missing anything with that last one?

8. There’s effectively nothing to derive. Translating the Einstein frame means multiplying all lengths by e~®/4.

At fixed dilaton this is 95—1/ 1 Given 2 in the denominator will then contribute a factor /gs overall, that’s
exactly what was done here.

9. We have that Cy is invariant. That means that objects charged under Cy remain charged under Cy4, with the
same charge. These are precisely the D3/anti-D3 branes. Now recall the DBI action has coupling constant

1

2
I
9y m (271’£§)2T3 Tgs

note that this is dimensionless, as it should be for a gauge theory in 4D. At low energies, the closed strings
decouple we can reliably trust the DBI action, considering the D-brane gauge theory on its own. In the
absence of axion, the SL(2,Z) of IIB takes gs — 1/gs. This corresponds to

9 472
9yM — 3
9y m

So this is the Weak-Strong Montonen-Olive duality of N' =4 SYM.
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10.

The only subtlety is that one must take care to include the Chern-Simons terms in the DBI action in order
to get the full duality, specifically

J%ﬂWAﬂ.

At fixed Cp = 0/27 this produces the instanton number. The duality Cy — Cy + 1 is a bona-fide duality of
the N = 4 theory, a consequence of the fact that instanton charge is quantized.

Is there anything else that I can say that constitutes any form of “showing” that this fact is
true? The only thing is I think I’m assuming that the D3 brane is the only object charged
under C5 at leading order in /;,. Can I safely assume this?

I’ll start from the F1 string rather than the D1, not that it matters. Let us look at the macroscopic solution
in the Einstein frame, so we multiply the string frame solution obtained in the chapter 8 exercises by H/4.

We get:
6

L
dsh = H-¥4(—dt* + (d2')?) + HY*dz - d¥, H=1+—
-

2
Here LS = % = 32¢%¢272 Note this is the same metric as the D1 solution, and indeed the metric will

stay the same for all (p, q) strings.
The Cy field has been set to zero. For F1 the dilaton and B-field have the profile

e® =g, H Y2 By =H!

and indeed the dilaton has the inverse of this for the D1 while B and C exchange. Indeed, consider the

SL2(Z) action
a b
A= (00

Here, we have ad — bc = 1, implying ¢, d are relatively prime. This will correspond to the fact that (p,q)
bound states only exist for p, g relatively prime, since otherwise there is a decay process of marginal instability
allowing the (p,q) system to separate into two or more sub-systems. Further S = Cjy 4 ie™® and Cy, B

transform as S
ao + By . Ty-1 By . d —c By
S cS+d (CQ) (A7) (02) B <—b a> <02>

There is a subtlety in the problem, which resolved the ambiguity in our choice of A. I learned of it from
reading arXiv:hep-th/9508143. The subtlety is as follows: We need to fix the dilaton’s asymptotic value as
r — 00 so as to define the vacuum of our string theory. First, consider ¢, Cy = 0 asymptotically, i.e. S — 1.
We then stay within the SO(2) < SLa(R) that fixes S = i. We want to take (1,0) to the string p,q. This is
now uniquely determined:

sl )
p’+q¢*\4 P

Applying this to By, Co given that we start with only NS charge (1,0) gives

(&) - 7 ()

Cy P2+ q% \4

Upon doing this, the By, Cs fluxes will have coefficients that get modified from just p,q by a factor of
L so will no longer be integers satisfying the quantization condition. We can fix this by modifying

VPP +q?’
T — Ty 4 = \/P? + ¢*T. Since this only serves to modify L, which was an arbitrary parameter of the classical
solution, this still remains a valid solution.

Ly.q

- : _ 6 _ 26°Tpg _ /2 22T _ /2 276
This means: Hyq =1+ 5% Ly, = Gart = V& + & 50 = V@ + L7

Our solution is now:

2 3/4 2 1\2 1/4 By Hyy p o iPH;/qZ —q
dsp = H, /% (—dt* + (dz")°) + H )/, dZ - dF ( )_<) S=xo+tie?=—"2—=
P i C2) PP+ \d iqHy +p
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11.

Note that as r — 00,5 — i as we expect. Now, let us generalize this for different asymptotic values of the
dilaton and axion. After applying A, we can further apply

A e—%0/2 X06¢0/2
0 e®0/2

S now asymptotes to
e=?/2j 4 ye?0/?
0 + e?o/2
exactly as we want. To get the right final field strengths, take A initially arbitrary:

(AT)~1 = <cos9 —sin9>

%0

= x0 +te”

sinf cosf

Again, applying this will break our quantization condition. Now, the electric charges transform contragradi-
ently from the fields strengths, which means that

(QB> _ ob0/2 <e¢0 cos 6 + xp sin 9) _ 1 <p>
Qc sin ¢ Ay, \d

We can solve this to get

" e®0/2 o p e®0/2 ( ) i e®0/2 ( 3 )
sinf = ———e ¢ = cosf = p—xo0q) = € = p—S8q
vV AVY AVY Apg

The asymptotic value of the charges of By, Cs is thus given by (p,q)/ A},,/ (12 . Unimodularity gives:

L=e%e = Ay =e”p—qSP =™ (p—qx0)* + e *¢

This coincides with the invariant

-2 |5|2 S P\ _ do(. 2 —¢o 2
(r q) S; <$1 VAV (p—aqx0)” + e %q

So in full generality we get the tension:

Tpq = \/ e (p — qxo)? + e~%0q* Tr
Where Tp1 = ﬁ is the tension in the string frame.

Because (aside from redefining L) the metric is unchanged, the singularity structure of (p,q) strings is no
different from (1,0) or (0, 1) strings. Neither of these has a regular horizon. Confirm

First, by naive reasoning - there is no reason to write the full effective action to see what 8 should look

like. From the perspective of ITA in the string frame, we have coupling g4 = én/& = Ri1712/ls = R11/lsgB.

Recognizing Rp = ¢2/R;1 we can write this as Rﬁfg —. Because the translation of metrics between the 11-D

2/3
frame and the standard string frame in ITA involves the factor gi/ % we get B = ( Rﬁz B) . What about

conversion to the Einstein frame?

6D
A

(h /VI_'_,_
/

B
J
IB
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Now let’s do it the long way. The 11-D SUGRA Lagrangian is

1

Lp-11 =
2%%1

1 N
[R— §’G4|2 + Gy NGy A Cg]

In this problem we’ll ignore the Chern-Simons terms.
Let’s take M-theory to 9 dimensions. The metric takes the form

G _ (9wt CasARAL GasA
" GapAy Gap

Here
e

/1 7
Gag = 772 (Tl |T|2)

with e = v/ det G the Kéhler parameter (area) of the torus. The metric’s R term becomes:

1 1
e | B+ 00,0 + T 0uGapd G — ZGaﬁFlj‘;‘FAWﬁ].
11

Here F, ;3/ = 0,A5 — 0,A"a. We now have two U(1) field strengths. Using the fact that we have the explicit
form of the torus metric, we can further write this as:

(27TR11)2T2 o 1 2 1 (57'1)2 1 (67'2)2 1 e Al A2 1 1 FA’l
E — —_ PR — F b F b
(2m)843, c * 2 (90) 2 73 2 73 2.2l 1y ( ) m |r|?) \F42? (85)

The kinetic 3-form potential yields a four-form, two three-form, and a two-form field strength:

2
‘RllT2 ea[ N LF(‘Q F(4) uvpo LGQBF@) F(3) urp LGO&’BG’Y(SF,U,VO@/F( )MV]

2
(2m)64%, 2. 41" Hpa 23! Hvpox B 2.2 Bé

Again, using the explicit form of the metric we can write this as

R}m I 1 7 (F® 1 e %
e — = - - (F® (3) 1 _ 2 _ _2y(2) p2u
(27r)6£?1€ [ 2‘F4| (F H ) 7.1 |7-]2 H® 9. 9] 722 (I Tl)FWuF 1]

R%17'2 e? 5 1 1 1 T F®) e~
S S ) oY Ry (€O Ry =/ (C ) 1 B )
(277)65%1[ 2 & 2-3my (¥ ) <T1 |7-|2> <H(3)> 2 |72 ]

Here the last 2-form field strength is defined as F,EZ) = F?

prl2:
This action not in any standard frame. Let’s take it to the Einstein frame g11 = e=2/ 7"gE:
b e LW LERE 1T (1) (4
(2m)569, 7 2 13 2 73 2:200m o |r]2) \FA?
6—120'/7 1

—30/7 3) 60/7
2 1 e (3) (3) ]. 1 F . (& 2
2 |7 2.3 7w (F H ) o |r]2) \H® 2 |4l ]

The IIB SUGRA Lagrangian in the string frame is

1

1 1 1 1

29 2 2 2 2 2
— R+ 4(V®)" — Z|Hs|* | — =|F1|* — =|F5|]" — = | F}
2%%0 [e [ ( ) 2| 3| :| 2‘ 1| 2‘ 3| 4.’ 5| :|

supplemented by xF5 = F5. Taking this to 9 dimensions, the NSNS terms become

_ e2r 1 e
72| R +4(Vo)? = (0p) = P = 5| Haf? = | Haf?|

27 Rp
(2m) "8 g%,
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with G110 = e = — %p. The RR forms give

e2r
4-5!

Fp ep[—lFf— L @ 1 p

- 7).
(27)508g%, 2 2.3 4

dualize

Here F5 comes from F3 and Fy from F5. We can dualize the 9D Fj to give the canonical normalization to
the Fy term.

€ €

Rp e’ g € 2 ’ 2 P 2
RSB - R - R ]
| - SIAP = SIBE = S|P - SR

(2m)848g%,

It is important to T-dualize this to get to ITA. This takes ¢ — ¢, p — —p, G — GO and also swaps Ho
and F4. Lastly, we have ¢%/Rp = g%/Ra. We then get

_ e2r 1 e 2P
2| R+ 4(Vo)? = (0p) = FIFA = 5 Haf? = | Haf?]

Lopg= DA
HA™ (am)besg?

e P e P ef e’
R AN P ) 2N PR A N P ) AN
5 17 = 157 = S Bl = o | Fy

Now let’s take this to the Einstein frame gg = e/ gp:

Ra

LE _ eZp—4¢/7 €—8¢/7 6—2,0—4(;5/7
ITA (271')66?9124

[FAP — |Hs|* —
2 2 2

R~ 2(V6) ~ (00" - 155?

e Pt eP+100/7 ) o~ P60/ ) oP+20/7 )
AP - S IRE - S IR - SR

Comparing |71| with |Fy|? since these are the only two scalars that aren’t minimally coupled, we get —p4 +
2¢ = —2log(m2). T-dualizing to get back to IIB gives pp + 2¢ = 2&p = —2log 7o implying that 71 = Cp and

19 = =% in IIB as required.

Comparing the F coefficient gives pa +2¢/7 = 60/7. This gives 0 = %pA + %@B = —%pB + %@B. This gives
A32g=12 L RgQ, close to what is desired. Expressing the relevant quantities in terms of the fundamental
units of their respective frames, this gives our desired relationship

02 A2 1 R}

s

R%  (2mlyy)3gY2 - R% ~ (3¢5

Off by a factor of g'/2

Note that in the ITA action, F4 and F» have coefficients that differ by —pa + 2¢ = 2®p. We should thus
identify them with %/7£®5 of the M theory action. This implies that 90/7 = %,0,4 + 3¢/7, exactly what
we got from the Fj coefficient. The same argument for the F3, H3 terms in both theories gives the same
difference between them, and their average gives the same relationship. Finally, the lone Hy term in ITA
compared to the Fy gives the same dependence as well, giving three nontrivial checks that what we’ve done
is correct.

Finally let’s get the conversion factor. To go from 11D to the string frame we must do e*7?¢%7. We now
understand o = —% pPB + %q) B and ¢ = ® — B2 we get the relationship

2 4 9 0, \?*?
ot b= —Zpp— D =
7070 = —3lps=®p) =7 (RBQS>

as required. The dilaton dependence is flipped, fix!
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12. There is a subtlety in this problem involving the form of the metric. Recall that the Einstein frame metric
gr gets mapped to itself under S-duality gr = gj. This implies that the string frame metric gg = e®2gq is
related to its S-dual by:

-
gs =€ = gg

We can verify this at the level of the solutions to the string equations of motion:
D5: dS2E = H_1/4dx|| + H3/4dl]_, ds?g = H_1/2d$“ + H1/2d$J_, e® = gSH_I/2
NS5 : ds} = H Ydoy + H¥*dz,, ds% = dz+ Hdzy, e =g, H'?

We see that the string frame metric are related in this way except for the issue of rescaling by gs. This means
we should redefine length so that ds% asymptotes to g1, for the NS5 metric why don’t we modify D5
instead?.

First, let’s calculate the energy of the F1 string stretched between two D5 branes. Directly from the Nambu-
Goto action, noting that the parallel X* will be along the 7 direction while the transverse X* will be along
the o direction we can write

1 0r XH*o: X 0r XH05Xi(G i + Bui)
_ 2 _ 2 T TN T oI\ i ue
Sne = ~Tr1 J @&/ det(Gap + Bap) 272 f d 5\/ 0 X*0, Xi(G i + Byi) 0x X10,X;
1 . .
=5 jdadT\/H1/26TX“07Xﬂ\/H1/200X”00X’
™ S
1 (" ~
S X" - XH
o L dold |fd7|a |
mg
This gives the string and Einstein frame mass:
1 " 1 91/4 1

For the D1 stretching the two NS5s, we apply the same logic to the DBI action:

Sppr = —Jd2§TD1\/— det(Gab + Bab) = _27362 Jdge_@(xi)q/agXiaUXiJqu/aTXMaTXM
_ VI (ol x| [ drE XX
= " gnizg ) 10X | ATV O XEG K,

~
mg
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13.

14.

Again we get string and Einstein frame mass:

1

1
2ml2gl/4 Az

mg = Jdaw X =mp=

27T€2
The masses agree under S duality: g — 1/g.

The argument will go very similar to how it did for the string-like objects. Again, call (p,q) = (1,0) the NS5
brane (magnetically charged under By) with (p,q) = (0,1) the D5 brane (magnetically charged under Cs).
Again, first take the axio-dilaton S to asymptote to ¢. The NS5 solution in the Einstein frame is:

L2
ds% = H Yy, detde” + H*dZ -dZ, H=1+ =

Here L? = Q% Q?%. We also have
*=gH'?  (dB)gy = —0-H

This time, the magnetic charges transform in the same way as the field strengths (since they are associated
with the Bianchi identity, not the EOMs), giving

@B\ _ e®/2 cos 1 D
Qc)  \xoe®/2cosf + e ?/2y(sin 6 _'1/Ap7q q

Solving this gives

€7¢0/2 e¢0/2 0 €¢0/2 _
cosf = p=sinf = (@ +pxo) =€ =1 (¢ + Sp)
v Apyg Apg Apg

Unimodularity gives

Dpg = e®lq+pS[* = e®(q + pxo)? +e %’

We thus get that the 5-brane tension in the Einstein frame satisfies a similar relation to the case of 1-branes:

Tpq = \/€_¢0P2 +e?(q+pxo)? T
with T' = W the appropriate dimensionful constant.
For the general (p, ¢)-brane solution, we get Ly, = 1/ApqL = /Ap g4 72

We're going to work in the Einstein frame. After compactifying on T? we will get scalars not just from the
¢ and Cp term but also from Cs, Bo, and the 3 metric components G 3.

The torus moduli in i&qu&“GaB will take the same form as in Equation , namely

2 2 2 2
OTF Lo guparcn = L@ 1@ 1D

27'22 27’22 2 T2

Here T' = \/det G, is the Kahler modulus and does not belong to the SL(2,R)/U(1) coset. We have that

the axio-dilaton is —% k;‘sf. The scalars coming from B, Cy give kinetic terms:
2
1G1G22 _ (GIZ)Q ) 18, ((} 012)
2 S ($20uB12)" = =53 (uBr2)’s =5 TS,

Altogether the scalars have appear as:

8 1 (571) C1(orf) 1(aT)* 1|aSPP 1S, _ 1(0uCh2 + CoH3)?
fd‘“ T[R 2 a2 e as o Ba)’ — 3 TS, ]
SL(2,R)/U(1) SL(3,R)/SO(3,R)
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1(7)? 2 (07)?
2 T2 T T3 T2

It remains to find the metric for SL(3,R)/SO(3). Because SO(3) is maximally compact, we can write the
metric on this space in a set of global coordinates known as Borel gauge. This is given by taking the Einbein
on T? symmetric space to be the exponentiation of the SL(3, Z) Borel sub-algebra: L = exp[x'F;] exp[¢'H;].
From this, the 7% metric is M = LLT, and the kinetic terms are then Tr[d, M "M ~1]. By choosing the y;
and ¢; judiciously we see

Taking things to the new Einstein frame will get rid of the T" out front, and modify

Ex tir] _ 2[r] ) o

1 -co[r] F3[r] p[=H -]

In@ee;= L =10 1 H3[r] |. 0 Exp[t[;] +az[zr]] ) ;
] ] 1 ) ) Exp[—“;r]]

M =L.Transpose[L] // FullSimplify;
M // MatrixForm

1
4— Tr[D[M, r].D[Inverse[M], r]] // Expand

Out[368)//MatrixForm=

_4t[r] 4t(r] 4t(r]

e 3 (e2tlr-elrl 4 @2trl=2lrl co[r]2 + F3([r]?) e 3 (-etIr1*®lrico(r] +F3[r] ~H3(r]) e 3 F3[r]
_4xt(r) _4t(r) _4xt(r)
e 3 (-e?tlrlv®lrlco(r] +F3([r] «H3[r]) e 3 (e2tlr*2lrl L H3[r]2) e 3 H3[r]
_4t(r) _4t(r) _4t(r)
e 3 F3[r] e 3 H3[r] e 3

1 1 1 1 2 1
Outjass]= -5 e22r) co'[r]? - Ee—zt[rhé[r] F3'[r]% - e 2tr1*2lr) co[r] F3'[r] H3'[r] - Ee—zt[r]—é[r] H3' [r]2 - = e 2tIrIvelr] co 2 H3'[r)2 - gt'[r]z B Eér[r]z

15.

16.

here et = T, e® = Sy 1Tt is worth stressing that this ezactly recovers our kinetic terms. Everything matches
perfectly.

The the field strengths coming from the two-forms yield the following terms in the Einstein frame Lagrangian

1|F3+ CoHs)? 1 1|Fye5/?
stx\/_—gTa/s[_ 2|33203| ISl - ,@]

2 T2
The two-form field strengths F3, Hs are unaffected by dualities of the torus. Fy can be dualized to an Fj3
as well, and we also get a further F3. 5 by wrapping the D3 around the torus, which will combine with the
F32H5 to give a single (canonically normalized) field strength invariant under symmetries of the torus. Thus,
the F3, F5. 5, Hs are invariant under the SL(2,Z) part of the U-duality group involving 71, 7.

We can indeed write these terms in a manifestly SL(3, R)-invariant form, namely as
Hs

—=(Hs F3 Fj_s)M| Fj
Fy s

N —

Here though, we should take care that it is really F3. 5 + B1oF3 + C12H3 that forms the kinetic term of the
action. Understand this, as well as the CyH3 in the Einstein frame generally.

masel= ({{H3, F3, F5}}.M.{{H3}, {F3}, {F5}})[1, 1] // FullSimplify

4t(r]

ouasgl- @ 3 (e? M2 H32 4 @2 FINI7RINT (F3_H3 CO(r])? + (F5+H3FO[r] + F3HO[r])?)

The metric will contribute 6 scalars while the 3-form C3 will contribute a seventh. We understand how to
generally build 7° metrics from the last problem. Indeed, L there is the einbein not on the symmetric space
itself but on the torus T3. Given a Borel subgroup of SL(3,R), the einbein for the unit torus is specified by
three twist “axion” parameters x1, X2, x3 and two dilaton parameters ¢1, ¢o as:

1 x1 X2 e®1/3—¢2/2 0 0
L = exp[x'Ei]exp[¢'H;] = [0 1 x3 0 eb1/3+2/2 0
00 1 0 0 o—62/2

140



17.

18.

19.

We see directly that the parameters of this three-torus coincide exactly with the scalars Cy, Ci2, B2, T, ® in
IIB compactified on T2 from the prior problem.

The 3-torus volume parameter, which we will call 7' (not to be confused with 7') in the prior problem,
together will have kinetic terms

(@772 107 1 rcoﬁgw

8 1 (9T) 1]Cos|?
jd vV—gT[R + T2 3 12 3

strT T2 2 T2 ]

Taking this to the Einstein frame:

1(oT 11(Cpl?
stf[ (T2) 2Izgzl

]

This is exactly the SL(2,Z)-invariant action, which came from the perturbative T-duality in the earlier
problem. We see they are neutral under SL(3,7Z), while the other 5 belonging to the SL(3,R)/SO(3) coset
are neutral under this SL(2,Z). This re-derives the results for scalars of Section 11.6.

From the M-theory perspective, the three distinct 2-form potentials come from wrapping the C3 around
different T° cycles from 11D.

From M-theory, the 3-form C®) descends directly down to a 3-form in the 8D picture. This has a field
strength G4 with kinetic term

fd%\/g:r [—;|G4|2}

which is the same in both the original and the Einstein frames. We could have started with *G4 in 11D,
giving the 8D action:

Jde\/ﬁTl [—;|G4|2]

The Chern-Simons term further contributes a further topological piece:
Jdgx\/ﬁCoT Gy A Gy

Summing these all together gives the standard SL(2,R) invariant bilinear form. Thus, SL(2,R) acts by
electric magnetic duality, transforming the tuple (G, *G) in the 2 representation.

Slightly incomplete, understand the origin of the action better. Look at 9506011

Taking IIB down to 5D and looking at conserved vectors (coupling to point-like objects). First, note we can
wind any of the (p,q) strings around any of the 5 cycles of T°, giving 10 vector currents. We also get 5
KK currents from the dimensional reduction that are T-dual to the string modes and together forms a 10 of
SO(5,5). We also have the D3 brane winding around any (g) = 10 cycles. Finally, the D5-brane and NS5
can wrap the torus giving an additional 2 charges. The NS5 is a singlet of SO(5,5). The D-branes are all
T-dual and give a 16-dimensional representation, which is either the spinor or conjugate spinor depending
on whether we start from ITA or IIB.

Altogether we get 14+10+416. This is exactly the 27 representation of Fg under U-duality. This gives a
total of 27 point-like charges, which are the 27 different electric charges than can be carried by black holes
in 5D.

Note that rescaling the string length by €7 will correspond rescaling the metric by e=27. So relationships
between the string lengths are inverse-square-root proportional to the relationships between the metrics.

At the level of the supergravity theory, we have ¢/ = e_‘bhetghet is a symmetry of the theory. Then the string

length scales must obey
Mhet

eh =0 [ghet = M =
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20.

21.

22.

The effective action will look like

v
(2m)7¢3g3

6—20

1
jd4x g% e 2[R+ — T|H2\2 - ZTr[FQ]]

Taking this to the proper string frame requires g — e~%7¢. This gives

640 €6U

Jd4x\/§e_2¢[R o= S S )

v
(2m)748 g2

Because ¢ is such that Ve% is strictly larger than the order of £, then both of the gauge fields will have
coupling constants that go as O(£2g2/Vel?) or O(£8g2/Ve). This is only going to be O(1) if gs » 1. In
this case, we can (after a possible T-duality that doesn’t change the coupling substantially, esp. if one of
the dimensions is reasonably close to the order of the string length already) apply the type I - heterotic O
duality to get a weakly coupled type I description.

Since the B-field strength H"®* gets mapped directly to the RR field strength H', we expect that the objects
electrically charged between them should get mapped to one another. This means the heterotic fundamental
string gets mapped to the D1 brane in type I. Their magnetic cousins should also be swapped, which will
interchange the heterotic NS5 with the type I D5 brane. At the classical level this is easy to see, since the
two branes have the same supergravity solution. Clearly this is not enough, eg in ITA vs IIB the worldvolume
theories of the NS5 are radically different.

To understand the quantum mechanical equivalence, we need to understand the origin of the Sp(2) on the
D5 in type I and the NS5 in the heterotic picture. This question is answered (using nontrivial arguments
involving ADHM) first in Witten “Small Instantons in String Theory”. Return and understand this
when you know more N = 2 SUSY.

Certainly we see that heterotic-type I together with T-duality will relate both heterotic strings together,
and connect this with type I which, after T-dualizing and moving the orientifold plane appropriately, will
connect with the other type II string theories.

It remains to look at the self-duality of type IIB. For this, we took a leaf from Sen’s paper. Let’s look at IIB
on a Zy orientifold 72 /(—1)f% - Q- T where Z is the inversion z — —z on the torus and €2 is worldsheet parity
inversion. This manifold has 4 singular points that each carry —4 RR charge why. Since it is compact, we
must cancel this by placing 4 D6 branes at each of the 4 points for a total of 16. In this case, the geometry
of the tetrahedron is flat everywhere except for the 4 deficit angles of 7 at each vertex. The singularities at
the verticies are of Dy = SO(8) type, so this theory has an unbroken SO(8)* gauge symmetry. The torus
has moduli T, 7 together with axiodilaton §. There is no B field in the orientifold.

Now, let’s T-dualize both cycles of the torus. This keeps us in IIB, but takes us to (72)'/€2, undoing the
effects of (—1)*2Z. Type IIB on this space is just Type I on (72)’, but with SO(32) broken down to SO(8)%.
Now it is time to dualize to heterotic O theory. We see that we have heterotic string theory on (72)" with
gauge group broken down to SO(8)%.

Let’s match the moduli:

e The 7 modulus is the same in IIB and the heterotic theory.

e The torus in the heterotic picture now has a Bgg scalar that gets mapped to the axion Cj in ITA. Bgg
can combine with the heterotic torus volume to provide another modular parameter p = B + tVj,e;.

e The standard parameter in compactification on a torus is Upe; = Ppet —i log det Gg%t = Pper— % log Vet
This will be mapped to —%@HB + log Virp where Virp is the original T2 radius.

We know that heterotic on 72 has T-duality O(18,2;7Z). This has a subgroup SO(2,2) ~ SL(2,7Z) x SL(2,Z)’
that does not affect the Wilson lines but acts only on the torus parameters. Both 7 and p transform under
fractional linear transformations of the two SL(2,R) separately, while ¥},.; remains unaffected.

Now, taking Virp — o0, the two SL(2,Z) symmetries remain unbroken. One of these can be identified with
large diffeomorphisms of the torus, and so combines with spacetime diffeomorphisms in the large V' limit.
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23.

24.

The remaining SL(2,7Z) then becomes the S-duality group. The SO(8) gauge theory living at each of the
vertices is not seen, since the singularities and accompanying D7 branes have “flown off” to infinity.

That U}, remains unaffected means that Gyrge ®178/2 is an invariant under SL(2,Z). So the volume as
measured in the frame of that modified metric is an invariant. This is exactly the Einstein frame metric.

We have also seen in the chapter that the M theory - heterotic E duality can be obtained through a chain of
dualities involving heterotic O - type I together with the M theory - type IIA. We are only asked to reproduce
dualities between string theories in this question however.

The D9 brane is orthogonally projected, as we know from tadpole conditions on it from chapter 7, and the

same argument with the cylinder gives a % reduction of tension relative to type II.

For a D1 brane interacting with itself, the gravitational contribution in the cylinder amplitude also has a

extra % factor due to the orientation-projection. Thus, the total tension of the D1 brane is lowered by a

factor of % relative to type II as required.

Naively we could apply the same argument to D5 branes, which would then violate the D1-D5 Dirac quan-
tization by a factor of 2.

However, from an analysis of the cylinder amplitude for 59 and 95 strings with orientation projection, we
get the constraint €24(5(o = 1. By consistency of interactions of 59 strings with 55 and 99 strings, we get
egg = e§5 = 639 = —1. Consequently, the D5 brane will have opposite orientation projection than the D9
brane, namely the symplectic one. Taking the determinant of v = ¢y however gives ¢V =1, s0 ¢ = —1 will
only work for NV even. Another way to say this is: “symplectically projected branes must move in pairs”.

Thus, the “fundamental” D5 brane should be thought of as a D5 with Sp(2) index a = 1,2. Repeating the

11
cylinder amplitude calculation gives a factor of 22, which translates to a tension of 2 x % = \/§T51 I

The crucial component of this is to note that at Dp worldvolume theory contains a CP-odd term coupling
to the lower-dimensional forms going as:

iTpfdexC A Te[e"] A G 2 iT,(2m62)? fdpﬂx Cp—3Tr[F A F]

in the absence of an NS-NS background.

Consider the 9-brane with an instanton background in the 5678 directions with instanton number obtained
from integrating over x>6,78
Jd4 Tr[F A F] _

T ey
For the case of k = 1, the CP-odd term simplifies to

iT9(27T)2(27T€§)2 jd6$ 06 = iT5 jd6l‘ 06

This is exactly the CP-odd term for a D5 brane. In the limit of vanishing instanton size, this sources RR
fields in the same way with the exact same RR charge. It is also a BPS state, so has the same mass as a D5
brane. This satisfies all the criteria to qualify as a D5 brane.

We can extend this to k localized D-branes and see the exact same coupling

k
Z iT5 J d6.’L' CG
izl 258

as k distinct D5 branes. For nonvanishing instanton size, this describes D5 branes “dissolved” in the D9.

This argument can be carried over for an arbitrary pair (p,p — 4).
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26.

27.

We have already seen by general arguments that we need the number of Newman-Dirichlet conditions to be
a multiple of 4 so that the NS and R sectors have a chance of having degeneracy. I will repeat the argument
here.

In the R sector, the zero-point energy is always zero because of the equal number of periodic fermions and
bosons. The excitations above this will have integer or half-integer weights.

In the NS sector, the NN and DD fermions and bosons contribute zero point energies —i and —%, SO

_T16 total. The ND sector bosons and fermions contribute ﬁ and -, ie the opposite. Altogether for v ND

24>
boundary conditions we get:
8-v) v _ 1. v
16 6 2 8
This ground state and its excitations above it will have half-integer weight when v = 0 mod 4.

Since type I string theory necessitates 32 D9 branes to cancel out the O9 tension, we are only allowed
v = 8,4,0 giving D1, D5, and D9 brane configurations preserving supersymmetry in the theory. In the
text, we have seen that D1, D5, D9 all lead to consistent worldvolume excitations that respect GSO and
Q-projection

Let’s review the logic so far. For supersymmetric open strings in the NS sector, we are principally interested
in the 1), states. Orientation projection acts as on the NN string as Qi = i271),. (in both NS and R sectors)
and on the DD string as Qi), = —i?"4,. For the R sector ground states, supersymmetry requires that for all
directions NN (D9 brane) eg = —1: that is, Q|R) = — |R).

When we add indices, writing the NS state as |p,ij), for NN strings the massless levels are given by
wﬁl/z)‘ij Ip,ij>. We get the constraint A = —iexygyATy. WLOG we can either have v = 1 for SO(N)
with ¢ =1 or v = iw for Sp(N) with N even, ( = —1. In either case the Jacobi identity require exyg = —i.
This gives that A = —yTAy~! for the massless level. In both cases this corresponds to the adjoint represen-
tation. In the DD case, we get an extra minus sign, giving A = 47 Ay~!. This corresponds to the symmetric
traceless representation plus a singlet.

For the D1 brane, the above discussion already shows us that in the 1-1 NS sector, we get the 8 DD scalars
transforming the symmetric traceless plus single representation of SO(N) together with the 2 NN scalars
transforming in the adjoint.

For the 1-1 R sector, before orientation projection we have the 16 ground state from GSO. The orientation

projection acts as
Q[Sai,j) = —MCTEE T IS, G o]

What Kiritsis writes can’t be the adjoint for N = 1. We need it to have dim 1 in that case,
but it would have dim 0. I believe that the correct thing is that we have 8 fermions forming the 8_ (ie
left-moving) and in the symmetric representation of SO(N) while we have 8 forming the 8, (ie right-moving)
but in the adjoint of SO(N) (these disappear for N = 1).

In the 1-9 sector, we have 2 NN and 8 DN boundary conditions. The NS ground state energy is positive, so
this will not contribute. The massless states come from the R ground state in the DN part combined with
the O(1,1) spinor from the R sector of the NN part. The fermions are right-moving (chirality +) as before.
We get 32 indices from the D9 brane and N from the D1 brane. The orthogonal projection guarantees that
these transform in the (V, 32) bi-fundamental representation. Orientation projection disallows for the second
copy of this spectrum (ie the 1-9 string with the orientation reversed).

To get to the D5-brane from the D9-brane we T-dualize four times. In this problem we focus only on the
5-5 strings. Again, the R-sector contains the GSO-projected 16 spinor before orientation projection. We
must decompose under SO(5,1) x SO(4) 1. The projection condition in the R sector reads:

QNij |Sayigy = —emE1Ts2)y Ny 7S, i)

Here 7 = iw, since we have the symplectic Sp(2) projection for the D5. Then, for s; + so odd, the 6D fermion
is negative chirality, and we require A = —yAT~~!. This gives a negative-chirality fermion in the adjoint
representation of Sp(2), completing the vector multiplet.
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For s1 + s3 even, the 6D fermion is positive chirality and we require A = yATy~! which will leave the skew-
traceless antisymmetric representation plus a singlet. For Sp(2) this is just the singlet, so we get a single
positive chirality fermion, completing the hypermultiplet.

I think I’'m off by a sign?
From the D5-D5 analysis of the previous problem, we immediately see the generalization to general Sp(2.V).
The R sector yields fermions in the Sp(2) adjoint combining with the vectors " 12 in the adjoint, yielding

the vector multiplet. The DD boundary conditions reverse the projection sign for wi_l /2)‘1']‘ |p,ij) yielding
a sum of the skew-traceless antisymmetric representation plus a singlet. I assume this is the same as the
two-index symmetric rep, by analogy to SO(N), where a similar thing happens. We also know that the R
sector also provides (positive chirality) fermions to combine with this to form the hypermultiplet.

N DD
A

1/

Finally, we must look at the D5-D9 spectrum. We have 4 ND boundary conditions and 6 NN ones. For 4
ND boundary conditions, the NS sector ground states also contribute to the massless spectrum. The ND
conditions these consists of ground states transforming in the 4 of SO(4), combining with the singlet NS
ground state of the 6 NN coordinates. This yields 4 scalars.

In the R sector, the massless states come from the bosonic ND ground state combining with one of the 4 NN
R sector states giving an SO(5, 1) spinor. After GSO projection, this gives a chirality + fermion, completing
the hypermultiplet. This part is a bit shifty, thing about it

Each of these states has 32 labels from the D9 brane, and 2N labels from the D5 brane. Therefore, we get
that this hypermultiplet in fact transforms in the (2N, 32) bi-fundamental. Again, orientation projection
simply restricts us to not have a second copy of this spectrum from 5-9 strings of opposite orientation.

Say we pull apart m D5 branes. Because the D5 branes move in pairs in type I, we must have m an even
integer. The 5-9 strings now all have positive zero-point energy and will not contribute to the massless
spectrum. The 5-5 strings remain the same, but transforming in Sp(2N — m) instead of Sp(2N).

We can focus on the purely chiral left-moving CFT, since this is the only part that the orbifold acts on
nontrivially. Immediately, we see that the untwisted sector corresponds to the NS states, which are the same
between ITA and IIB.

In the twisted sector, we again have NS and R fermions. Because the NS fermions are taken to minus
themselves, they are now integrally modded while the R fermions become half-integral. Again, the R fermions
will be projected out by the (—1)FZ. The 8 NS fermions will give two (unprojected) ground states 8 + 8 of
fermion numbers 1, —1 respectively. In Polchinski’s convention, the original |0) NS ground state has fermion
number —1, so the only the C' operator on top of this will give something that is unprojected. In Kiritsis’
convention, the NS ground state has fermion number 1 but we we take (—1)" = —1 for GSO. In either case,
we can only keep the C operator. In the original IIA we kept the S on the left and the C' on the right. Now
we keep C on both sides giving IIB (we could have done the same with (—1)¥#, and C,C or S, S both yield
IIB, since they are related by parity).

Orbifolding IIB by this symmetry is the same as orbifolding twice. This necessarily must return us back to
ITA.
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The M theory parity orbifold differs from this (—1)Z orbifold primarily in that it includes fixed points, on
which the twisted sectors localize.

Start with the heterotic E theory and compactify on a circle. n units of KK momentum on this circle will be
T-dualized to n units NS flux in the O(32) theory, ie a string wrapping the circle n times. Upon S-duality,
this will correspond to a D1 brane wrapping the circle in type I n times. We T-dualize again to get a DO
brane in the type I’ theory carrying n units of charge. In the strong coupling limit, this is understood as n
units of momentum in the eleventh direction.

The bosonic part of the vector multiplet on a single boundary is given by

1

VY] dloﬂ?\/ —910 TI"[F2]
At first glance, A would appear arbitrary. Anomaly cancelation will yield an exact value for it in terms of
the eleven-dimensional gravitational coupling. Kiritsis writes explicitly A? = 271(4%&%1)2/ 3 which gives that
the dimensionless ratio A\6/k3; = (27)3(47)? = 1287°. This is as in Horava and Witten, but it is not obvious
that this is how A is determined from k11 from first principles.

Let’s recall anomaly cancelation in 10D. Recall that for the type I supergravity theories, it was crucial to
have enough 10D vector multiplets to cancel the Tr[RS] terms, giving n = 496

We can view the M-theory orbifold R!!/Z, as giving rise to two twisted sectors (as in string theory). In 11D

we have
rt...rtt =1

The supersymmetries preserved by the Zs action are those that satisfy (WLOG) I'''e = ¢. This means that
in the 10D perspective, this gives rise to chiral fermions in the 16,. Although in the smooth part of the
bulk, there cannot be a gravitational anomaly, the incorporation of a boundary (or more) can. A general
diffeomorphism in the bulk will not lead to any anomalous variation dI" of the effective action. WLOG, take
a diffeomorphism on R'? and pull it back to the orbifold by making it constant along the interval S*/Z,.
The anomaly is the standard one in 10D. The boundaries must therefore contribute massless multiplets. The
only such candidate is a vector multiplet. By symmetry, each must contribute the same number of vector
multiplets. The prior paragraph then shows that each must contribute 248.

In order to apply Green-Schwarz, we crucially need a two-form B, that we are guaranteed in all 10D string
theories. The answer here comes from the pullback of the 3-form As to the boundaries Hi, Hs giving
By, Bl = A respectively. The anomaly polynomial in 10D of the form I; A Xg leads to § B A X,

W11|H H
but one can see t}llat2 Xg for By x Eg involves no cross terms from either Fg, and can in fact be written as
Lo(R, F1, Fy) = L1o(R, F1) + L12(R, Fy) (86)
La(R, F;) = IL(R, F})I3(R, F;) (87)
. 1 1
I4(R,F) = 5trR? — 5trF2 (88)
R 1. 1 1
Is(R, F) = =S Li(R, F)? + (- gtrR4 + 3—2(trR2)2) (89)

Here tr = %Tradj for Eg. This gives Chern-Simons terms of the form:

f By A Ig(R, Fl) +J Bé A Ig(R, FQ)
H1 H2

This does not quite go far enough, in that we would not be able to recover \°/k?; from this.

This next part I got from Horava and Witten 9603142 First note that we would like our boundary
theory to be locally supersymmetric. As it stands, it is not. The standard way in SUGRA (although I did
not know this because I don’t know enough SUGRA at this point) is to add the gravitino interaction with
the supercurrent to the Lagrangian:

1

b b
pe

dPa/—gihSyn = — o d"2y/—gipaTA P X"
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After some work, we see that the only term with uncanceled supersymmetric gauge variation is

1672 Jdlox\/jgleFABCDEFgCFJ%EG

The only way to cancel this is to modify the 11D Bianchi identity. The reason is that, in checking invariance
under local supersymmetry for the 11D Lagrangian, there is an integration by parts that involves the Bianchi
identity dG = 0. If one instead modifies it to

2
K
dG11ABoD = *3\/§§5($11)tT(F[ABFCD])

We can then locally write

Gui,aBc = 011CaBc + \/;2)\26(:7511)9%%0 (90)

053¢ = tr(AaFpe + %AA[AB, Ac] + perms.) (91)

= d0°% = 6tr(FlapFop)) (92)

6095 = dtr[eF] (93)
K,2

S(z)tr(eF) (94)

= 660117AB = -

64/2)2

Note that the anomalous variation in equation is similar to the B ~ tr[eF'] for the string theory 2-form.
This gives that the 11D Chern-Simons 11D interaction has variation

1 kK2
2! 64/2)2

The value of Gapcp on one of the hyperplanes is quickly seen to be

1,JCAGAG—> ftr[eF]/\GAG
31 "

3K
GaBepla = _Wtr[F[ABFCD]]

Altogether the anomalous variation looks like

_I#Jt [ F]te[F2]?
12826 J LEHIY

On the other hand, the variation from the 10D chiral fermions in the vector multiplet gives

11
2 (475! f TrleF]

where the trace is taken in the adjoint.

It is only for Eg that we have the nice identity TrX® = (T;%Z)Q and similarly Tr[eF®°] = Tr;ggg ®. After

identifying tr = Tr/30, we can write TrX6 = 12(trX?)3 etc. We get

15
8(4r)?5! fﬂ[dﬁ]

This will cancel exactly when x and X are related as required.

Thus, we see that the Green-Schwarz term already present in 11D SUGRA plays a crucial role in canceling
the gauge anomaly. We needed the GS terms to be bulk objects, as if they were simply d-function supported
on the boundary this would a) not seem very much like quantum gravity, and b) give gauge variations of
boundary interactions proportional to §(0).
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Note that the CS term for the gauge field in the supergravity action was classical (as opposed to the 10D
superstrings, where they are 1-loop effects). Consequently, a classical theory with the SUGRA multiplet in
the bulk and the gauge multiplet on each boundary is classically inconsistent.

Given our understanding of 10D anomalies, we then expect (correctly) that the full gauge and gravity
variation will modify the Bianchi identity as:

K2 1
dG11aBcD = —3\/§p5($11)(tr(F[ABFCD]) - itr(R[ABRCD]»

These trR? terms are not required from classical 11D SUGRA, so they must arise as quantum effects of
M-theory.

The anomaly cancelation term usually takes the form:

fc’/\fg

Note the suggestive way Ig is written in equation . Because we have seen that Gocly on the boundary,
the Chern-Simons term C' A G' A G on the boundary reduces to C A IZ. This is a part of Is. We thus expect

the remaining part to take the form:
V2 4, 1 2
- - — - t
(4m)3 (4mr2) 13 JC 4 < Bt 55 (k) )

Again, this is a purely quantum effect of M-theory.

32. Here M is a 20 x 20 matrix. It is quick to see that M LM = L for the 20 x 20 matrix

0 1, O
L=114 0 0
0 0 1

This means that M is an element of O(4,20). We can act on it as a bi-fundamental representation (on left
and right). This is more subtle, because not all O(4,20) matrices have the form of M. Showing
that M keeps the same form would take too much time. This ensures that the last term is invariant.

The 4 + 4 + 16 = 24 gauge fields from the compactification can be directly seen to transform in the contra-
gradient representation of O(4,20). This ensures that the second-to-last term is invariant. All other terms
are invariant.

33. The heterotic action

—o
fd%\/—(;[ — e—Mi_.lFi,,Fj w4 %Tr[&lLM()“M_l]]

Hyp = 0uByy — L ALFVP+2perms.

and the ITA action:

J d®zv/ =G|

—20

- walFZ I 4 STe[0, MM+ J B3 Ly B A Fi A FI
H,uup = apByp + 2perms.
I will take the shorthand %MiglFﬁij m = |F|?

The EOMs for G give respectively

1 _ 1 _ 1
Ry — le“’R —2(V,oV, e — QW(V‘I)) ) — s Rguw — e Z(I’(Hiu - §QMV|H|2) —e (D(FW — 59;“/|F|2) + (M terms)

1
2
1
2

1 _ 1 1
Ry, — igWR -2(V, oV, o — gW(V@) ) — =Rgu, —e m(sz — §gu,,|H|2) — eq’(FW — §gu,,|F|2) + (same M terms)
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34.

here H zy = iH ppoHpo ete. All terms are invariant under ® — —®, including the terms involving H 2 since

we will have
672(I)/H/2 _ 624)(672(1) . H)2 _ 672¢|H|2

and the same for H,,,.

The EOMs for ® give respectively:
o—®
Het E: V2® 4 ¢ 2?|H|? + 7|F|2 =0
o®
ITA: V20 + e 2*|H? - 7|F\2 =0

The EOMs for the A, give respectively:

Het B: e 2*(+H) A F —d(e”®*M;;» F7) =0
IIA: —d(e*Mijx F/)+ HAF =0

This is equivalent under ® — —®, e 2®H = «H'.

The EOMs and Bianchi identity for the B, give respectively

Het E: —d(e™?*« H) =0, dH—-F AF=0

IMA: —d(e>®*«H)+FAF=0, dH =0
The fact that the H duality exchanges the Bianchi identity and the EOMs speaks to the fact that it is an
electric-magnetic duality of strings.
The EOMs for the M terms are ®, A, B independent. Consequently, the M matrices can be directly identified

between the two theories.

Consider just the 3D space of the 2°. Note that V is harmonic, and consequently F := — x dV is a closed
2-form on that space. We can view F' as a curvature 2-form on a principal U(1) bundle, and can thus write
(upon picking a trivialization of the U(1)) a potential A giving dA = F. Call the the U(1) bundle X. We
will write the connection as A = A + d.

For each of the three z? there is a symplectic form on the 4D U(1) bundle given by:
W= AAde' +Vxda' = dw=—xdV Andz’ +dV A *dz' =0

Here we have used that all the dz* forms are (canonically) pulled back from R? and in R3, xa A 8 = a A *83.
Now, define a different basis of symplectic forms on X by

Q1 = wo + iwz = A A (do? +ida®) + iVdat A (do? + ida®)
defining 2! = 22 4 iz this gives:

Qi = And +iVda' A dzt = VIV A+ idat) A dz'
——

«aq

The kernel of this form on the U(1)-bundle is 2D. For €, it is spanned by
éx2 + iéx3, V&y + iéx1

Here each 0, is lifted to the U(1) tangent space by using the connection A to identify the appropriate
horizontal subspace. We identify this as a holomorphic tangent space. Similarly €; would complete the
basis of T, M and give the anti-holomorphic tangent space. Thus, each §2; gives a distinct stratification into
holomorphic and anti-holomorphic tangent spaces. The closedness of 2 guarantees integrability. Defining
3 separate complex structures I; to act as +i on the jth holomorphic tangent space and as —i on the jth
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anti-holomorphic tangent space, we can easily check that pointwise they reproduce the quaternion algebra.
This makes the manifold hyper-Kéhler, with metric given by:

ds® = V(R(a1)? + S(a1)?) + V(R(dz1)? + S(dz1)?)
=V YA)? + V|dz)?
= VY Adz + dv)? + V|di)?

In particular, V' can take the form of the multi-center potential in the problem.

Could we not have just exhibited a 3 Killing spinors? Are there such? In any case, this was
more instructive

Lastly, to see the asymptotic limit, we can take the z; to collide. At a distance, V' will look like % This
corresponds to an F' with N units of flux asymptotically. The circle bundle over the R? will asymptotically
looks like an S fibration over S2. For N = 1, this is simply the Hopf fibration. For higher IV, the connection
is N times larger, which makes the U(1) circle N times smaller, and corresponds to a fiberwise quotient of
53 - SZ by ZN.

Did Kiritsis mean to write N?

We have seen that to apply the GS mechanism, the heterotic B-field must have a modification of its Bianchi
identity from

2 .
H = dB — M (4) + 0§ (W), Q3(4) = T[4 n da - %A nAn 4]
g

I have absorbed the factor of ;—z into these fields. This will cancel the anomalous change in B

52

B = “5Tr[AFy — ©ORy]
g

required to have a GS term { B A Xg cancel the full anomaly. The modified Bianchi identity is
dH = —tr[F A F| + tr[R A R]

Here tr is taken always in the fundamental. The second addition important for the cancelation of gravitational
anomalies. Following the logic in question 33, by duality, a modification of the Bianchi identity in heterotic
string requires a modification in the B equations of motion on the heterotic side corresponding to the addition
to the action of a term:

—fB/\R/\R

The CS terms are thus:
JB A (tr(F A F)—tr(R A R))

Further, Vafa and Witten confirm this term from a 1-loop calculation using the elliptic genus on the ITA
side in |9505053. This gives a nontrivial 1-loop test of the 6D string-string duality. This problem only asks
me to assume the duality in performing the match.

In our case, wrapping 3-branes around 2-cycles give rise to two-forms. As one 2-cycle shrinks B to zero size,
we get a tensionless string, of tension approximately |Vol(B)|/gs. For each isolated singularity of K3 (type
ADE) there is such a tensionless string theory. Note that this is not yet the (2,0) SCFT, since we have not
taken any sort of IR limit that would lead us to expect that the theory is conformal. We still have mass
scales. This is an interacting QFT of light strings.

Upon compactifying on an S!, we can T-dualize to type IIA, where now we have the familiar appearance
of massless states associated to a 3-cycle shrinking in K3. The ITA theory sees massless particles emerge at
this transition, corresponding to the tensionless strings of IIB wrapping the S™.
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37.

38.

39.

Here, our cycle is C = n; B*. Take a euclidean D2 brane wrapping this cycle. The total volume (counting
orientation) will be |n; {5, Q| = [n; Z").

Because of the BPS property of the 3-cycle, we will still have M = T},|Z|, giving us

Sinst = ‘nzZZ’

1
(2m)2l3g
It is worth remarking that we get contributions from all winding numbers of D instantons in this case, while
in the IIB case, it looks like only the singly-wrapped D3 brane is stable.

Is there anything else I should say? Reproduce Vafa+QOoguri’s calculation?

In IIB, we have seen that as a three-cycle shrinks, a (BPS) D-brane wrapping this cycle contributes a
hypermultiplet that becomes massless as the volume goes to zero. At the conifold point, we get a new
massless multiplet. Resolving this singularity by expanding the 2-cycle corresponds to giving an expectation
value to the massless hypermultiplet from the D-brane. In general, these hypermultiplets will have a potential.
See the discussion on page 378.

From this POV, condensation of D-branes has the interpretation of topology change! For ITA the (instantonic)
D2 branes instead serve to smooth out the singularity, which corresponds to the hypermultiplet moduli space
receiving quantum corrections.

This does not answer the question, though - which was about the resolution of the two-cycles. However,
using the tool of mirror symmetry, we can posit a guess. A two-cycle shrinking in IIA causes a singularity in
the vector multiplet, and maps to the familiar three-cycle shrinking in IIB. In ITA, then, we expect a wrapped
D2 brane to contribute to a massless hypermultiplet. On the other hand, we expect quantum effects in I11B
to smooth out this singularity.

Check against literature.

To simplify this problem, I will reduce the heterotic theory directly from 10D and keep in mind that reduction
on tori commutes. In the string frame I get

1 1 _— 1 g
Jd4x«/—ge2¢ [R + 4(0¢)? — §|H3|2 - ZM*IZ-]-F;VFJ o 4 STr[ﬁuMUG“MZ-j]]

Upon taking g — e2>?g we get the Einstein frame:
e49
2

e 20
4

o 1 g
Jd4x\/~g [R —2(0¢)* — |Hs|* — M~ F, FIRY STF[%MW“MU]]

Here the M;; scalar matrix lives in the SO(6, 22) coset, and there are 28 fields F*. We can dualize the Hj to
a scalar axion through the relation (as in 9.1.12)

e YH = x0Cy = e "?|H|? = €'(0C))?

In performing this dualization, the B equations of motion are automatically satisfied.

V*(e " Hyup) = V*(€,,7 05Co) = 0
The Bianchi identity for H must now be imposed by hand
glU/PUap,HVpo. = —L”F;VF] ad

This corresponds to adding the term
1 Lo
ECO LijFy, F7 1

to the Lagrangian. We then combine the axion with ¢ to give:

10808 1 1 i i 1 —y 1 g
— 57822 — ZSQM i]’F;wFJ‘uV + ZSlLijF/iVFJ ey 8TI‘[@MMwa‘uMij]:|

fd4x\/jg [R
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where here S = C + ie™2? (note the 2¢, by contrast with 10D).
For the ITA side we get:

fd‘la: —Ge® (R + |00 + iauaaﬁaﬂaaﬁ — |0®[2—

—2P 9 e*QCI)
H _
5 | H3| 1

P ) ) (3] ) ) 1
- %M*lijF;VFﬂ o %M*lijGaﬁF;aFJ . gTlr[aMaJ\rl])

(&

1 g
GaﬂHa#VHﬁuV - 56 2® 2U(auBozﬁ)2

We take this to the Einstein frame g — e~ 7¢ giving

1 1
fd%«/—g(R - §|80'|2 + ZﬁuGagé’“Go"B — |0®|*—

6—2<I>+20 6—2<I>+U 1 ®
T|I_Ig|2 . GaBHaMVHBuV - 5672 720(8MBC¥5)2
e¢+a

®
o L 1
M7 B, I — MGG I+ STafaM oM )
In this case, the dilaton and axion fields enter the mass matrix M, as does the torus complex modulus,
whose kinetic term is the third term in the action above. The complexified Kéhler modulus parameters of
the torus remain Why? This part needs elaboration. Altogether, including the CS term, this reduces
to
4 1 2 1 9, 9 €7 4 Juv 1 ij Ap 1 i i opv

d :Lw/—g(R— 5100 = 5e27(@,B)? = S M7 EL PO 4 ST[8, MY My + 1 BLyF), P )

Defining the parameter T' = B + ie? we get

10ToT 1 o 1 . 1 g
fdllflﬁ\/ —G<R — §T§ — ZTZ M_lijF;WF] ey le LijF;iVF] g éTr[aMMZ]aﬂMij])

Comparing the above action with the heterotic one we identify S with T', giving (unprimed indicates heterotic,
primed indicates IIA)
Co = By, (external SLy), Cj = By, (internal)

e 20 = ¢ (external SLy), e 2¢ = ¢ (internal)
This makes us also identify g = ¢’ and M = M’ as well as all the gauge fields descending from 6D AL = (AL)’
and the two descending from the T2 metric Af = (A7)

Electric-magnetic duality acts least trivially on H,,, in 6D. Consequently, it will act nontrivially on its axion
and scalar descendants B, Cy (as we have seen). The 2-form field strength F'® remains. From 6D we have
e 20H = xH'. This descends to

26 0B B i Ay L A led7e’ o,
e PG (Eg — LYy, — Cpy ) — Sax F 257(F5,p0)

where we see on the heterotic side we have additional terms due to how H uvp is defined in that case account
for additional axion term there.

Relatively unfinished.

40. T will just demonstrate this on the Bosonic sector. (—1)FZ sends the RR fields to minus themselves (ie
Co, Ca,Cy), while S swaps Bs, Cy and flips the axion part of the axio-dilaton 7 — —7. Conjugating (—1)¥z
by S will flip the sign of Cy and Bs and also take 7 — —7. The untwisted sector will thus be without
Bs, Cy, Cy leaving only G, ¢, Cy. This is the closed-string sector of type 1.

On the other hand, we have shown that orbifolding IIB by just (—1)F yields just ITA. At the level of bosonic
fields, we already see that these operations do not commute.
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42.

It is worth appreciating that this duality was known before the Horava-Witten construction.

M ut/ e L

ks \, /T
7D

First note that the moduli space of the heterotic string on 7° is given by the coset space
* % 80(19, 3; Z)\SO(19, 3)/(SO(19) x SO(3))

with R* parameterizing the dilaton. Now, in string compactifications K3 has a moduli space coming from
cosets of SO(4,20)/SO(4) x SO(20). This includes the complexified Kéhler modulus, which takes into account
the NSNS B-field. M theory lacks this parameter, and consequently the Kahler component of moduli space
involves only real moduli (ie metrics). This gives SO(3,19)/SO(3) x SO(19). The volume gives another factor
of R.

The low-energy effective actions also match. Wrapping the M-theory As on K3 gives one 3-form C5 and 22
1-forms A}. We get an action:

1
2/4;11

1 : 1
d"\/Gi(R + |dA3\ —>fd7«/ (€7 (R + (60) = 37 S1dA}[? + moduli) — J]dC

i
Upon rescaling g — e~47¢ and taking ¢ = 30 we arrive at:

1 : 1
de YR+ (20)” — 3] 3 ldAL[? + moduli — [dC5 )]

%

This exactly matches with the heterotic theory. We go to strong heterotic coupling by taking ¢ — oo, ie
taking the volume of the K3 to be large.

Because As is odd under the Zs transformation, we must wrap it on either a 1-cycle or a 3-cycle to have
things survive. There are 5 1-cycles giving 5 vectors and (g) = 10 2-cycles giving 10 0-forms in 6D. Further,
the internal metric has 5 x 6/2 = 15 even terms that survive. Altogether we get 5 2-forms, 25 scalars, and
10 vectors.

This is N = (2,0) (chiral) supergravity consisting of the supergravity multiplet and five tensor multiplets,
each of which contains an anti-self-dual two-form field (the 5 self-dual parts are part of the SUGRA multiplet).
Cancelation of anomalies (prove and understand compared to the N = (1,0) case) require Ny = 21.
We are missing sizteen tensor multiplets.

The orbifold has 2° = 32 fixed points which we expect will lead to twisted sectors. We shouldn’t be too
sure of how things go, though, because we don’t know how to deal with twisted sectors of M-theory. It
initially looks paradoxical that we need 16 extra tensor multiplets but have 32 fixed points. This is resolved
in Witten 9512219. The solution is to recognize the fixed points as 32 magnetic sources of charge —1/2 for
the G4 field. The constraint that the total charges should vanish is satisfied when 16 of these sources have
a five-brane on top of them of +1 magnetic charge. Each fivebrane can be seen to support a single tensor
multiplet, giving our desired 16. We interpret the five scalar in each multiplet as describing the position of
the fivebrane inside 7°/Zs.

This now gives the massless spectrum of type IIB on K3.

The question is how to arrange the fivebranes in such a way that we can see the duality to IIB on K3.
The equivalence implies that when any circle shrinks show more rigorously, we would expect to recover
weakly coupled IIB on K3. The naive guess I have is to arrange them in an alternating “checkerboard”
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43.

44.

pattern. (Witten confirms this.) Now, in the limit where any circle shrinks to zero size, the opposite
charge sources cancel, giving zero 4-form field strength in the 6D spacetime, consistent with the fact that
the 3-form has been projected out on the M-theory side and doesn’t exist on the IIB side.

As a second check, we can further compactify on S*. We get ITA on T°/Zy vs IIB on S! x K3. T-dualizing the
latter along S* (the only 1-cycle!) gives ITA on S! x K3 which is equivalent to heterotic on S°. S-dualizing

this gives type I on S® which is T-dual to ITA on T°/Zs as an orientifold (why do we need to act with
Q too?)

I will work with covariant derivatives and take the axiodilaton fields in terms of the S, S basis. I will write
the equations of motion for the axiodilaton as:

~ ( oS g 0808 008 0808 0808 — 0808 080S 0
(

§-=38) (S—9PF (S—572 “i5-38p ¥ (5-3p = 008 + 2572 =

Where it is important to note that we can write 00S for the laplacian in complex 2D coordinates instead of
VVS. We thus get our desired EOM.

Recall that as a holomorphic function of z, S should have positive imaginary part, and have its image
restricted to the fundamental domain F. This mapping should be finite energy density. From the effective
action we compute the energy density by pulling back as:

£=—— d%ﬂi — | PSad108(S - 3)
K10 (§=35) K10 JF
At this point we apply Stokes’ theorem to get a boundary integral:

1 - 1 dS
— dSdlog(S —8) = — —
Ko Lf ( ) ki Jor S =8

The vertical lines of the fundamental domain have the same values but are traversed in opposite orientation
picture. Therefore, only the semicircle counts. This integral is readily evaulated:

Jﬂ/S do iei@ 21
2 /3 el _ —if 6

This gives our desired final answer of £%-: the angular defect due to a D7 brane.
10
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Chapter 12: Compactifications with Fluxes

It is not likely that this will be relevant to my research. I will skip it indefinitely for now.
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Chapter 13: Black Holes and Entropy in String Theory
1. We begin with

dr?

c(r)

and C(r) vanishes at the horizon r = ry while all other functions are positive for r > ry and everything

asymptotes to 1 as r — o0. Now, let’s do a wick rotation ¢ — i7 with 7 Euclidean time. We get

dr?
C(r)

Now at r = rg + € we see that the geometry takes the form

ds® = —F(r)C(r)dt* +

(r)rzdfl%

F(r)C(r)dt* + + H(r)r?dQ3

dr?
C'(ro)(r —1o)

The last term is simply the expected metric on a 2-sphere of fixed radius rg. The other two terms give a

F(To)Cl(To)(T — 7“0)dt2 + + ronQ

metric 42
ds® = F(rg)C'(ro)edt?® + C’(io)e
Take u = \/20‘/([%0) then du = \/% giving us
ds* = F(TO)CU(ZO)QqutQ + du?

This describe a conical deficit geometry in polar coordinates. In order to obtain a smooth geometry, we need

the requirement that
2

TH2TX —————— =T
C'(ro)+/F(ro)

Giving an inverse temperature of
47

C'(ro)A/F(ro)
This formula generalizes directly to higher-dimensional black holes.

1
7=

2. In what follows, recall the area formula for a general KN Black hole of mass charge and spin (M, @, J) is:
A=dn(r? +a?), ry —M+/M?2—a2—Q% a=J/M
In particular an extremal Kerr black hole has area 87M?2.
(a) The areas of the individual Schwarzschild black holes are
4t (2M;)* = 16w M?

each. The area of their composite must then be > 16w (M + M3). Because they start as almost
stationary, the total angular momentum in the center of mass frame is zero, so the final black hole will
be (essentially) Schwarzschild. So we get

M7 > M} + M3

If the initial masses were equal, we’d get M; > V2M so that E = 2M — +/2M and E/(M; + M) =
1 —1/4/2. Let’s write WLOG My = yM; with v < 1 then

M} > (1+7*)M} = E = (1+7)M —+/1++2M

E (I+~)M; — \/1+7M1_1_«/1+72>1<1_

= =
M, + My (14 )M, (1+7)

Sl

as required.
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3. We have that n =

(b) For two extremal RN black holes we have r, = M so each has area 47 M?. They will collide to form a
neutral (perhaps rotating) black hole. The area law gives us

(Mg + A/ MF —a?)? + a®) > 2 x 4= M>.

This bound is sharpest if we take the final state to be extremal Kerr ¢ = M, giving
8wM7 > 8nM?> = My > M

We get
E

1
E<2M - M= — < =
ToM Sy
(¢) Such a decay would look like
2M7 > M? = N2My; > M = M — 2M; < (V2 —2)Mp < 0.

This is a contradiction.

;Ma = +/f(r)0, so that

11 A F'(r)
B =3 g 7 =73 fr)’

Contracting with the 3 x 3 boundary inverse metric h** = diag(f(r)~",r~2,r 2sin=26) which has no r

component gives JF
frfr 4 rf' +4f
2 (f * r) Vi 2rf

diag (f’(r), — 2r, 2r sin’ 9)

r=rg
where ¢ is large and formally infinite. We can then evaluate
1 4y Bf
— hEK = 4 ‘
87TG oM \F 87TG =70 5 <Tf + f) r=ro
Directly evaluating this for f(r) =1 — QGM + Q gives
B Q2
2rg — 3GM
2G + 279

This is the gravitational boundary term contribution to the classical action. The gravitational bulk term is
zero since the Ricci scalar vanishes for the RN solution. The electromagnetic contribution is

1 2 47rQ2 1 B 1 1
FVF#V_i d dQ Qdi _ :72 -
167G JM\/E K TJ ZJ " 87rG ( 1“0) ZGQ (7“+ 1"0)

All together, as rp — o0 we get action:

2
SrN = —2% (27"0 —3GM + i)
Note that there is one divergent term, namely the one linear in ry in the boundary action, but this is
insensitive to the properties of the RN black hole and is also present in flat space. It is then sensible to
define a regularized (renormalized) action by subtracting this term off. In doing this subtraction, there is
an ambiguity of how we should define the inverse temperature of the reference flat space subtraction. The
appropriately redshifted temperature Justify is 8+4/f, giving reference action:

Spiar = — Dron/Flra) = — D (2r0 — 26M + 0(1/ro))

G 2G
The renormalized Euclidean action is thus
B B Q. B B
IrN = SEN — Sflat = 5 (M Gr+) = 2(M pQ) = pF
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4. The specific heat C is given by the coefficient in

dM = MCdT
For Schwarzschild, T' = (87GM)~! so this is
dM
M=-MC—— =— M
d C SO C 8rG

Which is negative. This should not be so surprising, given that by increasing the energy (ie mass) of the
Schwarzschild black hole we make a larger one which thus have lower temperature. It is worth noting that,
including units, this is proportional to %

5. First off, at a = 0 Kerr-Newman reproduces the RN black hole, which we already know is a solution of the
Einstein-Maxwell system.

Further, it is quick to check using Mathematica that at Q = 0 the Kerr metric is itself Ricci-Flat: R, = 0
so is indeed a solution of the vacuum Einstein equations (away from r = 0).

n[s911:= (xKerrx)

xx ={t, r, 8, ¢};

A=r2+2a2_-2GMr;

% =r?+a’Cos[8]?%;

A- a2 sin[e]? asin[e]? (r? +a” - a) P asin[e]? (r? +a” - a) (r*+a%)®-na?sin[e]? |
g={{' ’0’ 0’ = }’ {0’ N B’ 0}’ {0’ 0’ z, 0}’ {' ’0’ B’ S1n[e]z}};
z x A z ]

ginv = InverseMetric([g];

Riem = RiemannTensor([g, xx]3;
Ricc = RicciTensor[g, xx];
Ricc // MatrixForm

R = RicciScalar[g, xx]

Out[598}//MatrixForm=

0000
0000
00060
0000

Outfs99]= @

When @ # 0 we get a nonzero Ricci tensor (the Ricci scalar still vanishes since classical electrodynamics is
conformal).

n[eos):= (¥*Kerr-Newmanw)
xx ={t, r, 6, ¢};
A=r?+22+Q%-2GMr;
% =r?+a’Cos[6]?;
asin[e]? (r? +a® - a) (r?+2%)? -aa?sinfe]?

. )0, 0, . sine1’}};

A-a? sin[e]? asin[e]? (r? +a’ - a) z
g:{{—f,ﬂ,ﬂ,— . },{e, L e},{a,e,z,e},{
ginv = InverseMetric[g];

Riem = RiemannTensor[g, xx]}

Ricc = RicciTensor [g, xx];

Ricc // MatrixForm

R = RicciScalar[g, xx]
Out[612]/MatrixForm=

4Q2 (3 a2.2 (QLZGM r+r2)fa2cOs[zs]) 8aQ2 (2 a2.Q2:2r (-G M+r‘)) sin[e]2

[¢] [¢]
(a2+2r2+a2605[29])3 (a2+2r2+a2605[29])3
2
2Q
[0} - (0] [0}
(a2+Q2+r (7ZGM+r)) (a2+2 r2.a2cos[26]
) 0 o2 )
a2+2r2:+a2Cos[26]
8aQ? (282+Q%+2r (-GM+r) ) Sin(o]? o o 4Q% (-33%-2r*-a% (®-26Mr+5r2)+a? (a?+Q%-2GMr+r?) Cos[26] ) Sin[e]?
(a2+2r2+a2Cos[29])3 (a2+2r2+a2Cos[29])3

outs13}= @

The Ricci tensor must correspond to an electromagnetic stress-energy tensor. It comes from an electric po-
a2
tential of the form A, = (%, 0,0, —%)
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Si 2

ot A = {ﬂ, o, 0, _w}
P b+

F = Table[D[A[il, xx[3I] - D[ALi1, xx[i11, {i, 1, 4}, {j, 1, 4}] // Fullsimplify;

F2 = Sum[ginv[i, k] ginv[j, 11 F[i, i1 FOk, 11, {1, 1, 4}, {J, 1, 4}, {k, 1, 4}, {1, 1, 4}] // Fullsimplify;
F2
T-2 (TablelSunlginvil, U FLi, KIFLS, U, (K 1, 43, {1, 1, 811, (5, 1, 43, (3, 1, 4)] - — g // FullSinplifys

T-Ricc// Simplify // MatrixForm

Out[623}//MatrixForm=

00

® 0 006
(el oo o}

0]
0]
0]

[l olNO]

For r very large we get an electric field going as gr?/%? ~ ¢/r? corresponding to the electric field for a charge
q, and we also get a magnetic field dying off as a cos§/r3 corresponding to the field from a spinning charged
source. Said another way, we see that ﬁ {*F = q and ﬁ { F = 0 asymptotically, so we have just an electric
charge q.

We can verify mass and angular momentum using the killing vectors 0; and 0 respectively using the formulas
in Wald 12.3.8-9

1 c d _ 1 c d _
_87TG jeabcdv (at) = M167TG Jeabcdv (aqﬁ) =aM

in7e41= T' = ChristoffelSymbol[g, xx];

1
-——4nLimit[-2r? r[1, 2, 1], r > Infinity]
871G

T 2 Pi Integrate[ (-2 Limit[r? r[1, 2, 41, r » Infinity]) Sin[el, (e, 0, Pi}]
1
out;7esl= M

outi7eel= a M

For the KN black hole metric, the only singularities can come from ¥ = 0 or A = 0. X is only zero for
a >0 when r = 0,0 = w/2. This corresponds to the curvature singularity of the black hole (in fact despite
deceptive coordinate choice, this takes the form of a ring S; x R as is revealed in Kerr-Schild coordinates).
The horizons come from g, becoming singular, namely A = 0 which occurs at

2 —2GMr+a?+Q*=0=ry = M++/M2—a?— Q2.
These give the outer and inner horizons.

The horizon area is given by

s 2 T
J dGJ de, /gggg¢¢’ = QWJ df sin 0\/(7”2r +a?)? — Aa?sin? 0
0 0 r=ry 0
But A = 0 at the horizon so this trivializes to
Am(r: + a?) = dn((m + v/m? — a2 — Q2)* + a?)
The entropy of the black hole is then

A
S=Z=7r(r_2|r~l—a2)

Taking care to write things in terms of J and not a now, by holding J, Q) fixed, let’s vary M and get
Ine78:= rp = M+ S|:|rt[M2 - [%]2 -Q‘] 5
D[Pi [rp2 + [%]Z), M]-1 // Expand

out[679]=

_32  m2_02 _2 . M2-02
Z.m-q . ’M1+M Q

In[683]:= = — // Simplify
2 2 2 2 2 2Pi rp2+(i)2
7{[—%\/—]—2+M2—QZ +2[\/—J—Z+MZ-Q2+J—3+M][M+ -J—2+M2-Q2]] "
[ [ M [ [

outess= True
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The Hawking temperature is thus

1 /M2 —a2—02
Ty = — @@

2 ri + a?

Now let’s fix S and Q). We get

J/mM
rp+ (3/M)2

-D[Pi ((M+Sqrt[M2-32/M2-Q*])%+ (3/M)2), 3
m[7o7:[ [1(( i [ / Q]) * ))’ ] // Simplify

// Simplify| ==
D[Pi ((M+sSqrt[M? -32 /M2 -Q?])% + (3/M)2), H]

ouf707)= True

Which gives us that
o (D) __ (o ASNT__a
~\oJ/gs dJ oM dM QyJ_ri—i-aQ
Finally let’s hold S, J fixed and do the same procedure, giving

Qrp
rp?+ (3/M)2

-D[Pi ((M+Sqrt[M2-32/M2-Q*])%+ (3/M)2?), Q
\n[709]:[ [1 (( i [ / ]) + ¢ ) )’ ] // Simplify

// Simplify| =
D[Pi ((M+sSqrt[M? -32 /M2 -Q?])% + (3/M)2), H]

oufrogl= True

(B (s dSNTT_ Qs
o0 ) as ™ T \dQ) )y \dd ), T 2t a?
The full form of the first law is then

dM =TdS + QdJ + pudQ

We obtain an extremal black hole when M = a? + Q?, as this is the minimum value of M where r, is a
well-defined radius. At this value, r4 = r_.

Thermodynamic stability comes from minimizing the Gibbs free energy:
G=M-TS5-QJ — uQ

Note that for flat space, G = 0, so if G > 0 for any of these black holes, thermal fluctuations will eventually
drive their decay to flat space.

Plugging in what we have gives

22 2 2
_2 M2
1 e e am Qrp

n2e)= T = —— T 5Q= > e 5 73
2P rp?s (3) rp? + (3/M) rp? + (3/M)

S=Pi (rp?+ (3/M)?);
M-TS -uQ -Q3J// FullSimplify

32 (4M2-2Q%) +MQ? \/-%mz_qz

out[728]= o (4 7. Q")

Notice that if J > 0 then this will always be greater than zero, by virtue of the fact that M > @ always.
If we take J = 0, we get that this is still thermodynamically unstable unless Q = M and the black hole is
extremally charged.

. The Hawking evaporation rate gets modified as

Oabs(w) A3k
exp(B(hw — §- 0 — ¢@)) F 1 (27)°

Ty =

where - € is the angular momentum product (orientation of § relative to 0 matters). The F is for bosons
and fermions respectively.

Return to understand how this generalizes to systems more broadly
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7. This is direct - we take M theory on 7°. Wrap @1 M2 branes along z° — 210, Q5 M2 branes along z7 — 25,

and Q3 M2 branes along x° — 28.

Take the M-theory S' to be along 2'°. Now, taking this to be microscopic first, we get Q! strings wrapping
z° together with Q2, Q3 D2 branes in ITA.
6

T-dualize along z°, 25 to get Q3 DO branes, Q2 D4 branes wrapping z°~8, and Q? D2 branes wrapping z°, 5.
The F1 around 2 is unaffected.

Finally, T-dualize along x°, taking IIA to IIB and giving Q3 D1 branes and Q2 D5 branes, while replacing
the F1 (ie B-flux) with KK momentum of the system along the z°. This is exactly the D1-D5 system.
8. The D5 and D5 branes are both BPS. We know that, upon toroidal compactification,

In D = 10 have the D1 stretch z¢y = ¢,z5 = v and the D5 stretch xq, ..., x5, where we write v*,a =1...4
to be the new D5 directions. These will form the direction of the 7.

Upon compactifying on T% x S, the logic we used to for the 10D solution will still carry over to 5D. We will
still write the extremal metric in terms of functions Hi 5 that must be harmonic w.r.t. the flat metric of the
4D transverse space.

Then the D1 brane solution gives

ds2 — —dt? + dry?
v
While the D5 brane gives

¥ A/Hid" - dy® + A/Hy do' - do®, Hy =1+ :—}3 e 2 — {7l Fysi = 0i(HTY)

—dt2 +dv?  dy® - dne . , r2
m LR T{: +VHsda'-da', Hy=1+73, ¢ = Hs, Fyp=—eudH

I think this problem has a typo and Kiritsis means Dj, D5 not Ni, N5. Further, Kiritsis (likely borrowing
from Maldacena’s thesis) writes Fps; = —%&(H 1 —1). This factor of 1/2 is different from what I'm used
to seeing both in Kirtsis and Blumenhagen. This stems from a different choice of normalization for the
Kalb-Ramond and RR forms in Maldacena’s thesis. I am unsure why this different normalization exists, but
at any rate I will ignore the factor of 1/2. Finally, the overall sign in F' disagrees also with Kiritsis and
Blumenhagen, and I think the total D-brane charge in Maldacena counts anti-D-branes in our scheme.

2 _
d8D5—

When superimposing a D1 and D5 solution, the dilaton and field strength contributions add while the metric
contributions get multiplied. One way to see this is, because the solution remains BPS, we only need to
solve the first-order BPS equations.

For a p-Brane, as we have seen, the Killing spinors have spatial profile e(r) = H /8¢, regardless of p. The
linear equations for spinors coincide with the D-brane equations e, = +T°...TPep. We know that for the
1-5 system these can be simultaneously solved, giving a 1/4 BPS state.

I could do this in more detail... but I’ve computed enough Killing spinors by this point.

The combined 10D solution thus gives:

—dt2+d72 H; . . L H5
— —dy* - dy* HyHsdz' - dx', Fus=0.H ', Fi.p=—H' —2¢ _ 15
i g Vihsdada's Fos =0 HT Fyo= —H(), e =2

The next step is compactification. Upon wrapping D5 and D1 around a 7°, dimensional reduction freezes
out 7,7* dependence of the metric and fields. The T° is parallel to the D5, so the D5 solution will look
identical to how it looked before. The D1 also wraps a cycle of the 7°. Compactifying the other 4 directions
will look like a periodic arrangement of D1 branes, which effectively serves to remove v* dependence from
the D1 contribution to the solution. Think about this. Is it really true that the metric warps the

same regardless of where on 7° I am? More likely that they are taking 7° small and neglecting
it, or we’re thinking about a uniform distribution of D1s on 7°.

Finally, the D1 solution can be given momentum.

161



9. Ignoring the —1/2 discussed before, we can verify the charge from direct integration along a S°. First, the
electric charge

1f *FZIJ ﬁ:_472(27ffs)4vr2: Q1 —O\T
262, Josx 2630 Jgaxra 13 (2m)T8g2 1 27mi2g i
for r2 = (2g5/V, as required.
For the magnetic charge, Fypy = €pgyrOr Hs = —HY so we get
1 1 2r2 42 5

2y oo ' T 2 S " T Gy <2w§ieggs ot
for 7“52) = (2gs, as required.
We can also derive ¢, from the KK solution Do this.
In the non-extremal case, this generalizes quite directly.

Q1 1 (27L) V gs 2r?  Vrd sinh? aq coth ay 72 sinh 2a; 72 sinh 2a;
g 2 Jsrs | (n)TEgR La O T T g B T 2
Similarly:

Qs 1 1 27“52) 7“(2) sinh? a5 coth as 7"% sinh 2as r% sinh 2as
(2m)lg, 263 fsg @) L OO T T s 2emplge T e

For the KK momentum, I assume it can be read off from the dtdy term justify (Maldacena writes this too,
0

in his thesis below 2.34), which goes as 73 sinh ap cosha, = w = ¢pQyp, giving KK momentum

B 73 sinh 2a,

Qp =

2¢,

10. First, by analogy to 5D we expect an extremal metric of the form
4
A2 £ AV (dr? 4 02d93), A=+ )
r
i=1

This will have a nonzero area 4mw./rirorsry only when all the r; # 0. On the other hand the total mass is
M = Z?zl M; with M; = r;/4G. The question is what the charges correspond to at the level of a brane
construction.

Towards this end, let’s take ITA and compactify on 7°. We consider a D6 brane wrapping z' . ..z5 together
with a D2 wrapping z',2%. 6 — 2 = 4 is good, makes the state 1/4 BPS. We can also add KK momentum
along the 1 direction.

The crucial principle (Maldacena 2.5) is that if a scalar diverges at the horizon, the d-dimensional character
of the solution is lost. For a single p-brane p # 3 the dilaton goes either to oo or 0. In the case of the D1-D5
system, we needed branes symmetric about p = 3 and differing by 4 in order to give a BPS state with the
dilaton tending to a constant %log Hy/H5 — %log r1/T5.

We see now that this does not work with a D6 and D2. For a p-brane e 2® = H®=3)/2 giving that D6-D2
gas a dilaton going as e 2% = Hg’/ QH; 12 There’s no (even dimensional) D-brane we could add in type 1
that would save us, and adding fundamental strings would only give e 2% = H £, which would not help.

But there is another extended object with the correct dilaton dependence as e 2® = H~!. This is the NS5
brane! But will adding it break supersymmetry completely? On the contrary, the SUSY constraints from
the D6 and D2 and KK momentum are:

ep = TOI23456 O, o Ol o [0l

012345 _T012345

The NS5 brane wrapping 1...5 would give €, = €r- This can be rewritten as

er.p = +TOTO12846¢, | _ T6¢; o

€L, €R =

But €7, = +T%;, already follows from the prior supersymmetry constraints, so adding NS5 breaks nothing!
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11.

12.

13.

Directly applying the formula derived in problem 1 with F = =3 C = f~1/3h gives

= 27rg cosh(ay ) cosh(as) cosh(ay)

2
2T ——
\/F(’r‘o)cl(’r‘o)

This is direct by writing the differentials in terms of variables rg, a1, as, a,:

ro2 Sinh[2 al] ro2 sinh[2a5] , Sinh[2ap]
In279):= Q1 = 5 Q5 = 5Qp=ro* ——3
2cl 2c5 2cp
re3
S = 2Pi ————— — Cosh[al] Cosh[a5] Cosh[ap];

Sqrt[clc5cp]
re?
M=
2 Sqrt[cl c5cp]
; 1
" 2P1ire Cosh[al] Cosh[a5] Cosh[ap] ’

(Cosh[2 al] + Cosh[2 a5] + Cosh[2ap]);

cl c5 cp
ul= ————— Tanh[al]; uy5 = —————— Tanh[a5] ; up= ————  Tanh[ap];
Sqrt[clc5 cp] [alls Sqrt[clc5 cp] [as]s up Sqrt[clc5 cp] Lapl3

dQl=D[Ql, al] dal+D[Ql, r®] dr@ // Simplify;
dQ5 =D[Q5, a5] da5+D[Q5, r@] dr@ // Simplify;
dQp = D[Qp, ap] dap +D[Qp, r@] dr@ // Simplify;
dS =D[S, r0] dr® + D[S, al] dal+ D[S, a5] da5+ D[S, ap] dap // Simplify;
dM = D[M, r0]dr0+D[M, al] dal+D[M, a5] da5 + D[M, ap] dap // Simplify;

dM - (TdS +uldQl+u5dQ5+updQp) // Simplify

Outj289]= O

The variations do not involve arbitrary changes in the Ni;. This is not obvious from the form of the first
law as far as I can tell, but N4; do need to be discrete in the brane interpretation.

I have done this problem for Andy’s class on quantum black holes. I will copy the full answer below: BTZ
as a Quotient of AdS3; The objective of this problem is to describe the precise way in which the BTZ
black hole arises as a quotient of AdSs. Take the embedding space to be R*2, with metric:

n= dia‘g<_17 _17 17 1)
Denote the coordinates of the embedding space by a# = (2%, 2!, 22, 23). AdSs is given by xat = —0?. The
Killing vectors generating isometries are given by J,, = x,0, — z,0,. The most general Killing vector is
then wh”.J,,,.

Define the identification subgroup of AdS3 by
P~c%Pte2mn, nelZ

For this identification to make physical sense, it should not give rise to closed timelike curves. Unfortunately,
in some regions, the £ used in this construction do give rise to CTCs. Luckily, however, they are bounded
by a region where £ - £ = 0. The part of the spacetime where £ - £ = 0 is then interpreted as a singularity in
the causal structure, and the region where £ - £ < 0 is cut out of the spacetime. Let

T T—
§= T -

—J
] ;03

(a) Write down w,,, for this Killing vector, and the corresponding Casimir invariants for the
SO(2,2) isometry group, which are given by

1
4 vVpo
I = wuwh, Iy = 56‘“’ P W0 Wpe
We have

Giving Casimirs:
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(b)

Find the allowed region ¢ - ¢ > 0 in terms of 2!, 22.

We can write:

— 3 —%:L’g

_+ _ _ = _ _ 7HTWU? _ TTWCQ

&= (2201 — 2102) 7 (7300 — w003) = e | T mea

T 0 —7a’

This vector has norm:
1 1

2 2,9 9 2,9 9 2 2v/.2 2 2
§& = ﬁ[7’+(931 —x3) —rZ(v3 — xp)] = [2(7“+ —rZ)(w] —x3) + 72

This is > 0 when (assuming 7, > r_)
ER

Find the regions for & - ¢ € {(0,72),(r2,r%),(r2,0)} and identify whether the boundaries
between them are timelike, spacelikeor null:

Now let’s look at

2 2 2 282 2 2 212 g2 2 2

ri <& = (ri —ri)(z] —a3) = (rl +r))lF =17 <z — a3
Next

<<l =0<a] -3 <?
Finally
7’2l2
0<e<rt=>— R— <x%—x%<0
Ty — 712

All boundaries between these regions are null. The boundary 2?2 — 23 = 12 implies x% — x% = 0 and so
is a null surface (cone). Similarly, the boundary z? — 23 = 0 implies z; = +x_ which is again null

surface.
For region I use the coordinate transform given by 20 = \/B(r)sinh#, z' = \/A(r) cosh ¢, 22
- N 2.2 o~
A(r)sinh ¢, 2 = y/A(r) cosht where A, B = ZQ% and t,¢ = %(i = ) to write the
+ —

metric in a form
—N1dt* + N 2dr? + r*(Nydt + d¢)?
Note we get z7 — a3 = A(r), 23 — 27 = B(r), and B(r) = A(r) + [? so that B — A = [? as required

2 522
in AdS. At r =ry, A = —% exactly saturating the boundary of region 1. Simple differential
manipulations

T

12 (r —rmz) 12 (r2 - rpz)
i B= .

In[1698]:= A = =
rp? - rm? rp? - rm?

X0 = Sqrt[B] Sinh[t]; x3 = Sqrt[B] Cosh[t]; x1 = Sqrt[A] Cosh[¢]; x2 = Sqrt[A] Sinh[¢];

dx0 =D[x0, r]dr +D[x0, t]dt; dx3=D[x3, r]dr+D[x3, t]dt; dx1=D[x1l, r]dr+D[x1l, ¢]dp; dx2=D[x2, r]dr+D[x2, 6] d¢;

ds = -dx0? + dx3? - dx1? + dx22 // Fullsimplify;
rm rp rp rm

ds2=ds /. d¢ » - = dt2 + Tddbz /.dt » —zdt2— T d¢2 // FullSimplify
1 1

1

Nperp = Sqrt
perp =>4 [Coefficient[dsz, drz]]

Ng = Sqrt[i2 (Coefficient[ds2, dt2?] + Nperpz)] /7 Simplify
r

2dt2dg2rmr dr2 12 r2 dt2? (-r? + rm? + rp?
out[1702]= d(i)Z2 r? - ¢ P + . ( )
1 (rz—rmz) (rz—rpz) 12
(r2 - rmz) (rz - rpz)
out[1703)= J e S MY
122
rm? rp?

out[1704]=

12 4
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gives us

Joreme )

Ny = C T Ty

lr

For region II, taking r_ < r < r, makes B negative, so we will keep 1, z9 as before and instead define
2¥ = —(=B(r))"?cosh, 2= —(—B(r))"/*sinhi

Here we have flipped the sign of B together with exchanging sinh and cosh (so as to remain in coordinates
satisfying the AdS constraint). This is exactly as in Kiritsis 13.7.8, referred to as the “standard
BTZ form”

We keep tN,qg the same. This gives the same value for N| and N,. Lastly for region III, A also becomes
negative, and we redefine !, 2?2 while keeping x°, 3 from region II:

zt = (A(r)?sinh §, 2® = (~A(r))"? cosh

The here r ranges from 0 to oo while ¢, ¢ are unrestricted and range from —oo to oo

Compute the Killing vector ¢ in the (t,7, ¢) coordinates and perform the identification. You
should recognize the metric found in the previous part as the BTZ geometry. Identify
M, J in terms of r1 and write the casimir invariants from part a) in terms of M, J

By computing the Jacobian W and judiciously guessing what vector I should push forward

(way easier than trying to compute inverse Jacobians to pull back £), I see that & = 0, in our new basis:

n[1679)= € = {? x3, r_L—pxz, r_L—pxl, —? x@} // Simplify;
J={{D[x0, t], D[x0O, r], D[x0, ¢1},
{D[x1, t], D[x1, r], D[x1, &]},
{D[x2, t], D[x2, r], D[x2, ¢]},
{D[x3, t], D[x3, r], D[x3, ¢1}};

J2 = {{:_z’ 0, %}: {9, 1, 0}, {__ermx 0, r.l__p}};

€6 =1{0, 0, 1};
J.J2.8¢ == £ // Reduce

out[1683]= True

Indeed, it is easy to see that J is killing from directly applying the Killing equation, and now we see
it comes directly from a combination of the manifest J,,, symmetries in the embedding space. We can
thus identify ¢ as a periodic variable and retain the space as a solution to Einstein’s equations.

Looking at the Nf and N i contributions to ggp we get:

r? + ri r?
—4goo = _T ﬁ
2 2
This is a black hole in AdS with mass M = r*;u. Similarly, from the dt d¢ component, we see that
2r2N¢ corresponds exactly to the angular momentum. We thus get

2 2
re +r2 2ror_
B e it

M =
TR {

Note for global AdS when r_ — 0,7, — —I2, we get mass —I?. Kiritsis adjusts the definition of
mass by +1 making it 0 in global AdS, so that it counts only the mass of the black hole.

This gives
L =-2M, I,=2J/l

165



14. The KK reduction is not too bad:

15.

16.

1 1
dx/devg (7| R +40,60"6 + 1 0uGasd G - iGa/gF/f‘VF“”B]
1 1 L1
— VGG Hyor HY 5 — TN GG P Hyo HY — E\/GHW,,HW”)

with ¢ = & — %log det Gop. Here H comes from the two form not from the B field.I’m almost certain
that the formula in Kiritsis is wrong

We can rewrite this as
1 1
&5z A/det g (e*% [R + 40,001 — GGV (0Gar 0G5 — VG 0Cs5) - iaaﬂpgypwﬁ]

1 L1
— VGG HyyoHYY = =V GHyuy H™ )

Now we must take this to the Einstein frame. We perform a Weyl rescaling ¢ — €*?/3g. This rescales fields
(and changes the kinetic ¢ term) to give us the requisite action

fv R - ,(a@ %GO"BGV‘S (aGMaGm + €2°/GC o, Cs5)

o—4/3 o—20/3
T GapFi 7 - \f GG Hyyo B — NG Hyup H™ |

2/15

Each of the field strengths will obey:

d*[e —40/3» ﬁFa]
d * [6%/3\7 G*® Hp ]
]
]

*[e _2¢/3\/7pr

0
0
0
i [GO“BGV‘S 290/G0,Cs5] = 0

The dilaton will obey:

8 1 4 1 1 .

J00- §e2¢\FG GBI 0C 0 0C 5+ ge_4¢3Ga5Fﬁ‘VF5 w_ 66%/3 VGG PH o HMP + Ee—2¢/3xFGHWpHW
Finally, the metric will obey:

1
Ry = 59 R M¢a,,¢— Gaﬁmﬁ(a Gon0,Gs + €29V G0)

The solution in question has nonzero (magnetic) H,,, and (electric) H,,,, which are functions of r alone.
Finish

show solution

Write Gog = 4/ %((%ﬁ + haﬂ)

Finish
Here we only take the two-form field strengths Hs,, F, to be nontrivial.
By redefining ¢ = ¢ + §V5,)\ = —fqﬁ + V5, we get

~(00)? - 5OV = —5(20)° — (ovs)?
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The ¢ term matches, and the vs kinetic term together with the four (dv)? terms exactly reproduces the
expected —iéyGa/j&“G“B. Let’s look at the field strengths

—2¢/3 2 —2¢/3+vs+4v 72 AN+4v 172
e VGHWp—e Huv =e3 HHVP

2413\ /GG H521,p _ o20/3—vs+dv H5211p — ooy H2,
_ _ 8y
e Gsg (15, )2 = ¢ A (10 )2 = 3 (ED, )2

5vp

These all exactly match. Note that these scalars have a potential- they are not minimally coupled. Conse-
quently, at the horizon, where the field strengths diverge, we expect that the values of these scalars will be
fixed by the equations of motion.

17. This is direct:

-2 i
(mz ) Log[w r]]] H

re?
HypergeometricZFl[—Ia, -Ib,1-Ia-Ib, (1— —]],

Piw®) (A B

in@483l= R1 = (— + —
2 2

+b)]

ro? -1
R2 =A2 [1- —
2

condl = Assuming[r0® > 0, Series[R2, {r0, 0, 1}]1]
cond2 = Assuming[r@ >0, Series[D[R2, r], {r0, 0, 1}]]

P1w -2 2B 4B Log[rw]
Solve[ -+ — ( Log[w r]]] = condl && - ——  ——8
w?r?

= cond2, {A, B}]

3,2

nriw nrdw?
A2Gamma[l-ia-1b] 2
Out[485}= +0[re]
Gamma[l-1ia] Gamma[l-1b]

2A2 %Gamma[l—ﬁa—ﬁb]

\Jw® Gamma[l-1ia] Gamma[l-ib]

outjasel= O[r0@] 2

Out[487]= HA -

5a0))

Importantly, the derivative of the inner R profile goes as O( 0) which makes it subleading in determining
B. Thus, B is O(r3). On the other hand, this derivative’s r3 dependence is important for determining the
incoming flux: Im(hr3R*0,R). For completeness I will add this part of the notebook as well:

nisat= Assuming[r@ > @, condlSeries[r®D[R2, r], {r0, 0, 2}] /. r>r0 // FullSimplify]

A22 Gamma[-1i (i+a+b)]? (-1 (a+b) +2ab (HarmonicNumber [-i a] + HarmonicNumber[-ib])) re? 3
out[531]= +0([ro]
Gamma[l-ia]2Gamma[l-1ib]?

18. Redefining K to be unitless, we have a relationship
—iwT

ircosf __ K
1'3/2

e Yooo + higher moments

Let’s integrate both over S3, giving

T T 21 wx
f d@f d@bf CM sin2 Hsin(beixCOSH _ 27‘(2 Jl(x) _ KL /271'2
0 0 0

Ji(x) ~ \/zcos(z — 37/4)

2721 = K\V212 = K = \/4r

The asymptotic form of Jj is

So then, up to a phase

as required.
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19. In spacetime dimension d + 1, one can write a black hole metric as:

B 3 3 dr2 B B T‘d_l
d52 _ _f 1+1/(d l)hdt2 + fl/(d 1) |:h + TQdQ?[_l] - \/j _ fl/(d I)Td 1’ h=1-— /r(;_l

I will ignore the details of f for now, since it depends a lot on the dimension and charges. h is simply what
reproduces the Schwarzschild solution for a totally uncharged black hole. What does matter is that the

horizon is at r = rg, giving a horizon area A = Qd_lr(()d_l) f(r0)"/2, meaning that to leading order as r — rq
we have 2d—1)
fry~ g A
rg(d_l) 7 " Qi1
This is all we need for the near-horizon data.
vV
—— — NN
“— > <

r=Ye

What matters is that the throat size that is determined by f is much larger than the extremality parameter
ro. For a minimal scalar [J¢ = 0 in d + 1 dimensions we get

thlar (hrdfla,n) + wﬂ Ro(r) =0

For r small and close to g define the coordinate o by

. dT . d—1
do = BT = 0y = h(r)r® "o,

This give us that the wave equation becomes
[02 + W ()R, (r) = 0
Now, in the r — r¢ limit this simplifies to

_ ~ . d—1 ~
[02 + wQR%d 1)]Rw(r) =0=R=Ae ™ ~ A(1 —iwoRE)
where we have picked the sign in the exponent so that the wave in the near region is purely incoming. In the
final approximation, we're looking at the extreme near-horizon limit. Furtheg, keeping rw small but looking
. . —dt2 o
at large r compared to rg we see that the behavior of ¢ is given by o ~ —%, yielding

d—1
RH

R(r) ~ A(1 — iwm)

(95)

Now for the far region:
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Redefining 1 = r5 R and introducing the tortoise coordinate dr, = dr/h so that 0,, = ho, we get

d2 d— d— rd72 d_ ,r_d72
[+ (1 - 72_2> (1 - d_;&.’m) 1) et =0

V(rs)

This reproduces 13.8.4 when d = 4. We don’t expect this to be solvable, and so we will work at it by
matching. Again, ro,7) € 7y L 71,75.

For r large, r = r, and we can divide through by w giving p = rw. The equation then reduces to
d? d—1)(d-3
£ -y,
dp 4p

This has a solution in terms of Bessel functions:

(e «/%[Aj—prd/z(ﬂ) + BY_114/2(p)]

This implies that asymptotically:

R~ ﬁ[eiwre—iwﬂle—i(d—%ﬂ(%l - Bei(d—2)g) + e—iwreiw/4ei(d—2)/4(A o Be—i(d—Q)g)]
r

The absorption probability is then

-1 2
1+ Beiald=2)
T'=1-— A

L+ Beih@D
We need an odd number of spatial dimensions for this to work, reflecting the fact that the Bessel functions

degenerate in these cases. There is probably a cleaner way here.

Taking p = rw « 1 at r = ry, for matching, the Bessel functions will become at leading order:

R~ ! T (A 21 (rw)~ 42 4 B 20
(wr)@=D/2 Y2 I(d/2) [(2 - d/2)(rw)2-1 (96)
Jr20=d/2 Jr2(d=3)/2
TR TR = dR)wn)
Now let us match onto . This is direct, and gives:
A T(d)2) B T'(2—d/2)(wRy)i12B-92 _B_ 22790(2 — d/2)(wRy) !
A otoryg  F ! Va2 —d) AT 2= ardp)

We will then get in the w — 0 limit:

_125790(2 — d/2)(wRp ) !
- ’ (d—2)I'(d/2) ’

Now, following the discussion of 13.18, we must account for the conversion factor K from partial waves to
plane waves. In d spatial dimensions we get this to be

_ (27r)d_1
K wi10,
This gives
21)d-117(4) 93—d _ d—1
s = VK = [CO ) 2R = a2l
wd=127d/2 (d —2)T'(d/2)
_ ‘de/Q_lef{_lF(Q — d/Z)‘ _ } 27rd/2_1R§I_17r ‘
(d—2) (d—2)T'(d/2 — 1) sin(d/2 — 1)
d/2 pd—1
_ 27/ Ry ~ Ay
I'(d/2)

as required. Literally after all that I’'m off only by a factor of 2.
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20. We have seen that the Ricci scalar for a Dp brane solution takes the exact form:

LX) (p+ 1)(p—3)(p — 7)?

N (T

For p = 3, this vanishes identically. On the other hand, the dilaton EOM yields
R =4(V®)? — 41
since the solution ® is a constant, at leading order about a classical solution, this equation reads
0% = 0.

Thus, the dilaton is indeed minimal. We do not expect such nice simplification for other Dp branes.

Now, let us calculate cross section per unit D3 brane volume. We consider s-wave scattering. This wave
equation in the D3 background g,, = v/H(r), /g = r°y/H(r) translates to

0= (\;g(?rg”\/gﬁr + w2gtt>R(r) = (rf’\l/ﬁ

As before, lets redefine ¢ = r/2R. We get the equation

4
0,20, + wQ\/ﬁ> R= %GTTE’&TR + w? (1 + L4>
T T

| 2 | 2
0= d)”(r) + |w ( + T‘> - — ¢(7‘) = ‘/eff = — —Ww (I + >

Again, this does not look like it has an analytic solution (actually apparently it does and its a Matthieu
function, but we don’t really know that). Taking p = wr and looking at p » 1, we drop the L*/p* term and

obtain solutions
mp
b =4[5 [A2(p) + BY3(p)]
For large p these asymptote to

1
R~ 2r5/2

[eirw(A _ ,L-B)€3i7r/4 + efirw(A + ,L-B)ef3i7r/4]

For the small r limit, on the other hand, we get

) + BYx(

Y = M{AJQ(
p p

Lw)? Lw)?
e (Lw) (Lw) )}

For this to be an incoming wave in this region, we require the combination

B - (Lw)* (Lw)? o (Lw)?
r = A5 (D) i | (o7)

We want to match this at an intermediate value of . Take p « 1, and look at low frequencies. This will
allow us to write the first solution as

1 Jmp 1 [7wd
= 52 ?(AJ2(P) + BJa(p)) ~ ¢ A—

2
B
8V 2 riy/w3T/2

We see that for small r, the second term blows up, and we expect that for matching to hold, we must take
B =0.

Meanwhile, equation for small r gives in the w — 0 limit an expansion:

i

™

R~
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For these to match we must have:

sV 27 7 T a3\

1 |7wwd 4iA A 1 jwdmd
A= —"— )

The conserved flux is 1
F = % [r°R*0,R — c.c.]

1

For the incoming wave this is 7, = —w|A/2|?. For the absorbed one, a quick Mathematica computation

gives Fups = —72L78rw4 |A)?

(Lw)*

(0r)?

L2w L2 w
inf1021]= Rabs[r_] := BesselJ[z, ] + IBesse'LY[Z, —]
r r

ans = Assuming[Arg[r] == 0 & Arg[rw] =08&&r >08&w>0&&L >0,
In[r® Conjugate[Rabs[r]] D[Rabs[r], r]] // ComplexExpand // Simplify]

Fabs = Assuming[w > 0, Series[ans, {w, ©, 5}]] // Normal

1
out[1022]= —— L0 w®

BesselY {2,
2r

BesselJ{l, I}Tw] - BesselJ{S, LZTM] Lzru)] +

L2w
Bessell {2, -~ ] -BesselY {1,

Lzrw] + Besselv{3, LZTM] ]]

218wt

Tt

out[1023]= -

This gives ~

Fabs AP 8L3w? 7% (Lw)®

Fim A2 7  (16)2

Now, following the discussion of 13.18, we must account for the conversion factor K from partial waves to
plane waves. In D spatial dimensions we get this to be

Rabs =

(2m)P—1 2
K=y|— 32
D105, &
in our case of D = 6. Altogether we get
478 3
= Low
Oabs = KZRabs = T

as required.

The fact that the B coefficient did not come into play confirms once again that the near-horizon regime is
all that matters in the calculation of o

For higher partial waves, the Bessel functions involved take the form Jy 5. The outer region will continue
to have B = 0 enforced, and look like

A
?JQM(P)
while the inner region will look like
~(Lw)? Lw)? . Lw)?
A( pz) [J2+£(( p) )+ZY2+£(( ) )]

This will give a match like A ~ (wL)~2¢A. This makes it so that their ratio squared goes as (wL)*. The flux
calculations remain the same. Altogether we expect o5 to scale as L3w? (Lw)% for higher partial waves.

Finally, the Hawking emission rate remains zero, since it involves a factor of e™#* and § = 1/T = oo for an
extremal p-brane. There are likely corrections to this beyond the semiclassical level of analysis.
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21.

22.

Let’s expand:
n\8

E (1+q") ) ; \
Hm:“mq“% +960g° + 5264¢" + ...
n=1

For N = 0 (T*)" /Sy is just a point which has trivial cohomology ring with dimension 1.

For N = 1 we recover T* which has 4 x 4 cocycles generated as an alternating algebra by the elements
dx',i = 1...4, giving dimension 16. Note that we should view da’ as fermionc elements corresponding to
the odd cohomology, and even elements such as 1,dz’ A da?,dx' A dz? A dz3 A da? as bosonic.

For N = 2 we get T%/S, identifying points of two separate Tys. Each individual Ty has all of its cycles
remaining intact, giving 2 x 2 = 32 cycles untouched. The remaining 2% — 2 cycles are half-killed, giving
2 x 2% 4 (28 —2 x 2%) /2 = 144. Although this gives the right answer, I see that its not the most generalizable
way to look at things. There will always be an untwisted sector of this orbifold, as well as twisted sectors in
1-1 correspondence with conjugacy classes of Sy. The untwisted sector simply considers N particle states
on T%. There are 8 fermionic elements and 8 bosonic elements in the cohomology. The types of 2-particle
states are thus:

8x9 8
X9 L BXT L gxg —1928
2 2 Sx8

— —_ bose-fermi

bose-bose  fermi-fermi

The twisted sector here is a single copy of T%, and any cycle is allowed. We thus get an additional 16 terms,
giving 144 as desired.

Now let’s look at N = 3, the first case where Sy becomes nonabelian. We expect an untwisted sector,
corresponding to the system of 3 point particles on T%. This gives
8x9x10 8x7x6 8§x9 3 8 x 7
3 T e TTa Xt
as well as two twisted sectors, in 1-1 correspondence with the conjugacy classes (123) and (12)(3) of Ss.
The former gives a single T#, whose cohomology is 16. The other gives two (independent!) T“s, whose
cohomology then is 16 x 16. Altogether we get:

x 8 = 688

688 + 162 + 16 = 960

as required.

Let’s finally do V = 4.

827] (%#2,2%) + (2") (

8+9+10+11 8x7x6x5 8x7x6 8+9:10 8+9 847 X
( + + 8+ 8 + ———-](*l,l,l,l - untwisteds)
24 24 6 6 2 2

89
2

In[1170]:= (24) (%4%) + (24)2(*3,1*) + +8<8 + 8 7

(#2,1,1%) +

out[1170]= 5264

The generating function, for a manifold M with f odd cycles and b even cycles, consists of taking the
generators of H*(M) to be a®{,a = 1...dim H*(M). For each S, twisted sector of n copies of M, we
introduce “twisted modes” a?,,.

Then, the generating function consists of taking products over all n so that for a given Sy, the full orbifold
is built up from taking all the ways one can partition N in terms of subsectors twisted by n;, > n; = N.

Thus, we look for the ¢V coefficient in:
n

(1+4¢")f
_ b”
i (=q)
A derivation of Cardy’s Formula:

Take the CFT to have continuous spectrum, which we can write in terms of a d-function based p(A) as

Z(r) = L . dAp(A)e®™m4
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23.

We can invert this using a Bromwich integral:

p(A) = JC drZ(r)e”2miTa

where C' is the contour running parallel but slightly above the real axis, enclosing the upper half plane. In
the g-disk this would run close to the boundary of the disk.

Now, we would like an expression for Z(7) as &7 — 0, namely the high-temperature limit. We know that
Z(t — ) = dim Hy, the space of ground states, which we take to consist of only a unique |0), so we take
this to be 1. Further, we know that

2mic

q—c/24Z(7_> _ e—2m"rc/24Z<7_) _ Z(—l/’]’)e 7

is modular invariant. This implies that

<

Z(1 — 0) ~ Z(0)e? 317 = ¢¥3ir

We now can approximate the integral:

0 ) .
p(A) ~ J d7_6727rz(7-A7m)

C C
Ar_S — .
oz =0T T =0 oA

Plugging this back and interpreting p as just an expected number of states at a given level Q(N) gives

This gives a stationary value at

Q(N) = p(A) ~ e%\/% =5 =1ogQ(N) ~ QW\/E\/N

I did this just for the left-movers, but taking left and right movers together gives the desired result:

S =log Q(Nyp, Ng) ~ 27r\/§( Nz ++/Ng)

As we've seen before, a single free boson the partition function is Tr(e #%0) = 5~ while for a two free

fermions, bosonization give the identical result. For a single free fermion then, at leading order (which
means just retaining the same central charge) this gives n~1/2. For ny copies of this system we simply
exponentiate to obtain the leading piece:

0 1 %"f
(H Ry e_ﬁn/R> (98)

n=1

This can be directly written using ¢ = e #/% je 7 = i8/27R

!/ ans
(77(7) )

1/24

We need the high temperature limit, for which ¢
satisfies n(7) = +/i/7n(—1/7)

is subleading and can be ignored. Now the n function

2 _en’r
n(Bn/R— 0) = [ E e 5

The square-root term is also subleading and we obtain to leading order

3 (2m)’R
log Z = o™ 247

173



which is exactly what we want, once we remove units from R, R — /,R.

In general, we also have fermionic contributions modifying the numerator in equation . Here, again
T = if/2rR. For a single periodic or antiperiodic fermion we will have traces that gives partition functions

of the form:
O [ 41/24
TrP[e—ﬂLo/%rR] _ H(l + q%n) _ q 92(7—)
Q0
Trg[e~PLo/2mR] = H 1 +q2ﬁR (n+1/2)y / 1/2493

Taking the infinite temperature limit sets 7 — 0, ¢ — o0 giving respectively

1/7_ 27 (27")2R
X e48r = e 488
(—1/7)
1/7— 271 (27")2R
X ed8t = ¢ 488
1/7'

So in both cases we retain the same contribution as the 77_1/ 2 divergence, with sub-leading terms being
different.
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Chapter 14: The Bulk/Boundary (Holographic) Correspondence

1. The two diagrams are as follows:

LS

2. Let us focus on vacuum diagrams. We will rescale the fundamental field (call it ¢) so that the action has a
leading factor going as IN. Schematically this is:

N <iTrF2 + tr(D¢)2>

By the same argument as for fermions in QED, any fermion worldline will give a closed curve, which we
interpret at giving a boundary of the Riemann surface. Moreover, each fundamental field loop will contain

exactly as many propagators as vertices (except for the trivial disconnected loop).

Each fundamental vertex will contribute N while each propagator will contribute % The connected fun-
damental loops could be viewed as not contributing N because each fundamental line will join with gauge
boson lines which are already traced over. The fact that the fundamental loops do not contribute a face is
consistent with their interpretation as enclosing boundaries of a Riemann surface. Thus, the introduction of
each fundamental loop is equivalent to including a cycle with no interior, so we will not count the face, and

the vertices and edges don’t contribute either. The counting is then unmodified

M\ N\
s NF:NX)\E—V
() (5)

\
%} t_ﬂ

3. I think that the normalization of this operator (which is the same as in MAGOO) is just wrong. I think it
should be ®, = Tr[[ [, X;"] McGreevy confirms this.

Our single trace operator is a product over the distinct X; fields

O, =Tr| [X]"

i

Each such insertion has )}, n; external legs.
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For &, distinct, we consider:
1 . ) L m
S = Ny Tr[dX'dX7 + cipX XIXP 4+ ]+ ) Nga(2)0q()
a=1

Here the g, are taken to be functions of x.

We then compute:

<!:[1 (I)a(l'a)> = Nm 591 (ZL’l) . (ng(mm)

We can compute vacuum bubbles for this modified action as before. We now get a new vertex type involving
the single-trace operator ®,. Because it still appears with a coefficient N in the action, we can still apply
the same counting logic to the calculation of log Z. The spherical contribution dominates.

log Z[{ga}]

Thus, again the leading contributions to the free energy goes as N2, and we get that the correlator expression
behaves as N2~™. In particular, the three-point function vanishes as 1/N, as said in the text.

. Again, let’s take the operator without the ﬁ out front. To add in a double-trace operator requires two
factors of IV out front.

We thus add to the action the term: N

Snew = Z Nzga(aj)\lfa(l‘)
a=1
We get m-point correlators by differentiating m times by N2g,. With our choice of Sy, log Z still satisfies
the same Euler characteristic rules as before, and has a dominant contribution going as N2. We see that the
two-point function then goes as N~2. Normalizing the two-point function two 1 requires that we look at the
fields ¥, = NU,. The three point function then goes as N L.

Understand the Silverstein paper about the connecting S?s contributing for double twist.

. We add to the action the following (schematic) terms:
NTr[(Dq)? + (D§)* + qq + q7® + .. .]

Again the propagators will give 1/N and the vertices will give NV, so we can apply the same analysis to get
that planar diagrams dominate. For the two point correlator of ¢g, we must introduce a quark loop into our
worldsheet. The lowest-genus such surface is the disk, with two ¢gs inserted on the boundary. This is genus
1. Differentiating with respect to N twice I get a two-point function going as N~'. To get this to be unity
I must rescale my mesons operator to be v/ Ngg. Now the m-point correlation function goes as N m/2N1-m,
We thus get scaling behavior behavior N'~™/2 for mesons. In particular the 3-point function goes as 1 / VN.

. It is important that in this case, for both SO(N) and Sp(2N), the fundamental representation F is real.
Consequently, the adjoint can be written (up to 1/N corrections) as the antisymmetrized (resp symmetrized)
part of F ® F. In double-line notation we can understand the gluons as being labeled by two “fundamental
lines”. Because there is no difference between F and F, there is no inherent orientation to the strips, and
we can twist to form unoriented surfaces. Thus, the string theory that these would correspond to must
necessarily be non-oriented.

The difference between the orthogonal and symplectic projection will be in the relative sign of a propogator
with intermediate twist between O(2N) and Sp(2N). For O(2N) we have the same sign contribution between
the propagator and the propagator-with-crosscap. For Sp(2N), we have the opposite sign.

Draw this

We can talk about a large IV expansion of diagrams identically. The only additional ingredient is incorporat-
ing points where edges swap. These play roles identical to cross-caps. The diagrams we can draw will have V'
vertices with N/ coefficient, E edges with A/N coefficient, F' faces, with N coefficient, and C' “cross-caps”
with N1 coefficient. Altogether these gives

NV*E‘FF*C}\E*V _ NXAE*V

generalizing the prior discussion.

176



7. Take L = 1. The relationships 14.4.7 become:
Oy = \"V4 = (47Tg5N)_1/4

and
Cem)E , (2m)TE 1 m

G — B = .
NTT6r 7T T16r (4nfIN)Z T ANZ

8. Starting with IIB the gravitational constant is 167Gy = (27)"¢8g2. The volume of S® is 73L3. We get:

S

838
G5 = L5 Sgg

Recall in AdS/CFT, the coupling constant A is the 4th power of L in string units:

4

7o 4mgs N
S
Substituting this gives:
G — 8wl wL?
T (4rN)2 ~ 2N?

This is a nice relationship, independent of the string length, and only dependent on the size of AdS and the
number of D-branes.

9. Massless and massive vector fields in AdS

(a) Massless Case Take the gauge A, = 0. Let A, (u,#) = u»~1A, (). Note that this way A,dz" has
scaling dimension u®. The equations of motion for the Maxwell theory give:

1 _ S
0 = onr(v=gF"N) = op1 (V=99 49" PojaAp)) = 0u (Wu“@u(uA 1AWE))) +o

where ... are terms with higher powers of z. Altogether this is:
(A =p)(A = 1)(Au(Z) = 0.

This implies that either A =1 or A = p.
Consequently this gives a scaling dimension of d—1 to J*, exactly what we want for a conserved current.

(b) Massive case Now again we have:
MN m? N
0=0m(V=gF"") = v=9734
2
m
= 0 (V=99""9" P04 Ap) — V=975 Au

=L 20, ( !

up+2u48u(uA_1AM(:f))> — IPm2 AP Ay +

Then this gives a new quadratic equation for A:

1 —1)2
Oz(A—l)(A—p)—Lng:Azp; i\/(p 41) + m2L?

We see that the massive field picks up an A, component which cannot be gauged away, as the mass
term is not gauge invariant. Because gauge invariance is lost, we see that the corresponding operator
in the CFT does not have dimension d — 1 anymore and no longer gives rise to a conserved current.
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10.

11.

12.

13.

Taking A, — A, + 0,€ gives:
WAL — WA, + due] = <€dew A Wy = WIA,]

here A, is the source for the boundary J# current in the CFT. So the partition function is invariant under
any local gauge transformation of A,. This gives us that a global U(1) in the CFT corresponds to a gauged
U(1) on the boundary.

We couple our CFT stress tensor T#” to an external field h,,. Note that under any shift h,, + due, + dve,
we get:
Wlhuw] — Wlh + Ouey + dvey] = (34T huw=28d%w o T _ g 1

Thus, the translation invariance given by 0, T*" = 0 of the CFTy has given diffeomorphism invariance in the
bulk. This is gravity.

In global coordinates the metric is

2
ds* = - oLs2 5 (=dr? + d6” + sin® 0d(;)
Let’s find w by integrating:
" de v 2du 0
L COSQ_J;] 7(1—u2) = u =tans
Consequently,
74UQ = tan® @ = ﬂ
(1—u?)? cos2 6
so we get agreement for the du, d(3 terms. Finally
(14 u?)? 1

(1 —u2)2  cos?6
and we get agreement for the dr term, without having to rescale 7. Since 0 < 6 < 7/2 we have 0 < u < 1 as

required.

Take dr = 0. First, take the points to be on opposite sides of the AdS cylinder. We get a distance equal to

I+e 94 2— 2
[ 2 g (22) 21 ()
1—e 1—u € €

Given that AdS is a homogenous space, we can use symmetry arguments from group theory to get the
general formula, replacing 2 with |x; — z2|. For finding the geodesic distance through direct methods, a
better coordinate system would be global coordinates. In AdSg this looks like:

X_1=LcoshpcosT
Xo = LcoshpsinT
X1 = Lsinh pcosf
Xy = Lsinh psin 6
this generalizes directly to AdS,;2. The argument will be the same there. Note
ds® = L?(— cosh? pdT? + dp? + sinh? pdf?).
Now take dT' = 0. The Lagrangian takes the form:

L = LA/ p? + sinh? p 62

Take 7 = p so that the EOM for 6 quickly gives:

0 = ¢
sinh py/sinh? p — ¢2
Take ¢ = sinh pg. In AdS this corresponds to the minimum distance p that the geodesic will approach, since
there we have 0/ = 00 = dp/df = 0.
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14.

15.

To get A6, we integrate this, giving

cosh p+/2sinh pg

Af = 2arct
arctatt y/cosh 2p — cosh 2pg

The factor of 2 comes from the fact that we need to do the p integration twice to get the full geodesic curve.
Now we must take p — o0 to approach the boundary of AdS. In this case, the equation for Af simplifies to:

A0 — ¢

tan

= sinh pg

Taking # — 0 (corresponding to pg — o) shows that ¢ = —m/2. This gives

; A6l 1
an — =
2 sinh pg
The total length of the trajectory is:
. .9 sinh p cosh py
L dp\/l +sinh” p (6/(p))2 =L | dp =2Llo +
\/ sinh? p — sinh? pg cosh po

Take py — co. The leading behavior of this goes as

| 2ePf
8 cosh

0
= 2Llog (2epf sin )
0 2

Now note that for z,y coordinates in R%*2 lying on the unit S?*!, we have

0 0
\x—y\2 = (00829— 1)2 +sin%0 = 4sin2§ = |z —y| = 2sin —.

O

Finally, sinh py = tan 6. This gives 6y = 7/2 — ¢, with € = ¢7#/. Then @ = tan 5

the final entropy formula:
A = 2Llog(|z1 — x2|/e€)

The volume element goes as

L6 f—e u? N 16L42 o _ 167°L*
o (1—u2)? 6e3 3e3

The €3 scaling valid in the small € limit is exactly area scaling.

sinh? p = sinh? pg
cosh? pg

2

~ 1 —e. So indeed we get

Because of a horizon, particles approaching this horizon will be arbitrarily redshifted. This implies that
the frequencies reaching the boundary can be shifted to arbitrarily low values, giving a continuum of states

above the vacuum state with no mass gap.

179



16.

17.

18.

Yes (Maldacena already does this in his seminal paper). Take the branes to be separated by a distance r.
The supergravity solution will look like

4rgN et
4

1
2 2 =)
and take £z, r — 0 while holding U = r/¢2 fixed (we've done this type of near-horizon analysis in chapter
11). This keeps the masses of the stretched strings fixed even as we bring the branes together. If all the
branes are coincident, the coordinate 7 in the supergravity solution gives an equivalent coordinate U = /{2,
giving the metric

r

VAargN

Now, pulling M of the N D3 branes off by a distance W gives a supergravity solution:

U? dU?
ds® = (> {dﬁ + «/47rgNW + «/47rgNdQ§]

9 o U? 5 dU? MU* 5
ds® =l . \/N Y i dIL‘H+\/4ﬂ'gW N—M+m+\/47TQNdQ5
VAaTg - U—W[A

As long as U » W we still effectively see AdS5 x S5. For smaller values of U, this splits into two separated
AdS backgrounds, with two different near-horizon limits. We can trust these limits when both M and N are
large, but splitting off single branes gives geometries with singular curvatures that we cannot trust.

But since finite U already means that we have taken the near-horizon limit, the entire moduli space RV /SN
is visible at that level.

The eigenvalues of the Laplacian on a 5-sphere of radius L are in correspondence with the quadratic casimir
of SO(6) for the (0, k,0) representations, giving:
E(k +5)
12

For a proof of this, consider a homogenous harmonic function of degree k. Any such homogenous harmonic
function takes the form f = |z|* im, Y% (7). Look then at the Laplacian

f==V2(a|*f) = k(k + 6 = 2)[a| "D f 407 T

Thus the spherical harmonics on a unit S° have eigenvalue k(k+4). Rescaling the sphere will contravariantly
rescale these eigenvalues by L2 as required.

The wave equation for a massive scalar field is quickly seen to be:

2
v2¢=%[aﬁ-%au—a§+a-a]¢:m2¢

Upon Fourier transforming

d"tlq ige 0 o = =
¢(U,$)=J(2W)p+1¢(u,q)6q ) Q$=—qt+q56

we get

m?2L?
[5§—zau—q2+a'5—zﬂ} ¢(u,q) =

solving this in Mathematica directly yields two solutions

1
o4 (u,q) = Aul# Jy(iqu) + BuHTpY,,(iqu), V= 5\/(]9 +1)2 4+ 4m?2L?

We can rewrite this in terms of modified Bessel functions as:

Au's" I,(qu) + Bu'?" K, (iqu)
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19.

These two solutions have the desired scaling dimensions of Ay respectively (K will have to be defined
differently from how it is defined in mathematica and wikipedia).

Now WLOG take 2’ = 0. Rotating to Euclidean space, it is a quick check to see that the bulk-to-boundary

propagator as written in L.51 does indeed satisfy the massive Laplace equation precisely when A(A—p—1) =
272

m-L~.

u
(2 + r2)"

ne3gk= @[u_4 r_] i=

ZLZ

D[o[u, r], {u, 2}] - ED[Mu, rl, ul - ¢[u, r] +r'pD[rpD[¢[u, rl, rl, r] // FullSimplify
u

uZ

outig40j= —u” 28 (rz + uz)’A (L2 m?+ (L+p-A4) A)

Next, we see that

Jd”“xf(u 2:0) = Jdpﬂx“A _ up+1Afdp+1y1 _ o pHAQ JOO _¢rdg
- (u? +2%)% 1+ ¢)3 Yo +e)A

This last integral can easily be evaluated using I'-functions. The final result is then:

DAPNA-52) s epT(A—52)
oT(A) T(A)

p+1-A
U Q,

Thus, the normalized bulk-to-boundary propagator is:

r) u®
7T (A - ey (WP =2 P)A

In the above, we pick A = A,. By convolving a boundary configurations ¢o(x) with this propagator, we
obtain a field ¢ in AdS satisfying the massive Laplace equation.

_ ['(A) 1.7 u? ’
609) = sz T | P )

This is clear. It is also quick to see that as u — 0 the leading behavior comes from the bulk-to-boundary
propagator going as uPT1=2¢y(z) = u”~¢o(z). This is exactly proportional to the leading solution, which
asymptotes with the lower power A_.

It is worth noting that there is another very clean way to obtain this propagator, as originally written in
Witten’s paper. Take the delta function source to be at u = 00 and let’s look for a solution of the massive
wave equation. Because the source is at oo the solution has full symmetry under translations in x, and so
can only depend on u. The equations of motion are:

Oy P2u20,0(u) — mPL2G = 0 = p(u) = u®, A(A—p—1)=m?L?

this gives the correct A4 as required. To relate this to our solution for a § function at 0 we must do an
inversion, which consists of taking u,z — #% yielding our desired propagator.

The extrinsic curvature K is defined as

1
K = i(V,my +Vun,), K=MK,

where 7, is the normal vector and h is the pullback of the metric g to 0M. When the coordinate system is
hypersurface-orthogonal, then this simplifies nicely to

1
K/»”’ = inpﬁpGW
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20.

21.

For the poincare patch, we have the normal vector —ﬁ&u = —70y. Note the minus sign, because u — 0
gives the boundary, which is the opposite from the outward normal orientation. The contraction gives:

1, 52 p+1

() hw) = K ==——

K., =
as required.

This problem is done for p = 3, but I will solve it for general p. The subleading order equation of motion
for ¢ of the form u®(¢g + u?¢e) is

uAA(A —p—1)¢o — uAm2L2¢>0 + uA+2D¢0 + uA+2(A +2)(A—p+ 1)y + uA72m2L2¢)2 =0

At leading u® order we get the quadratic constraint on A, giving A+ as solutions. Solving for ¢ at subleading
order gives:

by = — Cleo
2T (A+2)(A—p+ 1)+ m2L?
Plugging in for A = A_ yields:
b0 = N =
2T AN 122
This is consistent with what is written when p = 3. Taking now A — p+ 1 — A gives
Cleo
Ay = =70
2T AN —6—2p

Again, taking p = 3 gives the correct 4(A_ — 3) denominator.

Let’s repeat the argument for clarity. We stick to p + 1 = d = 4. We have a bulk-to-boundary propagator
given by:

1 A (A -2
_ v , O3 = 7r2¥

Cs (u2 + |z — 2'|2)A r'(A)
At this stage we take A to be arbitrarily. We do not identify it with A4. In the small u-limit the propagator
looks like:

KA(U,.T;JZ’,) =

71

B3 — ') + O@?) +uA( Ol >)

A general field ¢g(z) on the boundary sources a the bulk field ¢(u,x) to take the form:

21 — 952|

o(u,z) = Jdaf;’K(u, x; 2 ) o (")
/ (99)
— w1 (g (@) + uls(w) + ...) + u <03 g “|¢—O(m|)ﬂ P Ao() + .. >

Here we have written the additional terms that we obtained in the prior exercise. This gives for the on-shell
action at leading order:

M 3l
Son—shell = _Tp f d4x\/§g

(MplL)3

_ _2fd4x1d4$2¢($1)¢(372)

d4xK(U, 215 2) 0y K (u, 22; )

u3 u=c

This last integral is given by:

1
Az _mpa T

4C_ A
4 — AVA—2884 (00 — WA 4j 4
( Ju 0 (x1 —x2) + o1 — 3] + 02 dz ]x—:m]?

When 1 < A < 3 the remaining terms vanish. The third term doesn’t though, at least not for
1 < A < 2. Different kind of counterterm needed?
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Now let’s take 3 < A < 4. the third term and all of its higher-order contributions will vanish. on the other
hand, not only will the first term require a counter-term going as ¢2, but so will the u®~22 term. From
Equation we see that this must go as

2
4-A N U .
u 2 (6(x — ) 4(3—A)Dx5(£ x'))
Then we get divergent terms from:

Jd4xu_3u4_A Oz —x1) — LD §(x—x1) ) Oy |ut2 (6(x — x2) — LD d(z — z2)

43—-A)"" “ 4(3—-A)""

6—2A 6-2A
— (4 _ A4-2Ag4( _ u A B u B
=4-Au 0 (xr —x2) + (4 A)74(A—3)Dx16 (x1 —x2) + (6 A)i(A 3)D115 (x1 — x2)
_ _oa 10 —2A

= (4 — A)U4 2A54(ZE1 — 332) + U6 2Ammwl(54(1}1 — ZEQ)

This altogether contributes: )
_ (MplL)deﬁsz 10 —2A
2 4(A —3)

f dxgoIpo

In the original action, expanding ¢ to quadratic order in € gives
2+4—-A A 3
_ 4A € (ML)Z 5 (ML)’(4—A) 50-n) 2 2(4—a)+2 30, Ay P000do

This shows that the ¢? term contributes a ¢o[J¢o term as well.

+...

We thus need a counterterm action given by:

M3A_ M3L
f vh ( ; 4(A 3) ¢D¢>

Here, now, []is taken with respect to the boundary metric h¢, meaning it absorbs two factors of ¢/L. This
is correct :)

22. Our correlator is: 5
(p(k)o(q)) = mson—shell<¢0($) = M\pe™®T 4\ el1)

We take the on-shell action and get

Ay Ag=0

M3
Son—shell (¢) = _7 Jd4$\/§guu¢8u¢

3
_ _M7 f d* kA g NS (k + q)u3(u, p)2ud(u, )

u=e€

Using the form L.50 of the bulk-to-boundary propagator we can solve this:

z2 BesselK[v, z p] 1 z2 BesselK[v, z p] X .
In[1215]:= Ser1es[ —_——— —D _ z] // Simplify, {z, €, B}] // Normal

e¥ BesselK[v, € p] zZ3 e_" BesselK[v, € p]

2v (-peBesselK[-1+v, pe] + 4BesselK[v, pe] - pe BesselK[1+v, pe])

Out[1215]=
! 2 BesselK[v, pe]

n[1234:= Table [

1
— 22 Gamma[v]?
a4

e2Y (-peBesselK[-1+v, pe] + 4BesselK[v, pe] - peBesselK[1l+v, pe])

- Arg[p] - Arg[e] ]

(Assumi ng[F'l.oor[ Py

=0, Series[ ’

2 BesselK[v, pe]

{e, O, 0}” // Normal // Expand]m—z 55 -11 // Fullsimplify, {v, 2, 7}]

out[1234]= { - p4

Log[g] + Log[e]), p6 (Log{ + Log[e]), —p8 (Log{g] + Log[e]),

p'® (LOg{g] +L0g[e]) , -p*?

| + Logrel ), p*

Log{g] +Log[e])}
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23.

Factor of 2 off from Gubser, Klebanov, Polyakov, but I don’t think this problem asks for the
coefficients, rather just the form of the correlator.

There is always a term going as log(pe/2). All other terms are positive polynomials in p and so will contribute
contact terms that we will need to supply counterterms to renormalize. There is an easy way to see this.
A term going as p° simply contributes a §(x) in position space. Even polynomials in p therefore contribute
terms of the form [7%0(x). All of these need to be regulated and subtracted.

We thus recognize the pattern and get

2e2\ sin(mv v 2 _ _
(oR0la) = M+ g (2 ) S (2) — 2 o - L0 D) (2)

Up to a factor of 2 this is consistent with 3.40 of MAGOO. My argument at the moment works only for
integral v, but based off of remarks that I have read, this is what should be expected.

Integrating this is not hard if you know a trick:

272 joo e'ip\x| 1 0 )
dpp2u+3 1ng N f dpp2u+eesz
(2m)* Jo plzl 87> Jo

And look at the O(e) part of this expansion.

Altogether this gives:
1
O(z)0O N —x
©O@OW) > [~

Where I am not sure about the constant, but am sure about the x-scaling.

In this problem I will freely exchange p+ 1 and d whenever suitable. The dual current is constrained to have
scaling dimension p. Upon choosing a gauge:

Ay(u,x) =0, VFEA, =0
We therefore have that A satisfies the differential equation:
1

up+2

0= VMFMN = 0Oy < u4ulau14y> + w2 U4U716Ma[/ﬂ4u]
You will notice that there is an extra factor of u accompanying A in this PDE. This should be viewed as

turning p into a Vielbein index, so that dz* has trivial scaling properties.

The full solution A, (u, ) is then given by:

2 [ BP0 ), prag(p) = 0
(27[')p+1 1] b p/2 bu), p 3 p .

It will be nicer to write the bulk-to-boundary propagator in position space. For this, I'll follow Witten’s
argument by putting the ¢ function source at u = oo. This simplifies things since the solution must be
independent of the x variables. Take the solution A = f(u)dx®. This gives the equations of motion for a free
field:

1
dxdA = éumu‘lf’(u) —0= flu)=u®, A=d-—2
Doing the inversion again we have:

d—2 i d—2 d—1
W = e ey <u2+m2> @ e T e

N Y SR
d—1 | u \u?+ |z]?
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and rescaling by an overall factor of % yields:
ud=? , du
i(u,2,0) = ————— LR e 1
Gi(u, 3 0) (2 T )T <dw ' ) (100)

This does not satisfy Lorenz gauge, but as expected can be brought to satisfy it by adding appropriate pure
gauge terms
Gui(u,z;2") — Gpi(u,z;2") + A (u, x5 2")

Freedman et al have a slightly different propagator, which can be obtained from this one by gauge transform.
It takes the form:

I'(d) ud=? I'(d) ud=2 X%
G,’Z Ii(aj‘)z 51'_27/1
M () W Py T W (4= 277")

This propagator can be seen to naturally come from the embedding space formalism.

Upon integration by parts, the action leads to only a boundary term:

1 1
42J<F,LLVFMV g 22JA/\*F
9 9

The nonvanishing components will come from the parts of *F that do not involve a du. Consequently, we
only need to calculate the du parts of F'. Said equivalently, the on-shell action is:

1 dud®z
Son—shell = 2792 Jd$1d$2Ji($1)Jj($2) J WGuiu4a[0Gu]j (101)
Computing this is straightforward, using (100)):
ud—3 _ ud—3 ‘
(2 7
d—1 d—3, ...
u < u "ty <
—2(d—1)———=—d de' +2(d —1)————5—d2z’ A d
(= Doy 4 2 Dyt A
d—3 d—1 d—3,.i,.j
=d—-1)—5——5—d dr' —2(d —1)————d dr' —2(d — 1)————5—du A da’
D e A 2 Dt~ = ) e
(102)
For the u — 0 limit, recall the scalar propagator for a field with dimension d — 1 would take the form:
I(d—1 -1 I'(d -1 : I'(d 1 :
( ) u _ ( ) u N ué(m—x')dwl—kud*l ( ) da’

ae0(d — 1) (2 + o =2/ 9rip(dy (u? + o — o/2)4 oraT(4) | — @'
So that G;(u, z;2’) will (up to a constant) approach §(z — 2')dz’ in the u — 0 limit. On the other hand,
(102)) will approach (up to a constant):

1 zhox?
oG =3 —— |, — 912712
(0%l = |51012|2d_2 ( Y |z12|?

The leading u?3 cancels exactly against the metric-dependent terms in the integral (T01]). The final result
is proportional to:

1 5 22
— | dziday Ji(x1)J; — 2212
gQJ z1dzy Ji(21)Jj(22) <|x12|2d2 |z12]24

Giving a two-point correlator (after rescaling):
1 N
(Ji(@1)Jj(z2)) = sz‘j(xlz), Lij(z) = 6ij — 288
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24. 1 think this is pretty direct. If a field ¢y diverges as € in the IR, it must couple with an operator O of

25.

scaling dimension d — A in order for the interaction term {¢oO to be conformally invariant. This situation
is generic

What more does this question ask for?
In what follows, there are many variables and the story becomes rapidly confusing if one does not understand

what everything stands for. I will review this. My conventions will mostly by those of Kiritsis, although
occasionally I will adopt notation from de Haro, Skenderis, and Solodukin arXiv:000223

Symbol Definition
g(u, x) Full AdS5 Metric
R, Ricci Curvature of g
The coefficient of 4?" in the expansion of g about u = 0.
g Note that ¢ is undetermined by go. Its trace and
divergence is however determined.
h(4) The coefficient of u*log u?
p = u? Alternative coordinate, usually easier to work with.
R, R Ricci curvatures of gg)) only
Lij Undetermined integration constant in ¢(¥
v(x) = 5—22 gij(€,x) | Induced metric on the renormalization hypersurface u = €
Y Stress tensor of varying renormalized action w.r.t. ¢(©)
Tij[v] Stress tensor w.r.t. metric on renormalized hypersurface
T;J“ Stress tensor of varying anomaly A w.r.t. ¢(©.

The theorem of Fefferman and Graham states that a general asymptotically-AdS metric can be written as

ds®  du®
O = Bartart, gy, a) = 0O@) + w2y D)) + .
Einstein’s equations in this setting are:
1 6
R,uzz - ig,uuR = ﬁguu

It will be rather annoying to derive how this looks like in terms of g and its derivatives. Thankfully,
Henningston and Skenderis already have this formula in equation 6 of their paper, and I am happy to quote
it directly. Take p = u2. Denote differentiation with respect to p by ¢’. Then we get

—2¢'g7'g' + Tr(g)g'lij + Rij — (d — 2)gi; — Tr(g')gij = 0

Here all traces mean Tr(X) = g% X,;. At leading order in p, the first term is set to zero and we get for d = 4
at u = 0:

pl2g" (103)

1
gfj) + ngg gflb) = §R¢j

Taking the ansatz:

(2)

1 1
gi; = aRij + BRgi; = g*gly = (@ + 4B)R = B + Jlat+4f)=0=F= —5¢

We see that to get the Ricci tensor to match we need o = 1/2. Thus we get the solution

2
g = *Rza QRgij

as required. To next order, we have:
4597 1 6nD — 2(gPg1g?),; + TrlgHg?
+ Rl(?) _%(;yy_ th(-?) — 2Tr[gW]g;; — Te[hW]gy; _M+ Tr[g®gP]gi; =0

1 _
= —4(h§;-1) + g,']ZTrhM)) =—2¢%yg 191(]2) — 2Tr[g(4)]gi(j(-)) + RZ(JQ-) + Tr[g(2)g(2)]gij

(104)
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Note that ¢ has canceled. This is generic. In d dimensions ¢(® will cancel. This is a reflection of the fact
that there are generally two solutions to the Einstein equations. We cannot determine g™ uniquely without
an additional constraint. We can still trace over both sides and get a relation between traces. Alternatively,
this comes from the R,.. part of the Einstein equations:

1
Tr[g™W] = ZTr[g(”g(z)]-

The Einstein equations for R;, give the further constraint that

0 = Vi(9™gl) — 9" Vogia = ViTrg' = Vg,

I'm missing how to actually get ¢¥ in order to get agreement with Kiritsis and 0002230.
Thankfully, explicit calculation of g(4) is not necessary for anomaly analysis.

This gives the final desired result:

1 1 1
gy = 505 |(Trg®)? = Txl(g@)?)| + 56 — 79 Tr(e™) +
Consistency of divergence and trace requires:
i i 1 (2)\2 (2)\2
Vit =0, = -7 |(Trg®)? - T(g®)?]|

Now, revisiting (T04)), the trace conditions Trg®* = Tr[(¢)?] and TrA®) = 0 simplify it to:

1 1 1
n = 5™+ STl@®ef - R
1 1 1
= 302+ STl(g?)g) + S(VFVigy) + VA0l - 929 — 7,9, Trg®)

where we have used identities for the variation of the Ricci tensor from appendix C.2. This can be written
as:

1 1 1 1 1 /1 1
WY = SR RN + 2ViViR— SV Ry — 5 RRij + o <3V2R + 3R - Rklel> i

1 1) 1 1
- (= | RuR" - ZR?
/0 6(g)ii ( 8 [ & 3

As a bonus, for d = 2, Equation (103]) gives:

_ 1 _
Rij = Tr(g™"g))gi; = 5 R = Ta(g™'g)
Together with Vig;; = Vig;;Trg’ we get

@_1 0,
9ij _i(Rgij +tij)

with ¢;; divergence-free and t§ = —R We then get:

L c
Tij) = —— = ——R
(Ti5) 167Gy 247

This is the 2D Weyl anomaly.

26. Take:

271Gy
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27.

It will be useful to recall:

—det(g + h) = exp % log(—det(g + h))
— 4/deg gexp [;trlog(l + g_lh)]
- Vaeggexp | juls~n - 5a 0]
= \/degg <1 + %tr(gflh) - ztr[(gflh)Q] + ;tr[glh]2>
This implies

1 1 1 1 1
g(u,z) = 4/g® (1 + §u2Tr[g(2)] + §u4Tr[g(4)] + =utl r[h )] + 8u4Tr[ ( )]2 — Zu4Tr[( (2))2])

Again, indices are raised and lowered with ¢(©).

At zeroth order we get:

L3 1 L3 6 L3 1 4 6
P = — —_ = = —
87Gs et 2mGrelt 167Gy € 0
At second order we get:
L3 11 L3 1.1

LT 1L o) C L @ _
G2 ) - 5 (L= 5)gu g ¥ = 0= A2 =0

At fourth order only the first term of (105 contributes and we get:

3 3
i o (FTrlg W P — {0 2) = o7 oge ) (Tl - Tol(6)?))
= Ay = 5 (TgP — TH[(5)%]) = A

In order to get the correct counterterms, we need to solve for Trg®, Tr[(¢(®)?] in terms of the induced
metric on the renormalization surface, that is at v = e. I will call this v (Kiritsis calls it k) as as not to be
confused with h®!. We have = 5—22 gij. This gives:

VO = 5 (1- 5o + £ 5 (-2 + T )

@_Ll, 1,
= gt T gy

Next, recall:

where R;; is taken w.r.t. g9 This gives:

1 SR[¢)] 112 1

2 _ ZR[O] = = 1 200l _ ij _ 2 R[A2

Trg™ = L Rlg™] = ¢ [R[gu] 9% 5 0 a2 <R[V] 3 [R [v1Ri;10] = G Rl D
(%]

Finally, to leading order:

4 4
T(¢®)?) = 5 (Rl — £RI7)5(RIB] — cRIIAY) = T (Ry[IR ] - S RIGT)

As a check, we see (up to quadratic order in the curvature):

A = Il Pl 2] = 5 (g ROP - {RbIRTD] - SREP)) = g (RsDIRTE] - ROP)
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All together we get

d*zy/g0) | == —loge® A

167rG5 f VI [ 08¢ 4}

= L7 Jd%[ 6+9 2Trg( )+ Tr[g@)% + loge? Ay + ...
167G 212

_ 1671G5 fd‘*xﬁ [i - §R[V] - L; log €2 (Rz‘j[’}/]Rij ] - ;Rh]g)]

Where the ... denotes “up to finite terms”. I think Kiritsis has a mistake and it should be —%R not
+. 0002230 confirms this.

28. Let’s review first. The stress tensor comes from varying the renormalized action by the initial source field
¢(®). This is given by:

2
(Tij) = lim 0 L

2
s Sren = 7Tz j

Thus, we can look at variations with respect to the induced metric v at u = € and take ¢ — 0 at the very
end.

There are two variations to consider. The first is the variation of the on-shell effective action. Generalizing
the argument giving 14.8.35 to a u-dependent metric, we get:

* 871G

sugra 1 L3 —1 3
T2 = ———— (K — Kvyj) = “8nCn <—5egij(€,$) + gij (e, ) Tr[g™ (€,7)deg(€, )] — 629@'(@@)

Varying the counterterm action with respect to 7 gives directly:

1 [3 L 1 L3 5 4
T = TTen [L%'j -3 (Rij - QR%;J'> — 5 loge' Ty

The next step is to write these in terms of the g(2"), ),

It is useful to note:

2 1 1 0
Rij[v] = Rijlgo] + 112 (Rz’lez‘ — 2Ry RM — gvl'VjR + V?R;; — 6V2R9§j)> .
1€ ij
= R[’Y] = R[g(]] 4 12 R’L]R

where the curvatures on the RHS are those of the metric ¢(?). Now we get:

L2
<,sz> _ T[Tsugra + Tc]

L | L2
= TEG | e g +90 g + Ru Rgﬁ? ) —loge? (2 + T)
1
—2g™ — p@® _ gi(f)Trg(Q) _ §g§f)Trgz
L e 1 1 0 L_ o L 1 .

We see that the f—; and log €? terms vanish by 14.8.39, 14.8.43. The curvature terms combine to give yet

another two copies of —h(4))ij, and the remaining terms cancel everything but ¢;; from the 91(;") to give:

3
(Ty;) = [2% +3n? )]
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29. In embedding space, it is easy, using L.10 to calculate:

30.

20 1= mun (€ — €M (E - &)Y = —(AXO)? + (AXPT)? 1 (AXY)?

__ fu=v + L24a?  L24a’? 2+ u—u _ L2+z? + L24g'? 2_|_ Lz _ Lz’ 2
- 2 2u 2u/ 2 2u 2u’ 2u 2u/

= —(u—) Lo\ (2 or xj_lﬁ y e @ ’
2u 2u U ! U u! u o u

p(u—u)? + (z—a')

Then 1? = 1 + 0. Now let us calculate:
—iGr = OTP(x)$(a")|0) = Oz — ') Y| ba,ne(@)pa ne(a’) + (z < a').
n,l
The modes of a scalar field are given by:
Gapn = Nane sin® 0 cos™ 09F) (a,b, c;sin? 0) Yy(Q,)(),

1 1 1
a=§(€+Ai7wL), b=§(€+Ai+wL), c=€+l%, wL =Ay +0+2n

Because of the homogeneity of AdS, pick the AdS coordinate origin at z’. Then ¢a, ¢,(2") = 0 for £ # 0.
This reduces the sum to:

F(%) A, N e BleosP 9 & (B),T(A +n) “n A+n ,
e 1A+ N2 da0n(1)PA0n0(0) = 2 oI < ;sin2 9) o~ 2inlt|
ol 7;0 Anefa.0n(z)92,0n(0) or’E Lp g‘o nIT(A +n + 250 lp+1)

I have started using (ascending) Pochammer symbols. Writing this in terms of a Jacobi poylnomial:

P,? 2 (cos 20)e 2t

i I'(A+n) Pl A_ptl
T(A+n+ B2 "

n=0

Using a Jacobi polynomial identity from 45.1.4 “A table of series and products” by Eldon R. Hansen we get
the full greens function to be

(A)e A cos™ 0 (128, 1, (% —Al;l' cos? (9) _ I'(A) 02, By (% 1;1. 1)
1 —p 1 _—
ot (A + 1%P)Lp A+ S cos?t 2A+1W%F(A T lgp)Lp 4

And n? = gg:g is the geodesic distance. Up to a minus sign this is correct. I think Kiritsis means 22!

in the denominator. Either A = A, or A = A_ works.

Upon taking u — 0, % goes to zero and the oy — 1. What remains is (I'm including Kiritsis’ minus sign):

(A ) )A( o’ >A 1 uAT(A) < o’ )A
_ u ) -
2A+17T%F(A+ 1%17) w? + 22 2(A—%) W%F(A—l#) u'? + x2

This is the negative of what is in Klebanov and Witten.

ud

K ol /
p—i—l—?A A(ﬂl’,u,il?)

Ga(u,x;u 2"t —

Take a source field ¢(u,x) in the bulk. As u — 0 away from the source we have ¢(u,z) — u™A(x).

The expectation value (O(x)) is given by contracting the bulk source with a bulk-to-boundary propagator
going to x. On the other hand, contracting with a bulk-to-bulk propagator and taking u close to 0 gives
u”A(x). Thus, we see:

A 1

oa (Ol) = Alw) = o

A
Al = ———
u" A=) p+1—-2A

(O(x))

I think the bulk-to-bulk green’s function should have a minus sign from how Kiritsis defined it.
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31. We are looking at the O(§) contribution to the 3-point correlator of ¢ fields. Note that at & = 0 the theory
is noninteracting and the three point function vanishes. The on shell action is:

M3¢

M3 &
Son-shell = - Z Jd%au(\/%i@”d%) d®\/gp1p23
i1

the contribution due to the cubic term has been calculated. For that, it is enough to look at the O(£)

solution. Now let us look at the first term. For this, we need to look at the O(&) part of the solution. Using
the regulated bulk-to-bulk propagator G, we have:

: d*a’ du’ ;
oi(u,x) = Jd4x"Ki(u, z; 2" )ph (1) +€ J TGE(’U,, x;u', ") Jd4x1d4$2Kj(u’, o'y K (', ' 20) (1) o (9)

Its contribution will look like

M3 d*z .
Y

dAa du’ dA "
= 57 Z J f e Ge(e,x;u',2") 0, K (u, 232" ) + K (6, z;2") 0, G (u, z;u', ') | W (', ")
0 u=e€

W, 2') = fd4a:1d43:2Kj(u/, 22 Kp(u/, 2 x2)¢6(x1)¢’5(w2)

Using L.66, the last term becomes:
6A—1—p

P

d /d4 /
Jd4m d4$”K(e,x;x/’)J al /533 K (', 2';2)W(u/, 2')
u

Taking ¢ — 0 we can count powers to see that this scales as e2~17PT4 = 2A=4  ( for A > (p + 1)/2.
What about outside that range?

32. This is a difficult problem in general. Hong Liu has a method of doing this using conformal partial waves.
Return

33. We can use a conformal transformation that maps the circle to a line. In this case, the minimum area surface
is just a plane in AdSs. The renormalized area of this flat plane is just zero, since there is no curvature that
would give a separation of length scales against which to do a subtraction. Thus, for a straight line we have

W[L] =1



34.

35.

Applying a special-conformal transformation will take a line to a circle:

' + bix? z
1+ 2b;zt + b222’ 14 bxt + b222

Take only bs # 0. A quick check shows that this takes the line xo,x3,24 = 0 to the circle x3,z4 = 0,
boxo + bg(x% + x%) = 0. This is centered at x1 = x3 = x4 = 0,29 = 1/2by. It has radius a = 1/2bs.

It is now quick to see that the z surface is expressible as a hemisphere in the standard coordinate system. If
r is the distance from the center we get

z=a?—1r2=r=1/a2 — 22

We can thus integrate over 0 < z < a and 0. The induced metric on the worldsheet is:

L* 5 o 2 2 L 2 2\ 192 i 2 L 2 2\ 92 a’ 2
;(rd& +dz +dr)=zQ<(a —2)do +<1+a22>d’z>zz2<(a —2)d0 +a2—z2dz>

Calculating the renormalized area from the determinant of the induced metric yields:

dza L2
= = - —1
s 2 2 27T€2 f f e )

s

subtracting off the divergence from the area associated to a wilson loop that has a cylinder as boundary, we
effectively drop the e~! term. This gives a wilson loop going as

W[C] — ¢~ Sren _ €L2/Z§ — eVATA
I assume that making use of this conformal transformation is what was meant by guessing the qualitative
form using symmetries.

The monopole-monopole static potential is the EM dual of the quark-quark potential. It is probed by a D1
brane in the bulk. The tension of a D-string is 1/gs times that of an F-string. Going through the same
steps for calculating the rectangular Wilson line gives the same potential as we got in 14.9.11 with an extra

gs_l (47T)QYM
(4Tf)
1 4r? \V QQ%MN B dn?) 2N 95 M
Lpit (U

This is exactly S-duality sending g% ,, — (47)/9% ;-

We derive the following

e Hawking Temperature:
In Euclidean signature, all we need to look at is the part of the metric going as:

Now applying exercise 13.1 with F' = 1,C(r) = f(r)/v/H we get exactly:

C'(ro) o

Am 7a/ L4 + 78

The entropy is extensive so will be proportional to the (regularized) worldvolume V3. The remainder

will be proportional to the area of the 5-sphere m37° around the brane. In order to get the correct

e Entropy
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volume factors, we take the determinant of the full metric, not including ¢ and r, yielding /g = roHY2.

Altogelher then we get
L4 / L4
V- 7.[.37n5 1 ‘/'375 1

4G N 2573842

as required.
e Chemical Potential

The chemical potential should be the value of the p-form field at r = ro, multiplied by V,, T}, so as to be
extensive and proportional to the tension. From 8.8.7

2 2
Hg(?“) —1 V3 L
VT, H. =
P L2 3(7‘0) Hg(?“o) (277)352193 /7’8‘ + 1A

Checking that the 1st law is obeyed is easy-peasy-lemon-squeezy

V3 (5r0* +4L%) ro V3 ro® sqrt[ro® + L*]
In[1556]:= M = 3T = 3 S= H
27 n* gs? 1s® nSqre[ro® + L*] 2° x° gs? 1s®
V3 L2 L2 Sqrt[re" + L"]
3 = sn= s
(27) 3 gs 1s* Sqrt[re" + L"] ’ 4ngsls?

dM =D[M, r@] dr@ + D[M, L] dL // Simplify;
dS =D[S, r0] drO + D[S, L] dL // Simplify;
dn=D[n, r0] dr0+D[n, L] dL // Simplify;
TdS+&dn // FullSimplify

dMm

(4dLL®+5drore®) v3
32 gs?2 1s® *

Out[1561]=

(4dLL®+5drore®) v3

Out[1562]=
32 gs? 1s® n*

36. We will calculate the partition function of 4D N =4 SYM in volume V (flat space) at temperature 5. For
a single (noninteracting) bosonic field with one degree of freedom, we get:

= Hzp(ﬁ) = H ﬁ = exp [— (2‘7/5’)3 Jdgplog(l _ e—ﬂlp)]

Then i )
e PPl V347D (3) T2V
log Z = 4) = — 22
= log Z( gy ‘W= 55
The same argument for a single fermion gives:
—Alel VidrD(3 72V
= log Zr (B N ?2%,8)( ! n(4) = gﬁﬁig

where 7 is the Dirichlet eta function, giving the alternating zeta series. We have N2(6 + 2) bosonic degrees
of freedom and 8N? fermionic degrees of freedom. Altogether this gives the partition function:

7 7T V3 72 V3
log Z(B) = 8N*(1 _ L N2
The expected energy is then:

E=— 1 Z——NQVT4
28 %

The free energy is FF = 3~ 'log Z = E — 371S. This gives the entropy to be

11 2
S =PBE—logZ =—(B0g+1)log Z = (8 + 5)7r2N2v3T3 = §7r2N2V3T3
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37.

38.

exactly as written.

Let us further verify 14.10.10 and 14.11.11 in their entirety. First, note that for a D-brane solution

—f(r)dt? + dz - dz < r? 2) L* r
ds? = +VH(r) | = +r7dQ |, H(r)=1+—, r)=1-—.
H(’r‘) ( ) f(T) 5 ( ) ré f( )

we have shown before that the parameter IV is given by

L2\ L4 + .
N=— = L'=dng IN = L2\/L4+r§

47"9552l

This gives the relevant AdS scale L. From previous calculations of the mass, we have

= 72, /74 4
M:%(4L4+5r§)va\/L tro 1 oy VTt

~ +(5—2)—2—
gl grgt @npg, T O Vi

2
3
~ NV5Ts + 31/3%N2TI;4 = NVsTy + S Byn

up to quartic corrections in the string length. Next, the chemical potential is also easy:

V. L* 1 Varg 1
o= = TV — 50— = Tyl — S VNT,

(2m)°g5t8 | [f4 4 2 [2(2m)3 gl
Varga/ré + LA 3
POV DT §7r2V§T,3{N2 -

Finally, the entropy:

= -5
A(2m)*g3 05 4
So remarkably, the interacting system has quantities lowered by exactly % from their free field values.

Let’s cut open the Wilson line at ¢ = 0. Then we have
B
L= PeXpiJ Ayatdr
0

We initially consider gauge transformations that are periodic in the time direction. That means that this
object transforms as L — g~ 'Lg. If we consider now the gauge transformations periodic up to an element
of the center, we get L — g~ 'Lgh. Closing the loop again, we get an additional insertion of % in the line.
Since h is central, it is equal to an Nth root of unity ¢ times the identity matrix. This is just a scalar, so
inserting it to give a twisted sector gives the transformation:

L — (L
as required.

The following diagrams will give the leading-order contributions to the scalar mass at one-loop:

+__ Ty

+ +
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39.

40.

Here wiggly lines are gluons, straight lines are scalars, and straight lines with arrows are the fermions.
To extract the mass dependence, it is sufficient to allow for the external legs to go to zero momentum.
We get the thermal one-loop contribution to the mass going as VAT

A mass for the fermion is already generated at tree-level due to the anti-periodic identification implicit in
putting the theory at finite temperature.

Finish, ask Pavel

There is a typo. It should be r2dQ3, not r3dQ3.

As we know by now, for a hypersurface orthogonal to the coordinate system,

1
K,uu = *nra'rg,uu

2
Here n”0, is the unit vector in the r direction, whose r component is \/%. We get:
11 1 1 [gur) 6
Ky = = ——(—gh(r)dt* + 2r3d03) = ~ < oty =
2 \/9?( ulr) 3 29 \gu(r) 7

For AdS Schwarzschild the metric is

2 2 -1
2_ o wMy r_wM 2,2 _ 16G5
ds® = <1+L2 2 >dt +<1+L2 742> dre 4+ r°dfls, w= 52

Now, calculating K for this we get:

1 /1 N r2  wM 2rt + 202 Muw N 6 4
2 L2 r2 \r5+ L%2r3 — LZ2Mrw r L
as r — oo0. This is independent of M. As r — o0, /g on a constant-r slice approaches %7‘3 — L~ 'e™* which

is again independent of M. Defining v/h¢ = f—f yields

KvVh = 4L*Vh

Thus, the subleading terms go to zero as r — o0, and so the difference in the GH term between AdS-
Schwarzschild and thermal AdS vanishes.

The inverse temperature 8 obtained from requiring no conical singularity is given by:

2mL2r, L

ﬁ:2ri+L2:>Z_,8

here z is the effective dimensionless temperature. Knowing that:

1 1 4w M
7“+_L\/—2+2 1“1‘?
i Luw (y/1+ 45 —2)

aM 3/2
T 8%“’+2(L2< 1+4JZ§“’—1>)

let us now look at

For small M, this is negative, giving negative heat capacity (ie small black holes evaporate). For large M
this is positive, giving positive heat capacity (ie large black holes are thermodynamically stable, fed by the
reflection of their radiation off of the AdS boundary).
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41.

42.
43.
44.
45.
46.
47.
48.

49.
50.

o1.

52.

For a quantum mechanical system in 1D, there is a finite energy associated with tunneling from one minimum
to the other. As a result, instead of the field localizing to one of the minima v = v, or ¢ = R, there are
finite energy configurations (7, + 1r)/v/2 that can lower the Hamiltonian further. If instead we had an
infinite potential associated with crossing from one to the other, such ground states would be disallowed.

For arbitrary local field theories in finite volume, this argument generalizes to show that there can never be
a phase transition, since tunneling from one minimum to another only costs finite action (energy). Note,
however, that this argument does not commute with taking a large N limit N — oo, which is what is
encountered in the text.

Newton’s constant in 10D is 167G1o = 2x3, = (27)7g2¢5. Then compactifying on 7% x S3 to get to 3D, with

the volume of the T* being (27£5)*Vy and the volume of the S® being 272L3 we have

9.2 — 25%0 = Gy = (2m)g2ts _ gals
5 (2ml,)AV L322 16m x 212 x V x L3~ 4V I3
Using Brown-Henneaux, this further gives:
3L eVL
=—— = =6

Because this is so crucial, I will first review the argument by Brown and Henneaux.

Let us first express the expectation value of the stress energy tensor in the 2D CFT in terms of the asymptotic
metric of 3D gravity. We have done this for AdS;/CFTy in section 14.8.3. We have the equations:

_ 2
Trlg)9e] = —5 R, Vg = ViTrgq

Thus only the trace-free part of ¢(? is left undetermined. This can be parameterized by h.., hzs.

Altogether we get:
1 1

Ighzza Z,zZ — _ZE
Focusing on a holomorphic transformation we get:

Tzz = - hi%

ds* — ds*+
Say I had a conserved global charge for a continuous (internal) symmetry. This provides a local current J#

in the theory. I take this current operator near the boundary of AdS - this defines an operator in the CFT.

The corresponding boundary local operator will thus generate a global symmetry on the boundary theory.
By preceding arguments (exercise 14.10), the corresponding bulk symmetry must be gauged.

Incorporate Harlow’s argument.

First consider two noninteracting CF'Ts, CFT; and CFTsy. The stress energy tensor T' decomposes into a

sum T + T5. The corresponding geometry will be a product of two separate (noninteracting) copies of AdSs.

Thus, one graviton k' + h? remains massless while the other h' — h? obtains a mass squared proportional to
1

NZ2L2°
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1 Chapter 15: Applications of the Holographic Correspondence

1. Taking U = r/¢? and g3, = gs(27r)p_2€€_3 fixed as 5 — 0, we have that at the scale U,
* = g2 HBP? = 9ors = Gy NUP™.
In the extremal case the electric field is:

H'  gN (2nl)"™
H?2 Qg ,H2 18

L <2Wfs>7_p o TPy oy BT ey
Qs \ L

Fr(]l...p = -

2. The original near-horizon metric is:

(7T-p)/2 JI,N
U i e da) + DM . N o 4 U%d0z_)
gy M /dp N UT-p)/2 )/

The sphere factor is direct and yields:

C\/d,NUP=9 gy 3 d0R

The other factor will require our change of variables. Pulling out the same overall factor as before, we are

left with: . )
U~~ dU

2\/d,NU P~/ dt?> +dz - d —

QYM[YMdN( + ax :L‘)+U2]

Upon making the substitution:

S—pu

2
5p _ 29ymy/dpN\ AU _ 2 du
\ G-pu u

4 1

Exactly AdS with radius 4/(5—p). I’m not sure how Kiritsis is absorbing the gy - strictly speaking
the metric in 15.1.17 is off by that factor is the df); is to be unital.

we get:

3. For an extremal brane it is straightforward to get the curvature in terms of the dilaton EOM, and indeed
we’ve done this in an exercise for chapter 8, as well as having it written explicitly in 8.8.31.

Schematically:
2 1 1 Us-p

r(—3)/2(T—p)/2 \/m Jeff m

4. Ok here the limits are subtle and worth discussing. I'm following section 13.7. There are two horizons.
Near-horizon means near the outer horizon. In order to take this limit successfully, we must take rg « L. In
fact, we must take 79 — 0 in a controlled way. Expectedly, we must hold Uy = 7o//? fixed alongside U = r/¢>
while taking rq, 7, ¢? to zero at the same rate.

R ~

as required.

7—p
For this reason, it is safe to replace H by L7"P/r7"P as before, and also to replace f by 1 — g%_p in the
nonextremal solution. We then recover exactly the near-horizon extremal solution with the dt?> and dU?

terms modified by f:

—f(r)dt* + dx - dz 0 [ dr?

— 8 _
VA oy s }

U-p/2 gy M/ dp au?
o | UV 2 ) 2
— (2 T (—f(U)dt* + dzx - dx) + =y (f(U) +U ngp> .

ds® =
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with .

f(U) =1- Ui—»r"

5. Let’s start with the Hawking temperature. From excercise 13.1 it is simply

o Clo) _ (7=pUg "
= S0

4 A gy mA/dpN

The ADM mass above extremality is given by (again, I think there must be something wrong with
equation 8.8.14)

v B 9-10+2p(g _ —1343p -
LO-prg?=1, 4( IQZ - i
2r1 9yl ()

as required.
The entropy density will come from the area of the horizon at U = Uj.

Vo 4—ppyp(T—) A —(8=P) (T—p) /47 5~ Vi

d. N pUP P U p p U p _ p
4G1o (9ymr/dpIN) 0 0 0 2577682

By straightfoward algebra, this is equal to the messy expression that Kirtisis has.

6. Area law behavior is indicative of confinement, which is what we would qualitatively expect in
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Chapter 16: String Theory and Matrix Models

1. The Nambu-Goto action is
—Ty Jd?’f[x/detg + C’ameaﬂq/], Gap = Gu0aX"03 X", Capy = Cup0a X0 X" ud, X"
Let’s set Copy = 0. The EOM for the scalar field is quickly seen to be [1X = 0, where [] is the Laplacian

from the induced metric.

In the Polyakov action, the equations of motion for v are the vanishing the energy-momentum tensor, giving:
1
OaX 05X, — 5%/3(77557)(%)(# —1)

This is harder to solve than the p = 1 case, as we can’t just take the square root of the determinant of both
sides. Taking the ansatz that v,3 = A\d,. X" 03X, we get:

1
)\’VOcﬁ - 57@5(3)‘ - 1)

And we get a solution with A = 1. Note there is no Weyl rescaling here. Similarly, the X field must satisify
1
——0a(V—hh*Po5X") =0
\/jh Oé( B )
which agrees with [JX = 0 upon the identification of the induced and auxiliary metrics.

Note importantly that the p-brane action for p # 1 requires a cosmological constant term.

2. Take the gauge yoo = — det g;; with vg; = 0 so that /=y = det g;;. The action then becomes:
—%wﬂWXX—Qz%@dwﬁmﬂ
Here there is a small typo in Kiritsis. Rewriting
det iy = X0 X" X,02X, — A XPEXY 0 Xu00 X, = — o {XH, X} (X, X,

We thus get total action:
T - 1
32 fd?’g (X“X“ - X, X”}{X“,XV}>
Giving equations of motion )
XH={X* X"} X,}
Taking now lightcone gauge X (7,01,02) = T
The transverse momenta are:
b= oL :TQXi:p:Xi
5(0-X) %
The Hamiltonian is thus
p_ X" — L+ Jd2§piXi
N ) 1/4 X’L

3. This rescaling is very straightforward once one has the hamiltonian 16.1.14. One rescales X* — (72

—1/4
and t — (&) yielding:

Ty [y wios TN [, XiXi Tp_ XX
2 PeX'X' > 22 | d = —T
2 J° TR T R 7
and
T o Ty N 1ioi o T 1ioi o
ZJdQU{XZ,XJ}{Xi,Xj} — 2 | Poo[X, X)X, X;] = 2T | <[ X, X)X, X ]
4 4 Vs 4 4 4
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4. For a string, imagine a rectangular spike of cross-section € and length L. Its total energy is 2L + €, where
€ does not multiply L now. Therefore, taking L large will give a large energy deviation, regardless of how
small we take e. Thus, the string is stable against decaying into these small spikes.

5. Its immediate that the C,,, term multiplies a Nambu bracket, by antisymmetry. Now by permutation
invariance we can write:

1
6{X“7 XY, XPHX,, Xy, X} = 01 X1 02XV 03X €03y (0aXu05X,0, X))

Its not hard to see that this reproduces the formula for a 3x3 determinant, as we have an antisymmetric
object involving one element from every row and column multiplied together, all with unital coefficients.

The bracket is not associative show
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